MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd1a Structured version   Visualization version   GIF version

Theorem pntpbnd1a 26153
Description: Lemma for pntpbnd 26156. (Contributed by Mario Carneiro, 11-Apr-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.)
Hypotheses
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntpbnd1.e (𝜑𝐸 ∈ (0(,)1))
pntpbnd1.x 𝑋 = (exp‘(2 / 𝐸))
pntpbnd1.y (𝜑𝑌 ∈ (𝑋(,)+∞))
pntpbnd1a.1 (𝜑𝑁 ∈ ℕ)
pntpbnd1a.2 (𝜑 → (𝑌 < 𝑁𝑁 ≤ (𝐾 · 𝑌)))
pntpbnd1a.3 (𝜑 → (abs‘(𝑅𝑁)) ≤ (abs‘((𝑅‘(𝑁 + 1)) − (𝑅𝑁))))
Assertion
Ref Expression
pntpbnd1a (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ≤ 𝐸)
Distinct variable group:   𝑁,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝑅(𝑎)   𝐸(𝑎)   𝐾(𝑎)   𝑋(𝑎)   𝑌(𝑎)

Proof of Theorem pntpbnd1a
StepHypRef Expression
1 pntpbnd1a.1 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
21nnrpd 12421 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
3 pntpbnd.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
43pntrf 26131 . . . . . . 7 𝑅:ℝ+⟶ℝ
54ffvelrni 6843 . . . . . 6 (𝑁 ∈ ℝ+ → (𝑅𝑁) ∈ ℝ)
62, 5syl 17 . . . . 5 (𝜑 → (𝑅𝑁) ∈ ℝ)
76, 2rerpdivcld 12454 . . . 4 (𝜑 → ((𝑅𝑁) / 𝑁) ∈ ℝ)
87recnd 10661 . . 3 (𝜑 → ((𝑅𝑁) / 𝑁) ∈ ℂ)
98abscld 14788 . 2 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ∈ ℝ)
102relogcld 25198 . . 3 (𝜑 → (log‘𝑁) ∈ ℝ)
1110, 2rerpdivcld 12454 . 2 (𝜑 → ((log‘𝑁) / 𝑁) ∈ ℝ)
12 ioossre 12790 . . 3 (0(,)1) ⊆ ℝ
13 pntpbnd1.e . . 3 (𝜑𝐸 ∈ (0(,)1))
1412, 13sseldi 3963 . 2 (𝜑𝐸 ∈ ℝ)
156recnd 10661 . . . . 5 (𝜑 → (𝑅𝑁) ∈ ℂ)
161nnred 11645 . . . . . 6 (𝜑𝑁 ∈ ℝ)
1716recnd 10661 . . . . 5 (𝜑𝑁 ∈ ℂ)
181nnne0d 11679 . . . . 5 (𝜑𝑁 ≠ 0)
1915, 17, 18absdivd 14807 . . . 4 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) = ((abs‘(𝑅𝑁)) / (abs‘𝑁)))
201nnnn0d 11947 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
2120nn0ge0d 11950 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
2216, 21absidd 14774 . . . . 5 (𝜑 → (abs‘𝑁) = 𝑁)
2322oveq2d 7164 . . . 4 (𝜑 → ((abs‘(𝑅𝑁)) / (abs‘𝑁)) = ((abs‘(𝑅𝑁)) / 𝑁))
2419, 23eqtrd 2854 . . 3 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) = ((abs‘(𝑅𝑁)) / 𝑁))
2515abscld 14788 . . . 4 (𝜑 → (abs‘(𝑅𝑁)) ∈ ℝ)
261peano2nnd 11647 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ)
27 vmacl 25687 . . . . . . . . 9 ((𝑁 + 1) ∈ ℕ → (Λ‘(𝑁 + 1)) ∈ ℝ)
2826, 27syl 17 . . . . . . . 8 (𝜑 → (Λ‘(𝑁 + 1)) ∈ ℝ)
29 peano2rem 10945 . . . . . . . 8 ((Λ‘(𝑁 + 1)) ∈ ℝ → ((Λ‘(𝑁 + 1)) − 1) ∈ ℝ)
