Proof of Theorem pntpbnd1a
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | pntpbnd1a.1 | . . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 2 | 1 | nnrpd 13075 | . . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℝ+) | 
| 3 |  | pntpbnd.r | . . . . . . . 8
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) | 
| 4 | 3 | pntrf 27607 | . . . . . . 7
⊢ 𝑅:ℝ+⟶ℝ | 
| 5 | 4 | ffvelcdmi 7103 | . . . . . 6
⊢ (𝑁 ∈ ℝ+
→ (𝑅‘𝑁) ∈
ℝ) | 
| 6 | 2, 5 | syl 17 | . . . . 5
⊢ (𝜑 → (𝑅‘𝑁) ∈ ℝ) | 
| 7 | 6, 2 | rerpdivcld 13108 | . . . 4
⊢ (𝜑 → ((𝑅‘𝑁) / 𝑁) ∈ ℝ) | 
| 8 | 7 | recnd 11289 | . . 3
⊢ (𝜑 → ((𝑅‘𝑁) / 𝑁) ∈ ℂ) | 
| 9 | 8 | abscld 15475 | . 2
⊢ (𝜑 → (abs‘((𝑅‘𝑁) / 𝑁)) ∈ ℝ) | 
| 10 | 2 | relogcld 26665 | . . 3
⊢ (𝜑 → (log‘𝑁) ∈
ℝ) | 
| 11 | 10, 2 | rerpdivcld 13108 | . 2
⊢ (𝜑 → ((log‘𝑁) / 𝑁) ∈ ℝ) | 
| 12 |  | ioossre 13448 | . . 3
⊢ (0(,)1)
⊆ ℝ | 
| 13 |  | pntpbnd1.e | . . 3
⊢ (𝜑 → 𝐸 ∈ (0(,)1)) | 
| 14 | 12, 13 | sselid 3981 | . 2
⊢ (𝜑 → 𝐸 ∈ ℝ) | 
| 15 | 6 | recnd 11289 | . . . . 5
⊢ (𝜑 → (𝑅‘𝑁) ∈ ℂ) | 
| 16 | 1 | nnred 12281 | . . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 17 | 16 | recnd 11289 | . . . . 5
⊢ (𝜑 → 𝑁 ∈ ℂ) | 
| 18 | 1 | nnne0d 12316 | . . . . 5
⊢ (𝜑 → 𝑁 ≠ 0) | 
| 19 | 15, 17, 18 | absdivd 15494 | . . . 4
⊢ (𝜑 → (abs‘((𝑅‘𝑁) / 𝑁)) = ((abs‘(𝑅‘𝑁)) / (abs‘𝑁))) | 
| 20 | 1 | nnnn0d 12587 | . . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 21 | 20 | nn0ge0d 12590 | . . . . . 6
⊢ (𝜑 → 0 ≤ 𝑁) | 
| 22 | 16, 21 | absidd 15461 | . . . . 5
⊢ (𝜑 → (abs‘𝑁) = 𝑁) | 
| 23 | 22 | oveq2d 7447 | . . . 4
⊢ (𝜑 → ((abs‘(𝑅‘𝑁)) / (abs‘𝑁)) = ((abs‘(𝑅‘𝑁)) / 𝑁)) | 
| 24 | 19, 23 | eqtrd 2777 | . . 3
⊢ (𝜑 → (abs‘((𝑅‘𝑁) / 𝑁)) = ((abs‘(𝑅‘𝑁)) / 𝑁)) | 
| 25 | 15 | abscld 15475 | . . . 4
⊢ (𝜑 → (abs‘(𝑅‘𝑁)) ∈ ℝ) | 
| 26 | 1 | peano2nnd 12283 | . . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) | 
| 27 |  | vmacl 27161 | . . . . . . . . 9
⊢ ((𝑁 + 1) ∈ ℕ →
(Λ‘(𝑁 + 1))
∈ ℝ) | 
| 28 | 26, 27 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (Λ‘(𝑁 + 1)) ∈
ℝ) | 
| 29 |  | peano2rem 11576 | . . . . . . . 8
⊢
((Λ‘(𝑁
+ 1)) ∈ ℝ → ((Λ‘(𝑁 + 1)) − 1) ∈
ℝ) | 
| 30 | 28, 29 | syl 17 | . . . . . . 7
⊢ (𝜑 → ((Λ‘(𝑁 + 1)) − 1) ∈
ℝ) | 
| 31 | 30 | recnd 11289 | . . . . . 6
⊢ (𝜑 → ((Λ‘(𝑁 + 1)) − 1) ∈
ℂ) | 
| 32 | 31 | abscld 15475 | . . . . 5
