Proof of Theorem pntpbnd1a
Step | Hyp | Ref
| Expression |
1 | | pntpbnd1a.1 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | 1 | nnrpd 12770 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℝ+) |
3 | | pntpbnd.r |
. . . . . . . 8
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
4 | 3 | pntrf 26711 |
. . . . . . 7
⊢ 𝑅:ℝ+⟶ℝ |
5 | 4 | ffvelrni 6960 |
. . . . . 6
⊢ (𝑁 ∈ ℝ+
→ (𝑅‘𝑁) ∈
ℝ) |
6 | 2, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑅‘𝑁) ∈ ℝ) |
7 | 6, 2 | rerpdivcld 12803 |
. . . 4
⊢ (𝜑 → ((𝑅‘𝑁) / 𝑁) ∈ ℝ) |
8 | 7 | recnd 11003 |
. . 3
⊢ (𝜑 → ((𝑅‘𝑁) / 𝑁) ∈ ℂ) |
9 | 8 | abscld 15148 |
. 2
⊢ (𝜑 → (abs‘((𝑅‘𝑁) / 𝑁)) ∈ ℝ) |
10 | 2 | relogcld 25778 |
. . 3
⊢ (𝜑 → (log‘𝑁) ∈
ℝ) |
11 | 10, 2 | rerpdivcld 12803 |
. 2
⊢ (𝜑 → ((log‘𝑁) / 𝑁) ∈ ℝ) |
12 | | ioossre 13140 |
. . 3
⊢ (0(,)1)
⊆ ℝ |
13 | | pntpbnd1.e |
. . 3
⊢ (𝜑 → 𝐸 ∈ (0(,)1)) |
14 | 12, 13 | sselid 3919 |
. 2
⊢ (𝜑 → 𝐸 ∈ ℝ) |
15 | 6 | recnd 11003 |
. . . . 5
⊢ (𝜑 → (𝑅‘𝑁) ∈ ℂ) |
16 | 1 | nnred 11988 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) |
17 | 16 | recnd 11003 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℂ) |
18 | 1 | nnne0d 12023 |
. . . . 5
⊢ (𝜑 → 𝑁 ≠ 0) |
19 | 15, 17, 18 | absdivd 15167 |
. . . 4
⊢ (𝜑 → (abs‘((𝑅‘𝑁) / 𝑁)) = ((abs‘(𝑅‘𝑁)) / (abs‘𝑁))) |
20 | 1 | nnnn0d 12293 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
21 | 20 | nn0ge0d 12296 |
. . . . . 6
⊢ (𝜑 → 0 ≤ 𝑁) |
22 | 16, 21 | absidd 15134 |
. . . . 5
⊢ (𝜑 → (abs‘𝑁) = 𝑁) |
23 | 22 | oveq2d 7291 |
. . . 4
⊢ (𝜑 → ((abs‘(𝑅‘𝑁)) / (abs‘𝑁)) = ((abs‘(𝑅‘𝑁)) / 𝑁)) |
24 | 19, 23 | eqtrd 2778 |
. . 3
⊢ (𝜑 → (abs‘((𝑅‘𝑁) / 𝑁)) = ((abs‘(𝑅‘𝑁)) / 𝑁)) |
25 | 15 | abscld 15148 |
. . . 4
⊢ (𝜑 → (abs‘(𝑅‘𝑁)) ∈ ℝ) |
26 | 1 | peano2nnd 11990 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
27 | | vmacl 26267 |
. . . . . . . . 9
⊢ ((𝑁 + 1) ∈ ℕ →
(Λ‘(𝑁 + 1))
∈ ℝ) |
28 | 26, 27 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (Λ‘(𝑁 + 1)) ∈
ℝ) |
29 | | peano2rem 11288 |
. . . . . . . 8
⊢
((Λ‘(𝑁
+ 1)) ∈ ℝ → ((Λ‘(𝑁 + 1)) − 1) ∈
ℝ) |
30 | 28, 29 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((Λ‘(𝑁 + 1)) − 1) ∈
ℝ) |
31 | 30 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → ((Λ‘(𝑁 + 1)) − 1) ∈
ℂ) |
32 | 31 | abscld 15148 |
. . . . 5
⊢ (𝜑 →
(abs‘((Λ‘(𝑁 + 1)) − 1)) ∈
ℝ) |
33 | | pntpbnd1a.3 |
. . . . . 6
⊢ (𝜑 → (abs‘(𝑅‘𝑁)) ≤ (abs‘((𝑅‘(𝑁 + 1)) − (𝑅‘𝑁)))) |
34 | 26 | nnrpd 12770 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 + 1) ∈
ℝ+) |
35 | 3 | pntrval 26710 |
. . . . . . . . . 10
⊢ ((𝑁 + 1) ∈ ℝ+
→ (𝑅‘(𝑁 + 1)) = ((ψ‘(𝑁 + 1)) − (𝑁 + 1))) |
36 | 34, 35 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅‘(𝑁 + 1)) = ((ψ‘(𝑁 + 1)) − (𝑁 + 1))) |
37 | 3 | pntrval 26710 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℝ+
→ (𝑅‘𝑁) = ((ψ‘𝑁) − 𝑁)) |
38 | 2, 37 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅‘𝑁) = ((ψ‘𝑁) − 𝑁)) |