3028, 29syl 17 . . . . . . 7 (𝜑 → ((Λ‘(𝑁 + 1)) − 1) ∈ ℝ)
3130recnd 10661 . . . . . 6 (𝜑 → ((Λ‘(𝑁 + 1)) − 1) ∈ ℂ)
3231abscld 14788 . . . . 5 (𝜑 → (abs‘((Λ‘(𝑁 + 1)) − 1)) ∈ ℝ)
33 pntpbnd1a.3 . . . . . 6 (𝜑 → (abs‘(𝑅𝑁)) ≤ (abs‘((𝑅‘(𝑁 + 1)) − (𝑅𝑁))))
3426nnrpd 12421 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℝ+)
353pntrval 26130 . . . . . . . . . 10 ((𝑁 + 1) ∈ ℝ+ → (𝑅‘(𝑁 + 1)) = ((ψ‘(𝑁 + 1)) − (𝑁 + 1)))
3634, 35syl 17 . . . . . . . . 9 (𝜑 → (𝑅‘(𝑁 + 1)) = ((ψ‘(𝑁 + 1)) − (𝑁 + 1)))
373pntrval 26130 . . . . . . . . . 10 (𝑁 ∈ ℝ+ → (𝑅𝑁) = ((ψ‘𝑁) − 𝑁))
382, 37syl 17 . . . . . . . . 9 (𝜑 → (𝑅𝑁) = ((ψ‘𝑁) − 𝑁))
3936, 38oveq12d 7166 . . . . . . . 8 (𝜑 → ((𝑅‘(𝑁 + 1)) − (𝑅𝑁)) = (((ψ‘(𝑁 + 1)) − (𝑁 + 1)) − ((ψ‘𝑁) − 𝑁)))
40 peano2re 10805 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
4116, 40syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℝ)
42 chpcl 25693 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℝ → (ψ‘(𝑁 + 1)) ∈ ℝ)
4341, 42syl 17 . . . . . . . . . 10 (𝜑 → (ψ‘(𝑁 + 1)) ∈ ℝ)
4443recnd 10661 . . . . . . . . 9 (𝜑 → (ψ‘(𝑁 + 1)) ∈ ℂ)
4541recnd 10661 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℂ)
46 chpcl 25693 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (ψ‘𝑁) ∈ ℝ)
4716, 46syl 17 . . . . . . . . . 10 (𝜑 → (ψ‘𝑁) ∈ ℝ)
4847recnd 10661 . . . . . . . . 9 (𝜑 → (ψ‘𝑁) ∈ ℂ)
4944, 45, 48, 17sub4d 11038 . . . . . . . 8 (𝜑 → (((ψ‘(𝑁 + 1)) − (𝑁 + 1)) − ((ψ‘𝑁) − 𝑁)) = (((ψ‘(𝑁 + 1)) − (ψ‘𝑁)) − ((𝑁 + 1) − 𝑁)))
5028recnd 10661 . . . . . . . . . 10 (𝜑 → (Λ‘(𝑁 + 1)) ∈ ℂ)
51 chpp1 25724 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (ψ‘(𝑁 + 1)) = ((ψ‘𝑁) + (Λ‘(𝑁 + 1))))
5220, 51syl 17 . . . . . . . . . 10 (𝜑 → (ψ‘(𝑁 + 1)) = ((ψ‘𝑁) + (Λ‘(𝑁 + 1))))
5348, 50, 52mvrladdd 11045 . . . . . . . . 9 (𝜑 → ((ψ‘(𝑁 + 1)) − (ψ‘𝑁)) = (Λ‘(𝑁 + 1)))
54 ax-1cn 10587 . . . . . . . . . 10 1 ∈ ℂ
55 pncan2 10885 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 𝑁) = 1)
5617, 54, 55sylancl 588 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) − 𝑁) = 1)
5753, 56oveq12d 7166 . . . . . . . 8 (𝜑 → (((ψ‘(𝑁 + 1)) − (ψ‘𝑁)) − ((𝑁 + 1) − 𝑁)) = ((Λ‘(𝑁 + 1)) − 1))
5839, 49, 573eqtrd 2858 . . . . . . 7 (𝜑 → ((𝑅‘(𝑁 + 1)) − (𝑅𝑁)) = ((Λ‘(𝑁 + 1)) − 1))
5958fveq2d 6667 . . . . . 6 (𝜑 → (abs‘((𝑅‘(𝑁 + 1)) − (𝑅𝑁))) = (abs‘((Λ‘(𝑁 + 1)) − 1)))
6033, 59breqtrd 5083 . . . . 5 (𝜑 → (abs‘(𝑅𝑁)) ≤ (abs‘((Λ‘(𝑁 + 1)) − 1)))
61 1red 10634 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
