MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd1a Structured version   Visualization version   GIF version

Theorem pntpbnd1a 27553
Description: Lemma for pntpbnd 27556. (Contributed by Mario Carneiro, 11-Apr-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.)
Hypotheses
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntpbnd1.e (𝜑𝐸 ∈ (0(,)1))
pntpbnd1.x 𝑋 = (exp‘(2 / 𝐸))
pntpbnd1.y (𝜑𝑌 ∈ (𝑋(,)+∞))
pntpbnd1a.1 (𝜑𝑁 ∈ ℕ)
pntpbnd1a.2 (𝜑 → (𝑌 < 𝑁𝑁 ≤ (𝐾 · 𝑌)))
pntpbnd1a.3 (𝜑 → (abs‘(𝑅𝑁)) ≤ (abs‘((𝑅‘(𝑁 + 1)) − (𝑅𝑁))))
Assertion
Ref Expression
pntpbnd1a (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ≤ 𝐸)
Distinct variable group:   𝑁,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝑅(𝑎)   𝐸(𝑎)   𝐾(𝑎)   𝑋(𝑎)   𝑌(𝑎)

Proof of Theorem pntpbnd1a
StepHypRef Expression
1 pntpbnd1a.1 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
21nnrpd 13054 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
3 pntpbnd.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
43pntrf 27531 . . . . . . 7 𝑅:ℝ+⟶ℝ
54ffvelcdmi 7078 . . . . . 6 (𝑁 ∈ ℝ+ → (𝑅𝑁) ∈ ℝ)
62, 5syl 17 . . . . 5 (𝜑 → (𝑅𝑁) ∈ ℝ)
76, 2rerpdivcld 13087 . . . 4 (𝜑 → ((𝑅𝑁) / 𝑁) ∈ ℝ)
87recnd 11268 . . 3 (𝜑 → ((𝑅𝑁) / 𝑁) ∈ ℂ)
98abscld 15460 . 2 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ∈ ℝ)
102relogcld 26589 . . 3 (𝜑 → (log‘𝑁) ∈ ℝ)
1110, 2rerpdivcld 13087 . 2 (𝜑 → ((log‘𝑁) / 𝑁) ∈ ℝ)
12 ioossre 13429 . . 3 (0(,)1) ⊆ ℝ
13 pntpbnd1.e . . 3 (𝜑𝐸 ∈ (0(,)1))
1412, 13sselid 3961 . 2 (𝜑𝐸 ∈ ℝ)
156recnd 11268 . . . . 5 (𝜑 → (𝑅𝑁) ∈ ℂ)
161nnred 12260 . . . . . 6 (𝜑𝑁 ∈ ℝ)
1716recnd 11268 . . . . 5 (𝜑𝑁 ∈ ℂ)
181nnne0d 12295 . . . . 5 (𝜑𝑁 ≠ 0)
1915, 17, 18absdivd 15479 . . . 4 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) = ((abs‘(𝑅𝑁)) / (abs‘𝑁)))
201nnnn0d 12567 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
2120nn0ge0d 12570 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
2216, 21absidd 15446 . . . . 5 (𝜑 → (abs‘𝑁) = 𝑁)
2322oveq2d 7426 . . . 4 (𝜑 → ((abs‘(𝑅𝑁)) / (abs‘𝑁)) = ((abs‘(𝑅𝑁)) / 𝑁))
2419, 23eqtrd 2771 . . 3 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) = ((abs‘(𝑅𝑁)) / 𝑁))
2515abscld 15460 . . . 4 (𝜑 → (abs‘(𝑅𝑁)) ∈ ℝ)
261peano2nnd 12262 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ)
27 vmacl 27085 . . . . . . . . 9 ((𝑁 + 1) ∈ ℕ → (Λ‘(𝑁 + 1)) ∈ ℝ)
2826, 27syl 17 . . . . . . . 8 (𝜑 → (Λ‘(𝑁 + 1)) ∈ ℝ)