39 | 36, 38 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝜑 → ((𝑅‘(𝑁 + 1)) − (𝑅‘𝑁)) = (((ψ‘(𝑁 + 1)) − (𝑁 + 1)) − ((ψ‘𝑁) − 𝑁))) |
40 | | peano2re 11148 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℝ) |
41 | 16, 40 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 + 1) ∈ ℝ) |
42 | | chpcl 26273 |
. . . . . . . . . . 11
⊢ ((𝑁 + 1) ∈ ℝ →
(ψ‘(𝑁 + 1))
∈ ℝ) |
43 | 41, 42 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (ψ‘(𝑁 + 1)) ∈
ℝ) |
44 | 43 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → (ψ‘(𝑁 + 1)) ∈
ℂ) |
45 | 41 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ∈ ℂ) |
46 | | chpcl 26273 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℝ →
(ψ‘𝑁) ∈
ℝ) |
47 | 16, 46 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (ψ‘𝑁) ∈
ℝ) |
48 | 47 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → (ψ‘𝑁) ∈
ℂ) |
49 | 44, 45, 48, 17 | sub4d 11381 |
. . . . . . . 8
⊢ (𝜑 → (((ψ‘(𝑁 + 1)) − (𝑁 + 1)) −
((ψ‘𝑁) −
𝑁)) = (((ψ‘(𝑁 + 1)) −
(ψ‘𝑁)) −
((𝑁 + 1) − 𝑁))) |
50 | 28 | recnd 11003 |
. . . . . . . . . 10
⊢ (𝜑 → (Λ‘(𝑁 + 1)) ∈
ℂ) |
51 | | chpp1 26304 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (ψ‘(𝑁 +
1)) = ((ψ‘𝑁) +
(Λ‘(𝑁 +
1)))) |
52 | 20, 51 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (ψ‘(𝑁 + 1)) = ((ψ‘𝑁) + (Λ‘(𝑁 + 1)))) |
53 | 48, 50, 52 | mvrladdd 11388 |
. . . . . . . . 9
⊢ (𝜑 → ((ψ‘(𝑁 + 1)) −
(ψ‘𝑁)) =
(Λ‘(𝑁 +
1))) |
54 | | ax-1cn 10929 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
55 | | pncan2 11228 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 𝑁) =
1) |
56 | 17, 54, 55 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 + 1) − 𝑁) = 1) |
57 | 53, 56 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝜑 → (((ψ‘(𝑁 + 1)) −
(ψ‘𝑁)) −
((𝑁 + 1) − 𝑁)) = ((Λ‘(𝑁 + 1)) −
1)) |
58 | 39, 49, 57 | 3eqtrd 2782 |
. . . . . . 7
⊢ (𝜑 → ((𝑅‘(𝑁 + 1)) − (𝑅‘𝑁)) = ((Λ‘(𝑁 + 1)) − 1)) |
59 | 58 | fveq2d 6778 |
. . . . . 6
⊢ (𝜑 → (abs‘((𝑅‘(𝑁 + 1)) − (𝑅‘𝑁))) = (abs‘((Λ‘(𝑁 + 1)) −
1))) |
60 | 33, 59 | breqtrd 5100 |
. . . . 5
⊢ (𝜑 → (abs‘(𝑅‘𝑁)) ≤ (abs‘((Λ‘(𝑁 + 1)) −
1))) |
61 | | 1red 10976 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
62 | 61, 10 | resubcld 11403 |
. . . . . . 7
⊢ (𝜑 → (1 −
(log‘𝑁)) ∈
ℝ) |
63 | | 0red 10978 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ) |
64 | | 2re 12047 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
65 | | eliooord 13138 |
. . . . . . . . . . . . . 14
⊢ (𝐸 ∈ (0(,)1) → (0 <
𝐸 ∧ 𝐸 < 1)) |
66 | 13, 65 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0 < 𝐸 ∧ 𝐸 < 1)) |
67 | 66 | simpld 495 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝐸) |
68 | 14, 67 | elrpd 12769 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
69 | | rerpdivcl 12760 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ 𝐸