6261, 10resubcld 11060 . . . . . . 7 (𝜑 → (1 − (log‘𝑁)) ∈ ℝ)
63 0red 10636 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
64 2re 11703 . . . . . . . . . . 11 2 ∈ ℝ
65 eliooord 12788 . . . . . . . . . . . . . 14 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
6613, 65syl 17 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝐸𝐸 < 1))
6766simpld 497 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐸)
6814, 67elrpd 12420 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
69 rerpdivcl 12411 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (2 / 𝐸) ∈ ℝ)
7064, 68, 69sylancr 589 . . . . . . . . . 10 (𝜑 → (2 / 𝐸) ∈ ℝ)
7164a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
72 1lt2 11800 . . . . . . . . . . . 12 1 < 2
7372a1i 11 . . . . . . . . . . 11 (𝜑 → 1 < 2)
74 2cn 11704 . . . . . . . . . . . . 13 2 ∈ ℂ
7574div1i 11360 . . . . . . . . . . . 12 (2 / 1) = 2
7666simprd 498 . . . . . . . . . . . . 13 (𝜑𝐸 < 1)
77 0lt1 11154 . . . . . . . . . . . . . . 15 0 < 1
7877a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 1)
79 2pos 11732 . . . . . . . . . . . . . . 15 0 < 2
8079a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 2)
81 ltdiv2 11518 . . . . . . . . . . . . . 14 (((𝐸 ∈ ℝ ∧ 0 < 𝐸) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐸 < 1 ↔ (2 / 1) < (2 / 𝐸)))
8214, 67, 61, 78, 71, 80, 81syl222anc 1380 . . . . . . . . . . . . 13 (𝜑 → (𝐸 < 1 ↔ (2 / 1) < (2 / 𝐸)))
8376, 82mpbid 234 . . . . . . . . . . . 12 (𝜑 → (2 / 1) < (2 / 𝐸))
8475, 83eqbrtrrid 5093 . . . . . . . . . . 11 (𝜑 → 2 < (2 / 𝐸))
8561, 71, 70, 73, 84lttrd 10793 . . . . . . . . . 10 (𝜑 → 1 < (2 / 𝐸))
86 pntpbnd1.x . . . . . . . . . . . . 13 𝑋 = (exp‘(2 / 𝐸))
8770rpefcld 15450 . . . . . . . . . . . . . . . 16 (𝜑 → (exp‘(2 / 𝐸)) ∈ ℝ+)
8886, 87eqeltrid 2915 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ+)
8988rpred 12423 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
90 pntpbnd1.y . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ (𝑋(,)+∞))
9188rpxrd 12424 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ℝ*)
92 elioopnf 12823 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ* → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
9391, 92syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
9490, 93mpbid 234 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌))
9594simpld 497 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