29 peano2rem 11555 . . . . . . . 8 ((Λ‘(𝑁 + 1)) ∈ ℝ → ((Λ‘(𝑁 + 1)) − 1) ∈ ℝ)
3028, 29syl 17 . . . . . . 7 (𝜑 → ((Λ‘(𝑁 + 1)) − 1) ∈ ℝ)
3130recnd 11268 . . . . . 6 (𝜑 → ((Λ‘(𝑁 + 1)) − 1) ∈ ℂ)
3231abscld 15460 . . . . 5 (𝜑 → (abs‘((Λ‘(𝑁 + 1)) − 1)) ∈ ℝ)
33 pntpbnd1a.3 . . . . . 6 (𝜑 → (abs‘(𝑅𝑁)) ≤ (abs‘((𝑅‘(𝑁 + 1)) − (𝑅𝑁))))
3426nnrpd 13054 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℝ+)
353pntrval 27530 . . . . . . . . . 10 ((𝑁 + 1) ∈ ℝ+ → (𝑅‘(𝑁 + 1)) = ((ψ‘(𝑁 + 1)) − (𝑁 + 1)))
3634, 35syl 17 . . . . . . . . 9 (𝜑 → (𝑅‘(𝑁 + 1)) = ((ψ‘(𝑁 + 1)) − (𝑁 + 1)))
373pntrval 27530 . . . . . . . . . 10 (𝑁 ∈ ℝ+ → (𝑅𝑁) = ((ψ‘𝑁) − 𝑁))
382, 37syl 17 . . . . . . . . 9 (𝜑 → (𝑅𝑁) = ((ψ‘𝑁) − 𝑁))
3936, 38oveq12d 7428 . . . . . . . 8 (𝜑 → ((𝑅‘(𝑁 + 1)) − (𝑅𝑁)) = (((ψ‘(𝑁 + 1)) − (𝑁 + 1)) − ((ψ‘𝑁) − 𝑁)))
40 peano2re 11413 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
4116, 40syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℝ)
42 chpcl 27091 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℝ → (ψ‘(𝑁 + 1)) ∈ ℝ)
4341, 42syl 17 . . . . . . . . . 10 (𝜑 → (ψ‘(𝑁 + 1)) ∈ ℝ)
4443recnd 11268 . . . . . . . . 9 (𝜑 → (ψ‘(𝑁 + 1)) ∈ ℂ)
4541recnd 11268 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℂ)
46 chpcl 27091 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (ψ‘𝑁) ∈ ℝ)
4716, 46syl 17 . . . . . . . . . 10 (𝜑 → (ψ‘𝑁) ∈ ℝ)
4847recnd 11268 . . . . . . . . 9 (𝜑 → (ψ‘𝑁) ∈ ℂ)
4944, 45, 48, 17sub4d 11648 . . . . . . . 8 (𝜑 → (((ψ‘(𝑁 + 1)) − (𝑁 + 1)) − ((ψ‘𝑁) − 𝑁)) = (((ψ‘(𝑁 + 1)) − (ψ‘𝑁)) − ((𝑁 + 1) − 𝑁)))
5028recnd 11268 . . . . . . . . . 10 (𝜑 → (Λ‘(𝑁 + 1)) ∈ ℂ)
51 chpp1 27122 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (ψ‘(𝑁 + 1)) = ((ψ‘𝑁) + (Λ‘(𝑁 + 1))))
5220, 51syl 17 . . . . . . . . . 10 (𝜑 → (ψ‘(𝑁 + 1)) = ((ψ‘𝑁) + (Λ‘(𝑁 + 1))))
5348, 50, 52mvrladdd 11655 . . . . . . . . 9 (𝜑 → ((ψ‘(𝑁 + 1)) − (ψ‘𝑁)) = (Λ‘(𝑁 + 1)))
54 ax-1cn 11192 . . . . . . . . . 10 1 ∈ ℂ
55 pncan2 11494 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 𝑁) = 1)
5617, 54, 55sylancl 586 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) − 𝑁) = 1)
5753, 56oveq12d 7428 . . . . . . . 8 (𝜑 → (((ψ‘(𝑁 + 1)) − (ψ‘𝑁)) − ((𝑁 + 1) − 𝑁)) = ((Λ‘(𝑁 + 1)) − 1))
5839, 49, 573eqtrd 2775 . . . . . . 7 (𝜑 → ((𝑅‘(𝑁 + 1)) − (𝑅𝑁)) = ((Λ‘(𝑁 + 1)) − 1))
5958fveq2d 6885 . . . . . 6 (𝜑 → (abs‘((𝑅‘(𝑁 + 1)) − (𝑅𝑁))) = (abs‘((Λ‘(𝑁 + 1)) − 1)))