⊢ (𝜑 →
(abs‘((Λ‘(𝑁 + 1)) − 1)) ∈
ℝ) | 
| 33 |  | pntpbnd1a.3 | . . . . . 6
⊢ (𝜑 → (abs‘(𝑅‘𝑁)) ≤ (abs‘((𝑅‘(𝑁 + 1)) − (𝑅‘𝑁)))) | 
| 34 | 26 | nnrpd 13075 | . . . . . . . . . 10
⊢ (𝜑 → (𝑁 + 1) ∈
ℝ+) | 
| 35 | 3 | pntrval 27606 | . . . . . . . . . 10
⊢ ((𝑁 + 1) ∈ ℝ+
→ (𝑅‘(𝑁 + 1)) = ((ψ‘(𝑁 + 1)) − (𝑁 + 1))) | 
| 36 | 34, 35 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (𝑅‘(𝑁 + 1)) = ((ψ‘(𝑁 + 1)) − (𝑁 + 1))) | 
| 37 | 3 | pntrval 27606 | . . . . . . . . . 10
⊢ (𝑁 ∈ ℝ+
→ (𝑅‘𝑁) = ((ψ‘𝑁) − 𝑁)) | 
| 38 | 2, 37 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (𝑅‘𝑁) = ((ψ‘𝑁) − 𝑁)) | 
| 39 | 36, 38 | oveq12d 7449 | . . . . . . . 8
⊢ (𝜑 → ((𝑅‘(𝑁 + 1)) − (𝑅‘𝑁)) = (((ψ‘(𝑁 + 1)) − (𝑁 + 1)) − ((ψ‘𝑁) − 𝑁))) | 
| 40 |  | peano2re 11434 | . . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℝ) | 
| 41 | 16, 40 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑁 + 1) ∈ ℝ) | 
| 42 |  | chpcl 27167 | . . . . . . . . . . 11
⊢ ((𝑁 + 1) ∈ ℝ →
(ψ‘(𝑁 + 1))
∈ ℝ) | 
| 43 | 41, 42 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (ψ‘(𝑁 + 1)) ∈
ℝ) | 
| 44 | 43 | recnd 11289 | . . . . . . . . 9
⊢ (𝜑 → (ψ‘(𝑁 + 1)) ∈
ℂ) | 
| 45 | 41 | recnd 11289 | . . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ∈ ℂ) | 
| 46 |  | chpcl 27167 | . . . . . . . . . . 11
⊢ (𝑁 ∈ ℝ →
(ψ‘𝑁) ∈
ℝ) | 
| 47 | 16, 46 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (ψ‘𝑁) ∈
ℝ) | 
| 48 | 47 | recnd 11289 | . . . . . . . . 9
⊢ (𝜑 → (ψ‘𝑁) ∈
ℂ) | 
| 49 | 44, 45, 48, 17 | sub4d 11669 | . . . . . . . 8
⊢ (𝜑 → (((ψ‘(𝑁 + 1)) − (𝑁 + 1)) −
((ψ‘𝑁) −
𝑁)) = (((ψ‘(𝑁 + 1)) −
(ψ‘𝑁)) −
((𝑁 + 1) − 𝑁))) | 
| 50 | 28 | recnd 11289 | . . . . . . . . . 10
⊢ (𝜑 → (Λ‘(𝑁 + 1)) ∈
ℂ) | 
| 51 |  | chpp1 27198 | . . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (ψ‘(𝑁 +
1)) = ((ψ‘𝑁) +
(Λ‘(𝑁 +
1)))) | 
| 52 | 20, 51 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (ψ‘(𝑁 + 1)) = ((ψ‘𝑁) + (Λ‘(𝑁 + 1)))) | 
| 53 | 48, 50, 52 | mvrladdd 11676 | . . . . . . . . 9
⊢ (𝜑 → ((ψ‘(𝑁 + 1)) −
(ψ‘𝑁)) =
(Λ‘(𝑁 +
1))) | 
| 54 |  | ax-1cn 11213 | . . . . . . . . . 10
⊢ 1 ∈
ℂ | 
| 55 |  | pncan2 11515 | . . . . . . . . . 10
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 𝑁) =
1) | 
| 56 | 17, 54, 55 | sylancl 586 | . . . . . . . . 9
⊢ (𝜑 → ((𝑁 + 1) − 𝑁) = 1) | 
| 57 | 53, 56 | oveq12d 7449 | . . . . . . . 8