9694simprd 498 . . . . . . . . . . . . . 14 (𝜑𝑋 < 𝑌)
97 pntpbnd1a.2 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 < 𝑁𝑁 ≤ (𝐾 · 𝑌)))
9897simpld 497 . . . . . . . . . . . . . 14 (𝜑𝑌 < 𝑁)
9989, 95, 16, 96, 98lttrd 10793 . . . . . . . . . . . . 13 (𝜑𝑋 < 𝑁)
10086, 99eqbrtrrid 5093 . . . . . . . . . . . 12 (𝜑 → (exp‘(2 / 𝐸)) < 𝑁)
1012reeflogd 25199 . . . . . . . . . . . 12 (𝜑 → (exp‘(log‘𝑁)) = 𝑁)
102100, 101breqtrrd 5085 . . . . . . . . . . 11 (𝜑 → (exp‘(2 / 𝐸)) < (exp‘(log‘𝑁)))
103 eflt 15462 . . . . . . . . . . . 12 (((2 / 𝐸) ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((2 / 𝐸) < (log‘𝑁) ↔ (exp‘(2 / 𝐸)) < (exp‘(log‘𝑁))))
10470, 10, 103syl2anc 586 . . . . . . . . . . 11 (𝜑 → ((2 / 𝐸) < (log‘𝑁) ↔ (exp‘(2 / 𝐸)) < (exp‘(log‘𝑁))))
105102, 104mpbird 259 . . . . . . . . . 10 (𝜑 → (2 / 𝐸) < (log‘𝑁))
10661, 70, 10, 85, 105lttrd 10793 . . . . . . . . 9 (𝜑 → 1 < (log‘𝑁))
10761, 10, 106ltled 10780 . . . . . . . 8 (𝜑 → 1 ≤ (log‘𝑁))
108 1re 10633 . . . . . . . . 9 1 ∈ ℝ
109 suble0 11146 . . . . . . . . 9 ((1 ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((1 − (log‘𝑁)) ≤ 0 ↔ 1 ≤ (log‘𝑁)))
110108, 10, 109sylancr 589 . . . . . . . 8 (𝜑 → ((1 − (log‘𝑁)) ≤ 0 ↔ 1 ≤ (log‘𝑁)))
111107, 110mpbird 259 . . . . . . 7 (𝜑 → (1 − (log‘𝑁)) ≤ 0)
112 vmage0 25690 . . . . . . . 8 ((𝑁 + 1) ∈ ℕ → 0 ≤ (Λ‘(𝑁 + 1)))
11326, 112syl 17 . . . . . . 7 (𝜑 → 0 ≤ (Λ‘(𝑁 + 1)))
11462, 63, 28, 111, 113letrd 10789 . . . . . 6 (𝜑 → (1 − (log‘𝑁)) ≤ (Λ‘(𝑁 + 1)))
11534relogcld 25198 . . . . . . 7 (𝜑 → (log‘(𝑁 + 1)) ∈ ℝ)
116 readdcl 10612 . . . . . . . 8 ((1 ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → (1 + (log‘𝑁)) ∈ ℝ)
117108, 10, 116sylancr 589 . . . . . . 7 (𝜑 → (1 + (log‘𝑁)) ∈ ℝ)
118 vmalelog 25773 . . . . . . . 8 ((𝑁 + 1) ∈ ℕ → (Λ‘(𝑁 + 1)) ≤ (log‘(𝑁 + 1)))
11926, 118syl 17 . . . . . . 7 (𝜑 → (Λ‘(𝑁 + 1)) ≤ (log‘(𝑁 + 1)))
12071, 16remulcld 10663 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
121 epr 15553 . . . . . . . . . . . 12 e ∈ ℝ+
122 rpmulcl 12404 . . . . . . . . . . . 12 ((e ∈ ℝ+𝑁 ∈ ℝ+) → (e · 𝑁) ∈ ℝ+)
123121, 2, 122sylancr 589 . . . . . . . . . . 11 (𝜑 → (e · 𝑁) ∈ ℝ+)
124123rpred 12423 . . . . . . . . . 10 (𝜑 → (e · 𝑁) ∈ ℝ)
1251nnge1d 11677 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑁)
12661, 16, 16, 125leadd2dd 11247 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ≤ (𝑁 + 𝑁))
127172timesd 11872 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