6033, 59breqtrd 5150 . . . . 5 (𝜑 → (abs‘(𝑅𝑁)) ≤ (abs‘((Λ‘(𝑁 + 1)) − 1)))
61 1red 11241 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
6261, 10resubcld 11670 . . . . . . 7 (𝜑 → (1 − (log‘𝑁)) ∈ ℝ)
63 0red 11243 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
64 2re 12319 . . . . . . . . . . 11 2 ∈ ℝ
65 eliooord 13427 . . . . . . . . . . . . . 14 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
6613, 65syl 17 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝐸𝐸 < 1))
6766simpld 494 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐸)
6814, 67elrpd 13053 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
69 rerpdivcl 13044 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (2 / 𝐸) ∈ ℝ)
7064, 68, 69sylancr 587 . . . . . . . . . 10 (𝜑 → (2 / 𝐸) ∈ ℝ)
7164a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
72 1lt2 12416 . . . . . . . . . . . 12 1 < 2
7372a1i 11 . . . . . . . . . . 11 (𝜑 → 1 < 2)
74 2cn 12320 . . . . . . . . . . . . 13 2 ∈ ℂ
7574div1i 11974 . . . . . . . . . . . 12 (2 / 1) = 2
7666simprd 495 . . . . . . . . . . . . 13 (𝜑𝐸 < 1)
77 0lt1 11764 . . . . . . . . . . . . . . 15 0 < 1
7877a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 1)
79 2pos 12348 . . . . . . . . . . . . . . 15 0 < 2
8079a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 2)
81 ltdiv2 12133 . . . . . . . . . . . . . 14 (((𝐸 ∈ ℝ ∧ 0 < 𝐸) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐸 < 1 ↔ (2 / 1) < (2 / 𝐸)))
8214, 67, 61, 78, 71, 80, 81syl222anc 1388 . . . . . . . . . . . . 13 (𝜑 → (𝐸 < 1 ↔ (2 / 1) < (2 / 𝐸)))
8376, 82mpbid 232 . . . . . . . . . . . 12 (𝜑 → (2 / 1) < (2 / 𝐸))
8475, 83eqbrtrrid 5160 . . . . . . . . . . 11 (𝜑 → 2 < (2 / 𝐸))
8561, 71, 70, 73, 84lttrd 11401 . . . . . . . . . 10 (𝜑 → 1 < (2 / 𝐸))
86 pntpbnd1.x . . . . . . . . . . . . 13 𝑋 = (exp‘(2 / 𝐸))
8770rpefcld 16128 . . . . . . . . . . . . . . . 16 (𝜑 → (exp‘(2 / 𝐸)) ∈ ℝ+)
8886, 87eqeltrid 2839 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ+)
8988rpred 13056 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
90 pntpbnd1.y . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ (𝑋(,)+∞))
9188rpxrd 13057 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ℝ*)
92 elioopnf 13465 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ* → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
9391, 92syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