⊢ (𝜑 → (((ψ‘(𝑁 + 1)) −
(ψ‘𝑁)) −
((𝑁 + 1) − 𝑁)) = ((Λ‘(𝑁 + 1)) −
1)) | 
| 58 | 39, 49, 57 | 3eqtrd 2781 | . . . . . . 7
⊢ (𝜑 → ((𝑅‘(𝑁 + 1)) − (𝑅‘𝑁)) = ((Λ‘(𝑁 + 1)) − 1)) | 
| 59 | 58 | fveq2d 6910 | . . . . . 6
⊢ (𝜑 → (abs‘((𝑅‘(𝑁 + 1)) − (𝑅‘𝑁))) = (abs‘((Λ‘(𝑁 + 1)) −
1))) | 
| 60 | 33, 59 | breqtrd 5169 | . . . . 5
⊢ (𝜑 → (abs‘(𝑅‘𝑁)) ≤ (abs‘((Λ‘(𝑁 + 1)) −
1))) | 
| 61 |  | 1red 11262 | . . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) | 
| 62 | 61, 10 | resubcld 11691 | . . . . . . 7
⊢ (𝜑 → (1 −
(log‘𝑁)) ∈
ℝ) | 
| 63 |  | 0red 11264 | . . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ) | 
| 64 |  | 2re 12340 | . . . . . . . . . . 11
⊢ 2 ∈
ℝ | 
| 65 |  | eliooord 13446 | . . . . . . . . . . . . . 14
⊢ (𝐸 ∈ (0(,)1) → (0 <
𝐸 ∧ 𝐸 < 1)) | 
| 66 | 13, 65 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → (0 < 𝐸 ∧ 𝐸 < 1)) | 
| 67 | 66 | simpld 494 | . . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝐸) | 
| 68 | 14, 67 | elrpd 13074 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈
ℝ+) | 
| 69 |  | rerpdivcl 13065 | . . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ 𝐸
∈ ℝ+) → (2 / 𝐸) ∈ ℝ) | 
| 70 | 64, 68, 69 | sylancr 587 | . . . . . . . . . 10
⊢ (𝜑 → (2 / 𝐸) ∈ ℝ) | 
| 71 | 64 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℝ) | 
| 72 |  | 1lt2 12437 | . . . . . . . . . . . 12
⊢ 1 <
2 | 
| 73 | 72 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → 1 < 2) | 
| 74 |  | 2cn 12341 | . . . . . . . . . . . . 13
⊢ 2 ∈
ℂ | 
| 75 | 74 | div1i 11995 | . . . . . . . . . . . 12
⊢ (2 / 1) =
2 | 
| 76 | 66 | simprd 495 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 < 1) | 
| 77 |  | 0lt1 11785 | . . . . . . . . . . . . . . 15
⊢ 0 <
1 | 
| 78 | 77 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 1) | 
| 79 |  | 2pos 12369 | . . . . . . . . . . . . . . 15
⊢ 0 <
2 | 
| 80 | 79 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 2) | 
| 81 |  | ltdiv2 12154 | . . . . . . . . . . . . . 14
⊢ (((𝐸 ∈ ℝ ∧ 0 <
𝐸) ∧ (1 ∈ ℝ
∧ 0 < 1) ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐸 < 1 ↔ (2 / 1) < (2 /
𝐸))) | 
| 82 | 14, 67, 61, 78, 71, 80, 81 | syl222anc 1388 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 < 1 ↔ (2 / 1) < (2 / 𝐸))) | 
| 83 | 76, 82 | mpbid 232 | . . . . . . . . . . . 12