128126, 127breqtrrd 5085 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ≤ (2 · 𝑁))
129 ere 15434 . . . . . . . . . . . . 13 e ∈ ℝ
130 egt2lt3 15551 . . . . . . . . . . . . . 14 (2 < e ∧ e < 3)
131130simpli 486 . . . . . . . . . . . . 13 2 < e
13264, 129, 131ltleii 10755 . . . . . . . . . . . 12 2 ≤ e
133132a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ≤ e)
134129a1i 11 . . . . . . . . . . . 12 (𝜑 → e ∈ ℝ)
1351nngt0d 11678 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑁)
136 lemul1 11484 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ e ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (2 ≤ e ↔ (2 · 𝑁) ≤ (e · 𝑁)))
13771, 134, 16, 135, 136syl112anc 1368 . . . . . . . . . . 11 (𝜑 → (2 ≤ e ↔ (2 · 𝑁) ≤ (e · 𝑁)))
138133, 137mpbid 234 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ≤ (e · 𝑁))
13941, 120, 124, 128, 138letrd 10789 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ≤ (e · 𝑁))
14034, 123logled 25202 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) ≤ (e · 𝑁) ↔ (log‘(𝑁 + 1)) ≤ (log‘(e · 𝑁))))
141139, 140mpbid 234 . . . . . . . 8 (𝜑 → (log‘(𝑁 + 1)) ≤ (log‘(e · 𝑁)))
142 relogmul 25167 . . . . . . . . . 10 ((e ∈ ℝ+𝑁 ∈ ℝ+) → (log‘(e · 𝑁)) = ((log‘e) + (log‘𝑁)))
143121, 2, 142sylancr 589 . . . . . . . . 9 (𝜑 → (log‘(e · 𝑁)) = ((log‘e) + (log‘𝑁)))
144 loge 25162 . . . . . . . . . 10 (log‘e) = 1
145144oveq1i 7158 . . . . . . . . 9 ((log‘e) + (log‘𝑁)) = (1 + (log‘𝑁))
146143, 145syl6eq 2870 . . . . . . . 8 (𝜑 → (log‘(e · 𝑁)) = (1 + (log‘𝑁)))
147141, 146breqtrd 5083 . . . . . . 7 (𝜑 → (log‘(𝑁 + 1)) ≤ (1 + (log‘𝑁)))
14828, 115, 117, 119, 147letrd 10789 . . . . . 6 (𝜑 → (Λ‘(𝑁 + 1)) ≤ (1 + (log‘𝑁)))
14928, 61, 10absdifled 14786 . . . . . 6 (𝜑 → ((abs‘((Λ‘(𝑁 + 1)) − 1)) ≤ (log‘𝑁) ↔ ((1 − (log‘𝑁)) ≤ (Λ‘(𝑁 + 1)) ∧ (Λ‘(𝑁 + 1)) ≤ (1 + (log‘𝑁)))))
150114, 148, 149mpbir2and 711 . . . . 5 (𝜑 → (abs‘((Λ‘(𝑁 + 1)) − 1)) ≤ (log‘𝑁))
15125, 32, 10, 60, 150letrd 10789 . . . 4 (𝜑 → (abs‘(𝑅𝑁)) ≤ (log‘𝑁))
15225, 10, 2, 151lediv1dd 12481 . . 3 (𝜑 → ((abs‘(𝑅𝑁)) / 𝑁) ≤ ((log‘𝑁) / 𝑁))
15324, 152eqbrtrd 5079 . 2 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ≤ ((log‘𝑁) / 𝑁))
15488relogcld 25198 . . . . 5 (𝜑 → (log‘𝑋) ∈ ℝ)
155154, 88rerpdivcld 12454 . . . 4 (𝜑 → ((log‘𝑋) / 𝑋) ∈ ℝ)
15661, 70, 85ltled 10780 . . . . . . . 8 (𝜑 → 1 ≤ (2 / 𝐸))
157 efle 15463 . . . . . . . . 9 ((1 ∈ ℝ ∧ (2 / 𝐸) ∈ ℝ) → (1 ≤ (2 / 𝐸) ↔ (exp‘1) ≤ (exp‘(2 / 𝐸))))