9490, 93mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌))
9594simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
9694simprd 495 . . . . . . . . . . . . . 14 (𝜑𝑋 < 𝑌)
97 pntpbnd1a.2 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 < 𝑁𝑁 ≤ (𝐾 · 𝑌)))
9897simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑌 < 𝑁)
9989, 95, 16, 96, 98lttrd 11401 . . . . . . . . . . . . 13 (𝜑𝑋 < 𝑁)
10086, 99eqbrtrrid 5160 . . . . . . . . . . . 12 (𝜑 → (exp‘(2 / 𝐸)) < 𝑁)
1012reeflogd 26590 . . . . . . . . . . . 12 (𝜑 → (exp‘(log‘𝑁)) = 𝑁)
102100, 101breqtrrd 5152 . . . . . . . . . . 11 (𝜑 → (exp‘(2 / 𝐸)) < (exp‘(log‘𝑁)))
103 eflt 16140 . . . . . . . . . . . 12 (((2 / 𝐸) ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((2 / 𝐸) < (log‘𝑁) ↔ (exp‘(2 / 𝐸)) < (exp‘(log‘𝑁))))
10470, 10, 103syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((2 / 𝐸) < (log‘𝑁) ↔ (exp‘(2 / 𝐸)) < (exp‘(log‘𝑁))))
105102, 104mpbird 257 . . . . . . . . . 10 (𝜑 → (2 / 𝐸) < (log‘𝑁))
10661, 70, 10, 85, 105lttrd 11401 . . . . . . . . 9 (𝜑 → 1 < (log‘𝑁))
10761, 10, 106ltled 11388 . . . . . . . 8 (𝜑 → 1 ≤ (log‘𝑁))
108 1re 11240 . . . . . . . . 9 1 ∈ ℝ
109 suble0 11756 . . . . . . . . 9 ((1 ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((1 − (log‘𝑁)) ≤ 0 ↔ 1 ≤ (log‘𝑁)))
110108, 10, 109sylancr 587 . . . . . . . 8 (𝜑 → ((1 − (log‘𝑁)) ≤ 0 ↔ 1 ≤ (log‘𝑁)))
111107, 110mpbird 257 . . . . . . 7 (𝜑 → (1 − (log‘𝑁)) ≤ 0)
112 vmage0 27088 . . . . . . . 8 ((𝑁 + 1) ∈ ℕ → 0 ≤ (Λ‘(𝑁 + 1)))
11326, 112syl 17 . . . . . . 7 (𝜑 → 0 ≤ (Λ‘(𝑁 + 1)))
11462, 63, 28, 111, 113letrd 11397 . . . . . 6 (𝜑 → (1 − (log‘𝑁)) ≤ (Λ‘(𝑁 + 1)))
11534relogcld 26589 . . . . . . 7 (𝜑 → (log‘(𝑁 + 1)) ∈ ℝ)
116 readdcl 11217 . . . . . . . 8 ((1 ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → (1 + (log‘𝑁)) ∈ ℝ)
117108, 10, 116sylancr 587 . . . . . . 7 (𝜑 → (1 + (log‘𝑁)) ∈ ℝ)
118 vmalelog 27173 . . . . . . . 8 ((𝑁 + 1) ∈ ℕ → (Λ‘(𝑁 + 1)) ≤ (log‘(𝑁 + 1)))
11926, 118syl 17 . . . . . . 7 (𝜑 → (Λ‘(𝑁 + 1)) ≤ (log‘(𝑁 + 1)))
12071, 16remulcld 11270 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
121 epr 16231 . . . . . . . . . . . 12 e ∈ ℝ+
122 rpmulcl 13037 . . . . . . . . . . . 12 ((e ∈ ℝ+𝑁 ∈ ℝ+) → (e · 𝑁) ∈ ℝ+)
123121, 2, 122sylancr 587 . . . . . . . . . . 11 (𝜑 → (e · 𝑁) ∈ ℝ+)
124123rpred 13056 . . . . . . . . . 10 (𝜑 → (e · 𝑁) ∈ ℝ)
1251nnge1d 12293 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑁)