⊢ (𝜑 → (2 / 1) < (2 / 𝐸)) | 
| 84 | 75, 83 | eqbrtrrid 5179 | . . . . . . . . . . 11
⊢ (𝜑 → 2 < (2 / 𝐸)) | 
| 85 | 61, 71, 70, 73, 84 | lttrd 11422 | . . . . . . . . . 10
⊢ (𝜑 → 1 < (2 / 𝐸)) | 
| 86 |  | pntpbnd1.x | . . . . . . . . . . . . 13
⊢ 𝑋 = (exp‘(2 / 𝐸)) | 
| 87 | 70 | rpefcld 16141 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (exp‘(2 / 𝐸)) ∈
ℝ+) | 
| 88 | 86, 87 | eqeltrid 2845 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈
ℝ+) | 
| 89 | 88 | rpred 13077 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ ℝ) | 
| 90 |  | pntpbnd1.y | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) | 
| 91 | 88 | rpxrd 13078 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈
ℝ*) | 
| 92 |  | elioopnf 13483 | . . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ ℝ*
→ (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌))) | 
| 93 | 91, 92 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌))) | 
| 94 | 90, 93 | mpbid 232 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)) | 
| 95 | 94 | simpld 494 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑌 ∈ ℝ) | 
| 96 | 94 | simprd 495 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 < 𝑌) | 
| 97 |  | pntpbnd1a.2 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑌 < 𝑁 ∧ 𝑁 ≤ (𝐾 · 𝑌))) | 
| 98 | 97 | simpld 494 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑌 < 𝑁) | 
| 99 | 89, 95, 16, 96, 98 | lttrd 11422 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 < 𝑁) | 
| 100 | 86, 99 | eqbrtrrid 5179 | . . . . . . . . . . . 12
⊢ (𝜑 → (exp‘(2 / 𝐸)) < 𝑁) | 
| 101 | 2 | reeflogd 26666 | . . . . . . . . . . . 12
⊢ (𝜑 →
(exp‘(log‘𝑁)) =
𝑁) | 
| 102 | 100, 101 | breqtrrd 5171 | . . . . . . . . . . 11
⊢ (𝜑 → (exp‘(2 / 𝐸)) <
(exp‘(log‘𝑁))) | 
| 103 |  | eflt 16153 | . . . . . . . . . . . 12
⊢ (((2 /
𝐸) ∈ ℝ ∧
(log‘𝑁) ∈
ℝ) → ((2 / 𝐸)
< (log‘𝑁) ↔
(exp‘(2 / 𝐸)) <
(exp‘(log‘𝑁)))) | 
| 104 | 70, 10, 103 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝜑 → ((2 / 𝐸) < (log‘𝑁) ↔ (exp‘(2 / 𝐸)) < (exp‘(log‘𝑁)))) | 
| 105 | 102, 104 | mpbird 257 | . . . . . . . . . 10
⊢ (𝜑 → (2 / 𝐸) < (log‘𝑁)) | 
| 106 | 61, 70, 10, 85, 105 | lttrd 11422 | . . . . . . . . 9
⊢ (𝜑 → 1 < (log‘𝑁)) | 
| 107 | 61, 10, 106 | ltled 11409 | . . . . . . . 8