158108, 70, 157sylancr 589 . . . . . . . 8 (𝜑 → (1 ≤ (2 / 𝐸) ↔ (exp‘1) ≤ (exp‘(2 / 𝐸))))
159156, 158mpbid 234 . . . . . . 7 (𝜑 → (exp‘1) ≤ (exp‘(2 / 𝐸)))
160 df-e 15414 . . . . . . 7 e = (exp‘1)
161159, 160, 863brtr4g 5091 . . . . . 6 (𝜑 → e ≤ 𝑋)
162144, 107eqbrtrid 5092 . . . . . . 7 (𝜑 → (log‘e) ≤ (log‘𝑁))
163 logleb 25178 . . . . . . . 8 ((e ∈ ℝ+𝑁 ∈ ℝ+) → (e ≤ 𝑁 ↔ (log‘e) ≤ (log‘𝑁)))
164121, 2, 163sylancr 589 . . . . . . 7 (𝜑 → (e ≤ 𝑁 ↔ (log‘e) ≤ (log‘𝑁)))
165162, 164mpbird 259 . . . . . 6 (𝜑 → e ≤ 𝑁)
166 logdivlt 25196 . . . . . 6 (((𝑋 ∈ ℝ ∧ e ≤ 𝑋) ∧ (𝑁 ∈ ℝ ∧ e ≤ 𝑁)) → (𝑋 < 𝑁 ↔ ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋)))
16789, 161, 16, 165, 166syl22anc 836 . . . . 5 (𝜑 → (𝑋 < 𝑁 ↔ ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋)))
16899, 167mpbid 234 . . . 4 (𝜑 → ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋))
16986fveq2i 6666 . . . . . . 7 (log‘𝑋) = (log‘(exp‘(2 / 𝐸)))
17070relogefd 25203 . . . . . . 7 (𝜑 → (log‘(exp‘(2 / 𝐸))) = (2 / 𝐸))
171169, 170syl5eq 2866 . . . . . 6 (𝜑 → (log‘𝑋) = (2 / 𝐸))
172171oveq1d 7163 . . . . 5 (𝜑 → ((log‘𝑋) / 𝑋) = ((2 / 𝐸) / 𝑋))
173 2rp 12386 . . . . . . . . . . . . 13 2 ∈ ℝ+
174 rpdivcl 12406 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝐸 ∈ ℝ+) → (2 / 𝐸) ∈ ℝ+)
175173, 68, 174sylancr 589 . . . . . . . . . . . 12 (𝜑 → (2 / 𝐸) ∈ ℝ+)
176175rpcnd 12425 . . . . . . . . . . 11 (𝜑 → (2 / 𝐸) ∈ ℂ)
177176sqvald 13499 . . . . . . . . . 10 (𝜑 → ((2 / 𝐸)↑2) = ((2 / 𝐸) · (2 / 𝐸)))
178 2cnd 11707 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
17968rpcnne0d 12432 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
180 div12 11312 . . . . . . . . . . 11 (((2 / 𝐸) ∈ ℂ ∧ 2 ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) → ((2 / 𝐸) · (2 / 𝐸)) = (2 · ((2 / 𝐸) / 𝐸)))
181176, 178, 179, 180syl3anc 1365 . . . . . . . . . 10 (𝜑 → ((2 / 𝐸) · (2 / 𝐸)) = (2 · ((2 / 𝐸) / 𝐸)))
182177, 181eqtrd 2854 . . . . . . . . 9 (𝜑 → ((2 / 𝐸)↑2) = (2 · ((2 / 𝐸) / 𝐸)))
183182oveq1d 7163 . . . . . . . 8 (𝜑 → (((2 / 𝐸)↑2) / 2) = ((2 · ((2 / 𝐸) / 𝐸)) / 2))
184175, 68rpdivcld 12440 . . . . . . . . . 10 (𝜑 → ((2 / 𝐸) / 𝐸) ∈ ℝ+)
185184rpcnd 12425 . . . . . . . . 9 (𝜑 → ((2 / 𝐸) / 𝐸) ∈ ℂ)
186 2ne0 11733 . . . . . . . . . 10 2 ≠ 0
187186a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
188185, 178, 187divcan3d 11413 . . . . . . . 8 (𝜑 → ((2 · ((2 / 𝐸) / 𝐸)) / 2) = ((2 / 𝐸) / 𝐸))
189183, 188eqtrd 2854 . . . . . . 7 (𝜑 → (((2 / 𝐸)↑2) / 2) = ((2 / 𝐸) / 𝐸))