12661, 16, 16, 125leadd2dd 11857 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ≤ (𝑁 + 𝑁))
127172timesd 12489 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
128126, 127breqtrrd 5152 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ≤ (2 · 𝑁))
129 ere 16110 . . . . . . . . . . . . 13 e ∈ ℝ
130 egt2lt3 16229 . . . . . . . . . . . . . 14 (2 < e ∧ e < 3)
131130simpli 483 . . . . . . . . . . . . 13 2 < e
13264, 129, 131ltleii 11363 . . . . . . . . . . . 12 2 ≤ e
133132a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ≤ e)
134129a1i 11 . . . . . . . . . . . 12 (𝜑 → e ∈ ℝ)
1351nngt0d 12294 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑁)
136 lemul1 12098 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ e ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (2 ≤ e ↔ (2 · 𝑁) ≤ (e · 𝑁)))
13771, 134, 16, 135, 136syl112anc 1376 . . . . . . . . . . 11 (𝜑 → (2 ≤ e ↔ (2 · 𝑁) ≤ (e · 𝑁)))
138133, 137mpbid 232 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ≤ (e · 𝑁))
13941, 120, 124, 128, 138letrd 11397 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ≤ (e · 𝑁))
14034, 123logled 26593 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) ≤ (e · 𝑁) ↔ (log‘(𝑁 + 1)) ≤ (log‘(e · 𝑁))))
141139, 140mpbid 232 . . . . . . . 8 (𝜑 → (log‘(𝑁 + 1)) ≤ (log‘(e · 𝑁)))
142 relogmul 26558 . . . . . . . . . 10 ((e ∈ ℝ+𝑁 ∈ ℝ+) → (log‘(e · 𝑁)) = ((log‘e) + (log‘𝑁)))
143121, 2, 142sylancr 587 . . . . . . . . 9 (𝜑 → (log‘(e · 𝑁)) = ((log‘e) + (log‘𝑁)))
144 loge 26552 . . . . . . . . . 10 (log‘e) = 1
145144oveq1i 7420 . . . . . . . . 9 ((log‘e) + (log‘𝑁)) = (1 + (log‘𝑁))
146143, 145eqtrdi 2787 . . . . . . . 8 (𝜑 → (log‘(e · 𝑁)) = (1 + (log‘𝑁)))
147141, 146breqtrd 5150 . . . . . . 7 (𝜑 → (log‘(𝑁 + 1)) ≤ (1 + (log‘𝑁)))
14828, 115, 117, 119, 147letrd 11397 . . . . . 6 (𝜑 → (Λ‘(𝑁 + 1)) ≤ (1 + (log‘𝑁)))
14928, 61, 10absdifled 15458 . . . . . 6 (𝜑 → ((abs‘((Λ‘(𝑁 + 1)) − 1)) ≤ (log‘𝑁) ↔ ((1 − (log‘𝑁)) ≤ (Λ‘(𝑁 + 1)) ∧ (Λ‘(𝑁 + 1)) ≤ (1 + (log‘𝑁)))))
150114, 148, 149mpbir2and 713 . . . . 5 (𝜑 → (abs‘((Λ‘(𝑁 + 1)) − 1)) ≤ (log‘𝑁))
15125, 32, 10, 60, 150letrd 11397 . . . 4 (𝜑 → (abs‘(𝑅𝑁)) ≤ (log‘𝑁))
15225, 10, 2, 151lediv1dd 13114 . . 3 (𝜑 → ((abs‘(𝑅𝑁)) / 𝑁) ≤ ((log‘𝑁) / 𝑁))
15324, 152eqbrtrd 5146 . 2 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ≤ ((log‘𝑁) / 𝑁))
15488relogcld 26589 . . . . 5 (𝜑 → (log‘𝑋) ∈ ℝ)