⊢ (𝜑 → 1 ≤ (log‘𝑁)) | 
| 108 |  | 1re 11261 | . . . . . . . . 9
⊢ 1 ∈
ℝ | 
| 109 |  | suble0 11777 | . . . . . . . . 9
⊢ ((1
∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((1 −
(log‘𝑁)) ≤ 0
↔ 1 ≤ (log‘𝑁))) | 
| 110 | 108, 10, 109 | sylancr 587 | . . . . . . . 8
⊢ (𝜑 → ((1 −
(log‘𝑁)) ≤ 0
↔ 1 ≤ (log‘𝑁))) | 
| 111 | 107, 110 | mpbird 257 | . . . . . . 7
⊢ (𝜑 → (1 −
(log‘𝑁)) ≤
0) | 
| 112 |  | vmage0 27164 | . . . . . . . 8
⊢ ((𝑁 + 1) ∈ ℕ → 0
≤ (Λ‘(𝑁 +
1))) | 
| 113 | 26, 112 | syl 17 | . . . . . . 7
⊢ (𝜑 → 0 ≤
(Λ‘(𝑁 +
1))) | 
| 114 | 62, 63, 28, 111, 113 | letrd 11418 | . . . . . 6
⊢ (𝜑 → (1 −
(log‘𝑁)) ≤
(Λ‘(𝑁 +
1))) | 
| 115 | 34 | relogcld 26665 | . . . . . . 7
⊢ (𝜑 → (log‘(𝑁 + 1)) ∈
ℝ) | 
| 116 |  | readdcl 11238 | . . . . . . . 8
⊢ ((1
∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → (1 +
(log‘𝑁)) ∈
ℝ) | 
| 117 | 108, 10, 116 | sylancr 587 | . . . . . . 7
⊢ (𝜑 → (1 + (log‘𝑁)) ∈
ℝ) | 
| 118 |  | vmalelog 27249 | . . . . . . . 8
⊢ ((𝑁 + 1) ∈ ℕ →
(Λ‘(𝑁 + 1))
≤ (log‘(𝑁 +
1))) | 
| 119 | 26, 118 | syl 17 | . . . . . . 7
⊢ (𝜑 → (Λ‘(𝑁 + 1)) ≤ (log‘(𝑁 + 1))) | 
| 120 | 71, 16 | remulcld 11291 | . . . . . . . . . 10
⊢ (𝜑 → (2 · 𝑁) ∈
ℝ) | 
| 121 |  | epr 16244 | . . . . . . . . . . . 12
⊢ e ∈
ℝ+ | 
| 122 |  | rpmulcl 13058 | . . . . . . . . . . . 12
⊢ ((e
∈ ℝ+ ∧ 𝑁 ∈ ℝ+) → (e
· 𝑁) ∈
ℝ+) | 
| 123 | 121, 2, 122 | sylancr 587 | . . . . . . . . . . 11
⊢ (𝜑 → (e · 𝑁) ∈
ℝ+) | 
| 124 | 123 | rpred 13077 | . . . . . . . . . 10
⊢ (𝜑 → (e · 𝑁) ∈
ℝ) | 
| 125 | 1 | nnge1d 12314 | . . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ 𝑁) | 
| 126 | 61, 16, 16, 125 | leadd2dd 11878 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑁 + 1) ≤ (𝑁 + 𝑁)) | 
| 127 | 17 | 2timesd 12509 | . . . . . . . . . . 11
⊢ (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁)) | 
| 128 | 126, 127 | breqtrrd 5171 | . . . . . . . . . 10
⊢ (𝜑 → (𝑁 + 1) ≤ (2 · 𝑁)) | 
| 129 |  | ere 16125 | . . . . . . . . . . . . 13
⊢ e ∈
ℝ | 
| 130 |  | egt2lt3 16242 | . . . . . . . . . . . . . 14
⊢ (2 < e
∧ e < 3) | 
| 131 | 130 | simpli 483 | . . . . . . . . . . . . 13
⊢ 2 <
e | 
| 132 | 64, 129, 131 | ltleii 11384 | . . . . . . . . . . . 12
⊢ 2 ≤
e | 
| 133 | 132 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → 2 ≤ e) | 
| 134 | 129 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → e ∈