19070resqcld 13603 . . . . . . . . 9 (𝜑 → ((2 / 𝐸)↑2) ∈ ℝ)
191190rehalfcld 11876 . . . . . . . 8 (𝜑 → (((2 / 𝐸)↑2) / 2) ∈ ℝ)
192 1rp 12385 . . . . . . . . . . 11 1 ∈ ℝ+
193 rpaddcl 12403 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (2 / 𝐸) ∈ ℝ+) → (1 + (2 / 𝐸)) ∈ ℝ+)
194192, 175, 193sylancr 589 . . . . . . . . . 10 (𝜑 → (1 + (2 / 𝐸)) ∈ ℝ+)
195194rpred 12423 . . . . . . . . 9 (𝜑 → (1 + (2 / 𝐸)) ∈ ℝ)
196195, 191readdcld 10662 . . . . . . . 8 (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) ∈ ℝ)
197191, 194ltaddrp2d 12457 . . . . . . . 8 (𝜑 → (((2 / 𝐸)↑2) / 2) < ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)))
198 efgt1p2 15459 . . . . . . . . . 10 ((2 / 𝐸) ∈ ℝ+ → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < (exp‘(2 / 𝐸)))
199175, 198syl 17 . . . . . . . . 9 (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < (exp‘(2 / 𝐸)))
200199, 86breqtrrdi 5099 . . . . . . . 8 (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < 𝑋)
201191, 196, 89, 197, 200lttrd 10793 . . . . . . 7 (𝜑 → (((2 / 𝐸)↑2) / 2) < 𝑋)
202189, 201eqbrtrrd 5081 . . . . . 6 (𝜑 → ((2 / 𝐸) / 𝐸) < 𝑋)
20370, 68, 88, 202ltdiv23d 12490 . . . . 5 (𝜑 → ((2 / 𝐸) / 𝑋) < 𝐸)
204172, 203eqbrtrd 5079 . . . 4 (𝜑 → ((log‘𝑋) / 𝑋) < 𝐸)
20511, 155, 14, 168, 204lttrd 10793 . . 3 (𝜑 → ((log‘𝑁) / 𝑁) < 𝐸)
20611, 14, 205ltled 10780 . 2 (𝜑 → ((log‘𝑁) / 𝑁) ≤ 𝐸)
2079, 11, 14, 153, 206letrd 10789 1 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ≤ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107  wne 3014   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  +∞cpnf 10664  *cxr 10666   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  2c2 11684  3c3 11685  0cn0 11889  +crp 12381  (,)cioo 12730  cexp 13421  abscabs 14585  expce 15407  eceu 15408  logclog 25130  Λcvma 25661  ψcchp 25662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-fac 13626  df-bc 13655  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-e 15414  df-sin 15415  df-cos 15416  df-pi 15418  df-dvds 15600  df-gcd 15836  df-prm 16008  df-pc 16166  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-lp 21736  df-perf 21737  df-cn 21827  df-cnp 21828  df-haus 21915  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478  df-limc 24456  df-dv 24457  df-log 25132  df-vma 25667  df-chp 25668
This theorem is referenced by:  pntpbnd1  26154
  Copyright terms: Public domain W3C validator