155154, 88rerpdivcld 13087 . . . 4 (𝜑 → ((log‘𝑋) / 𝑋) ∈ ℝ)
15661, 70, 85ltled 11388 . . . . . . . 8 (𝜑 → 1 ≤ (2 / 𝐸))
157 efle 16141 . . . . . . . . 9 ((1 ∈ ℝ ∧ (2 / 𝐸) ∈ ℝ) → (1 ≤ (2 / 𝐸) ↔ (exp‘1) ≤ (exp‘(2 / 𝐸))))
158108, 70, 157sylancr 587 . . . . . . . 8 (𝜑 → (1 ≤ (2 / 𝐸) ↔ (exp‘1) ≤ (exp‘(2 / 𝐸))))
159156, 158mpbid 232 . . . . . . 7 (𝜑 → (exp‘1) ≤ (exp‘(2 / 𝐸)))
160 df-e 16089 . . . . . . 7 e = (exp‘1)
161159, 160, 863brtr4g 5158 . . . . . 6 (𝜑 → e ≤ 𝑋)
162144, 107eqbrtrid 5159 . . . . . . 7 (𝜑 → (log‘e) ≤ (log‘𝑁))
163 logleb 26569 . . . . . . . 8 ((e ∈ ℝ+𝑁 ∈ ℝ+) → (e ≤ 𝑁 ↔ (log‘e) ≤ (log‘𝑁)))
164121, 2, 163sylancr 587 . . . . . . 7 (𝜑 → (e ≤ 𝑁 ↔ (log‘e) ≤ (log‘𝑁)))
165162, 164mpbird 257 . . . . . 6 (𝜑 → e ≤ 𝑁)
166 logdivlt 26587 . . . . . 6 (((𝑋 ∈ ℝ ∧ e ≤ 𝑋) ∧ (𝑁 ∈ ℝ ∧ e ≤ 𝑁)) → (𝑋 < 𝑁 ↔ ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋)))
16789, 161, 16, 165, 166syl22anc 838 . . . . 5 (𝜑 → (𝑋 < 𝑁 ↔ ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋)))
16899, 167mpbid 232 . . . 4 (𝜑 → ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋))
16986fveq2i 6884 . . . . . . 7 (log‘𝑋) = (log‘(exp‘(2 / 𝐸)))
17070relogefd 26594 . . . . . . 7 (𝜑 → (log‘(exp‘(2 / 𝐸))) = (2 / 𝐸))
171169, 170eqtrid 2783 . . . . . 6 (𝜑 → (log‘𝑋) = (2 / 𝐸))
172171oveq1d 7425 . . . . 5 (𝜑 → ((log‘𝑋) / 𝑋) = ((2 / 𝐸) / 𝑋))
173 2rp 13018 . . . . . . . . . . . . 13 2 ∈ ℝ+
174 rpdivcl 13039 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝐸 ∈ ℝ+) → (2 / 𝐸) ∈ ℝ+)
175173, 68, 174sylancr 587 . . . . . . . . . . . 12 (𝜑 → (2 / 𝐸) ∈ ℝ+)
176175rpcnd 13058 . . . . . . . . . . 11 (𝜑 → (2 / 𝐸) ∈ ℂ)
177176sqvald 14166 . . . . . . . . . 10 (𝜑 → ((2 / 𝐸)↑2) = ((2 / 𝐸) · (2 / 𝐸)))
178 2cnd 12323 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
17968rpcnne0d 13065 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
180 div12 11923 . . . . . . . . . . 11 (((2 / 𝐸) ∈ ℂ ∧ 2 ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) → ((2 / 𝐸) · (2 / 𝐸)) = (2 · ((2 / 𝐸) / 𝐸)))
181176, 178, 179, 180syl3anc 1373 . . . . . . . . . 10 (𝜑 → ((2 / 𝐸) · (2 / 𝐸)) = (2 · ((2 / 𝐸) / 𝐸)))
182177, 181eqtrd 2771 . . . . . . . . 9 (𝜑 → ((2 / 𝐸)↑2) = (2 · ((2 / 𝐸) / 𝐸)))
183182oveq1d 7425 . . . . . . . 8 (𝜑 → (((2 / 𝐸)↑2) / 2) = ((2 · ((2 / 𝐸) / 𝐸)) / 2))
184175, 68rpdivcld 13073 . . . . . . . . . 10 (𝜑 → ((2 / 𝐸) / 𝐸) ∈ ℝ+)