ℝ) | 
| 135 | 1 | nngt0d 12315 | . . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝑁) | 
| 136 |  | lemul1 12119 | . . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ e ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (2 ≤ e ↔ (2
· 𝑁) ≤ (e
· 𝑁))) | 
| 137 | 71, 134, 16, 135, 136 | syl112anc 1376 | . . . . . . . . . . 11
⊢ (𝜑 → (2 ≤ e ↔ (2
· 𝑁) ≤ (e
· 𝑁))) | 
| 138 | 133, 137 | mpbid 232 | . . . . . . . . . 10
⊢ (𝜑 → (2 · 𝑁) ≤ (e · 𝑁)) | 
| 139 | 41, 120, 124, 128, 138 | letrd 11418 | . . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ≤ (e · 𝑁)) | 
| 140 | 34, 123 | logled 26669 | . . . . . . . . 9
⊢ (𝜑 → ((𝑁 + 1) ≤ (e · 𝑁) ↔ (log‘(𝑁 + 1)) ≤ (log‘(e · 𝑁)))) | 
| 141 | 139, 140 | mpbid 232 | . . . . . . . 8
⊢ (𝜑 → (log‘(𝑁 + 1)) ≤ (log‘(e
· 𝑁))) | 
| 142 |  | relogmul 26634 | . . . . . . . . . 10
⊢ ((e
∈ ℝ+ ∧ 𝑁 ∈ ℝ+) →
(log‘(e · 𝑁))
= ((log‘e) + (log‘𝑁))) | 
| 143 | 121, 2, 142 | sylancr 587 | . . . . . . . . 9
⊢ (𝜑 → (log‘(e ·
𝑁)) = ((log‘e) +
(log‘𝑁))) | 
| 144 |  | loge 26628 | . . . . . . . . . 10
⊢
(log‘e) = 1 | 
| 145 | 144 | oveq1i 7441 | . . . . . . . . 9
⊢
((log‘e) + (log‘𝑁)) = (1 + (log‘𝑁)) | 
| 146 | 143, 145 | eqtrdi 2793 | . . . . . . . 8
⊢ (𝜑 → (log‘(e ·
𝑁)) = (1 + (log‘𝑁))) | 
| 147 | 141, 146 | breqtrd 5169 | . . . . . . 7
⊢ (𝜑 → (log‘(𝑁 + 1)) ≤ (1 +
(log‘𝑁))) | 
| 148 | 28, 115, 117, 119, 147 | letrd 11418 | . . . . . 6
⊢ (𝜑 → (Λ‘(𝑁 + 1)) ≤ (1 +
(log‘𝑁))) | 
| 149 | 28, 61, 10 | absdifled 15473 | . . . . . 6
⊢ (𝜑 →
((abs‘((Λ‘(𝑁 + 1)) − 1)) ≤ (log‘𝑁) ↔ ((1 −
(log‘𝑁)) ≤
(Λ‘(𝑁 + 1))
∧ (Λ‘(𝑁 +
1)) ≤ (1 + (log‘𝑁))))) | 
| 150 | 114, 148,
149 | mpbir2and 713 | . . . . 5
⊢ (𝜑 →
(abs‘((Λ‘(𝑁 + 1)) − 1)) ≤ (log‘𝑁)) | 
| 151 | 25, 32, 10, 60, 150 | letrd 11418 | . . . 4
⊢ (𝜑 → (abs‘(𝑅‘𝑁)) ≤ (log‘𝑁)) | 
| 152 | 25, 10, 2, 151 | lediv1dd 13135 | . . 3
⊢ (𝜑 → ((abs‘(𝑅‘𝑁)) / 𝑁) ≤ ((log‘𝑁) / 𝑁)) | 
| 153 | 24, 152 | eqbrtrd 5165 | . 2
⊢ (𝜑 → (abs‘((𝑅‘𝑁) / 𝑁)) ≤ ((log‘𝑁) / 𝑁)) | 
| 154 | 88 | relogcld 26665 | . . . . 5
⊢ (𝜑 → (log‘𝑋) ∈
ℝ) | 
| 155 | 154, 88 | rerpdivcld 13108 | . . . 4
⊢ (𝜑 → ((log‘𝑋) / 𝑋) ∈ ℝ) | 
| 156 | 61, 70, 85 | ltled 11409 | . . . . . . . 8
⊢ (𝜑 → 1 ≤ (2 / 𝐸)) | 
| 157 |  | efle 16154 | . . . . . . . . 9
⊢ ((1
∈ ℝ ∧ (2 / 𝐸) ∈ ℝ) → (1 ≤ (2 / 𝐸) ↔ (exp‘1) ≤