185184rpcnd 13058 . . . . . . . . 9 (𝜑 → ((2 / 𝐸) / 𝐸) ∈ ℂ)
186 2ne0 12349 . . . . . . . . . 10 2 ≠ 0
187186a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
188185, 178, 187divcan3d 12027 . . . . . . . 8 (𝜑 → ((2 · ((2 / 𝐸) / 𝐸)) / 2) = ((2 / 𝐸) / 𝐸))
189183, 188eqtrd 2771 . . . . . . 7 (𝜑 → (((2 / 𝐸)↑2) / 2) = ((2 / 𝐸) / 𝐸))
19070resqcld 14148 . . . . . . . . 9 (𝜑 → ((2 / 𝐸)↑2) ∈ ℝ)
191190rehalfcld 12493 . . . . . . . 8 (𝜑 → (((2 / 𝐸)↑2) / 2) ∈ ℝ)
192 1rp 13017 . . . . . . . . . . 11 1 ∈ ℝ+
193 rpaddcl 13036 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (2 / 𝐸) ∈ ℝ+) → (1 + (2 / 𝐸)) ∈ ℝ+)
194192, 175, 193sylancr 587 . . . . . . . . . 10 (𝜑 → (1 + (2 / 𝐸)) ∈ ℝ+)
195194rpred 13056 . . . . . . . . 9 (𝜑 → (1 + (2 / 𝐸)) ∈ ℝ)
196195, 191readdcld 11269 . . . . . . . 8 (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) ∈ ℝ)
197191, 194ltaddrp2d 13090 . . . . . . . 8 (𝜑 → (((2 / 𝐸)↑2) / 2) < ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)))
198 efgt1p2 16137 . . . . . . . . . 10 ((2 / 𝐸) ∈ ℝ+ → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < (exp‘(2 / 𝐸)))
199175, 198syl 17 . . . . . . . . 9 (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < (exp‘(2 / 𝐸)))
200199, 86breqtrrdi 5166 . . . . . . . 8 (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < 𝑋)
201191, 196, 89, 197, 200lttrd 11401 . . . . . . 7 (𝜑 → (((2 / 𝐸)↑2) / 2) < 𝑋)
202189, 201eqbrtrrd 5148 . . . . . 6 (𝜑 → ((2 / 𝐸) / 𝐸) < 𝑋)
20370, 68, 88, 202ltdiv23d 13123 . . . . 5 (𝜑 → ((2 / 𝐸) / 𝑋) < 𝐸)
204172, 203eqbrtrd 5146 . . . 4 (𝜑 → ((log‘𝑋) / 𝑋) < 𝐸)
20511, 155, 14, 168, 204lttrd 11401 . . 3 (𝜑 → ((log‘𝑁) / 𝑁) < 𝐸)
20611, 14, 205ltled 11388 . 2 (𝜑 → ((log‘𝑁) / 𝑁) ≤ 𝐸)
2079, 11, 14, 153, 206letrd 11397 1 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ≤ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271  *cxr 11273   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  3c3 12301  0cn0 12506  +crp 13013  (,)cioo 13367  cexp 14084  abscabs 15258  expce 16082  eceu 16083  logclog 26520  Λcvma 27059  ψcchp 27060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-e 16089  df-sin 16090  df-cos 16091  df-pi 16093  df-dvds 16278  df-gcd 16519  df-prm 16696  df-pc 16862  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-vma 27065  df-chp 27066
This theorem is referenced by:  pntpbnd1  27554
  Copyright terms: Public domain W3C validator