(exp‘(2 / 𝐸)))) | 
| 158 | 108, 70, 157 | sylancr 587 | . . . . . . . 8
⊢ (𝜑 → (1 ≤ (2 / 𝐸) ↔ (exp‘1) ≤
(exp‘(2 / 𝐸)))) | 
| 159 | 156, 158 | mpbid 232 | . . . . . . 7
⊢ (𝜑 → (exp‘1) ≤
(exp‘(2 / 𝐸))) | 
| 160 |  | df-e 16104 | . . . . . . 7
⊢ e =
(exp‘1) | 
| 161 | 159, 160,
86 | 3brtr4g 5177 | . . . . . 6
⊢ (𝜑 → e ≤ 𝑋) | 
| 162 | 144, 107 | eqbrtrid 5178 | . . . . . . 7
⊢ (𝜑 → (log‘e) ≤
(log‘𝑁)) | 
| 163 |  | logleb 26645 | . . . . . . . 8
⊢ ((e
∈ ℝ+ ∧ 𝑁 ∈ ℝ+) → (e ≤
𝑁 ↔ (log‘e) ≤
(log‘𝑁))) | 
| 164 | 121, 2, 163 | sylancr 587 | . . . . . . 7
⊢ (𝜑 → (e ≤ 𝑁 ↔ (log‘e) ≤ (log‘𝑁))) | 
| 165 | 162, 164 | mpbird 257 | . . . . . 6
⊢ (𝜑 → e ≤ 𝑁) | 
| 166 |  | logdivlt 26663 | . . . . . 6
⊢ (((𝑋 ∈ ℝ ∧ e ≤
𝑋) ∧ (𝑁 ∈ ℝ ∧ e ≤ 𝑁)) → (𝑋 < 𝑁 ↔ ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋))) | 
| 167 | 89, 161, 16, 165, 166 | syl22anc 839 | . . . . 5
⊢ (𝜑 → (𝑋 < 𝑁 ↔ ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋))) | 
| 168 | 99, 167 | mpbid 232 | . . . 4
⊢ (𝜑 → ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋)) | 
| 169 | 86 | fveq2i 6909 | . . . . . . 7
⊢
(log‘𝑋) =
(log‘(exp‘(2 / 𝐸))) | 
| 170 | 70 | relogefd 26670 | . . . . . . 7
⊢ (𝜑 → (log‘(exp‘(2 /
𝐸))) = (2 / 𝐸)) | 
| 171 | 169, 170 | eqtrid 2789 | . . . . . 6
⊢ (𝜑 → (log‘𝑋) = (2 / 𝐸)) | 
| 172 | 171 | oveq1d 7446 | . . . . 5
⊢ (𝜑 → ((log‘𝑋) / 𝑋) = ((2 / 𝐸) / 𝑋)) | 
| 173 |  | 2rp 13039 | . . . . . . . . . . . . 13
⊢ 2 ∈
ℝ+ | 
| 174 |  | rpdivcl 13060 | . . . . . . . . . . . . 13
⊢ ((2
∈ ℝ+ ∧ 𝐸 ∈ ℝ+) → (2 /
𝐸) ∈
ℝ+) | 
| 175 | 173, 68, 174 | sylancr 587 | . . . . . . . . . . . 12
⊢ (𝜑 → (2 / 𝐸) ∈
ℝ+) | 
| 176 | 175 | rpcnd 13079 | . . . . . . . . . . 11
⊢ (𝜑 → (2 / 𝐸) ∈ ℂ) | 
| 177 | 176 | sqvald 14183 | . . . . . . . . . 10
⊢ (𝜑 → ((2 / 𝐸)↑2) = ((2 / 𝐸) · (2 / 𝐸))) | 
| 178 |  | 2cnd 12344 | . . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℂ) | 
| 179 | 68 | rpcnne0d 13086 | . . . . . . . . . . 11
⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) | 
| 180 |  | div12 11944 | . . . . . . . . . . 11
⊢ (((2 /
𝐸) ∈ ℂ ∧ 2
∈ ℂ ∧ (𝐸
∈ ℂ ∧ 𝐸 ≠
0)) → ((2 / 𝐸)
· (2 / 𝐸)) = (2
· ((2 / 𝐸) / 𝐸))) | 
| 181 | 176, 178,
179, 180 | syl3anc 1373 | . . . . . . . . . 10
⊢ (𝜑 → ((2 / 𝐸) · (2 / 𝐸)) = (2 · ((2 / 𝐸) / 𝐸))) | 
| 182 | 177, 181 | eqtrd 2777 | . . . . . . . . 9
⊢ (𝜑 → ((2 / 𝐸)↑2) = (2 · ((2 / 𝐸) / 𝐸))) | 
| 183 | 182 | oveq1d 7446 | . . . . . . . 8
⊢ (𝜑 → (((2 / 𝐸)↑2) / 2) = ((2 · ((2 / 𝐸) / 𝐸)) / 2)) | 
| 184 | 175, 68 | rpdivcld 13094 | . . . . . . . . . 10
⊢ (𝜑 → ((2 / 𝐸) / 𝐸) ∈
ℝ+) | 
| 185 | 184 | rpcnd 13079 | . . . . . . . . 9
⊢ (𝜑 → ((2 / 𝐸) / 𝐸) ∈ ℂ) | 
| 186 |  | 2ne0 12370 | . . . . . . . . . 10
⊢ 2 ≠
0 | 
| 187 | 186 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → 2 ≠ 0) | 
| 188 | 185, 178,
187 | divcan3d 12048 | . . . . . . . 8
⊢ (𝜑 → ((2 · ((2 / 𝐸) / 𝐸)) / 2) = ((2 / 𝐸) / 𝐸)) | 
| 189 | 183, 188 | eqtrd 2777 | . . . . . . 7
⊢ (𝜑 → (((2 / 𝐸)↑2) / 2) = ((2 / 𝐸) / 𝐸)) | 
| 190 | 70 | resqcld 14165 | . . . . . . . . 9
⊢ (𝜑 → ((2 / 𝐸)↑2) ∈ ℝ) | 
| 191 | 190 | rehalfcld 12513 | . . . . . . . 8
⊢ (𝜑 → (((2 / 𝐸)↑2) / 2) ∈
ℝ) | 
| 192 |  | 1rp 13038 | . . . . . . . . . . 11
⊢ 1 ∈
ℝ+ | 
| 193 |  | rpaddcl 13057 | . . . . . . . . . . 11
⊢ ((1
∈ ℝ+ ∧ (2 / 𝐸) ∈ ℝ+) → (1 + (2
/ 𝐸)) ∈
ℝ+) | 
| 194 | 192, 175,
193 | sylancr 587 | . . . . . . . . . 10
⊢ (𝜑 → (1 + (2 / 𝐸)) ∈
ℝ+) | 
| 195 | 194 | rpred 13077 | . . . . . . . . 9
⊢ (𝜑 → (1 + (2 / 𝐸)) ∈
ℝ) | 
| 196 | 195, 191 | readdcld 11290 | . . . . . . . 8
⊢ (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) ∈
ℝ) | 
| 197 | 191, 194 | ltaddrp2d 13111 | . . . . . . . 8
⊢ (𝜑 → (((2 / 𝐸)↑2) / 2) < ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2))) | 
| 198 |  | efgt1p2 16150 | . . . . . . . . . 10
⊢ ((2 /
𝐸) ∈
ℝ+ → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < (exp‘(2 / 𝐸))) | 
| 199 | 175, 198 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < (exp‘(2 / 𝐸))) | 
| 200 | 199, 86 | breqtrrdi 5185 | . . . . . . . 8
⊢ (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < 𝑋) | 
| 201 | 191, 196,
89, 197, 200 | lttrd 11422 | . . . . . . 7
⊢ (𝜑 → (((2 / 𝐸)↑2) / 2) < 𝑋) | 
| 202 | 189, 201 | eqbrtrrd 5167 | . . . . . 6
⊢ (𝜑 → ((2 / 𝐸) / 𝐸) < 𝑋) | 
| 203 | 70, 68, 88, 202 | ltdiv23d 13144 | . . . . 5
⊢ (𝜑 → ((2 / 𝐸) / 𝑋) < 𝐸) | 
| 204 | 172, 203 | eqbrtrd 5165 | . . . 4
⊢ (𝜑 → ((log‘𝑋) / 𝑋) < 𝐸) | 
| 205 | 11, 155, 14, 168, 204 | lttrd 11422 | . . 3
⊢ (𝜑 → ((log‘𝑁) / 𝑁) < 𝐸) | 
| 206 | 11, 14, 205 | ltled 11409 | . 2
⊢ (𝜑 → ((log‘𝑁) / 𝑁) ≤ 𝐸) | 
| 207 | 9, 11, 14, 153, 206 | letrd 11418 | 1
⊢ (𝜑 → (abs‘((𝑅‘𝑁) / 𝑁)) ≤ 𝐸) |