∈ ℝ+) → (2 / 𝐸) ∈ ℝ) |
70 | 64, 68, 69 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (2 / 𝐸) ∈ ℝ) |
71 | 64 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℝ) |
72 | | 1lt2 12144 |
. . . . . . . . . . . 12
⊢ 1 <
2 |
73 | 72 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 < 2) |
74 | | 2cn 12048 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℂ |
75 | 74 | div1i 11703 |
. . . . . . . . . . . 12
⊢ (2 / 1) =
2 |
76 | 66 | simprd 496 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 < 1) |
77 | | 0lt1 11497 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
78 | 77 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 1) |
79 | | 2pos 12076 |
. . . . . . . . . . . . . . 15
⊢ 0 <
2 |
80 | 79 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 2) |
81 | | ltdiv2 11861 |
. . . . . . . . . . . . . 14
⊢ (((𝐸 ∈ ℝ ∧ 0 <
𝐸) ∧ (1 ∈ ℝ
∧ 0 < 1) ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐸 < 1 ↔ (2 / 1) < (2 /
𝐸))) |
82 | 14, 67, 61, 78, 71, 80, 81 | syl222anc 1385 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 < 1 ↔ (2 / 1) < (2 / 𝐸))) |
83 | 76, 82 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 / 1) < (2 / 𝐸)) |
84 | 75, 83 | eqbrtrrid 5110 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 < (2 / 𝐸)) |
85 | 61, 71, 70, 73, 84 | lttrd 11136 |
. . . . . . . . . 10
⊢ (𝜑 → 1 < (2 / 𝐸)) |
86 | | pntpbnd1.x |
. . . . . . . . . . . . 13
⊢ 𝑋 = (exp‘(2 / 𝐸)) |
87 | 70 | rpefcld 15814 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (exp‘(2 / 𝐸)) ∈
ℝ+) |
88 | 86, 87 | eqeltrid 2843 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
89 | 88 | rpred 12772 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ ℝ) |
90 | | pntpbnd1.y |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) |
91 | 88 | rpxrd 12773 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
92 | | elioopnf 13175 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ ℝ*
→ (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌))) |
93 | 91, 92 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌))) |
94 | 90, 93 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)) |
95 | 94 | simpld 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑌 ∈ ℝ) |
96 | 94 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 < 𝑌) |
97 | | pntpbnd1a.2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑌 < 𝑁 ∧ 𝑁 ≤ (𝐾 · 𝑌))) |
98 | 97 | simpld 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑌 < 𝑁) |
99 | 89, 95, 16, 96, 98 | lttrd 11136 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 < 𝑁) |
100 | 86, 99 | eqbrtrrid 5110 |
. . . . . . . . . . . 12
⊢ (𝜑 → (exp‘(2 / 𝐸)) < 𝑁) |
101 | 2 | reeflogd 25779 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(exp‘(log‘𝑁)) =
𝑁) |
102 | 100, 101 | breqtrrd 5102 |
. . . . . . . . . . 11
⊢ (𝜑 → (exp‘(2 / 𝐸)) <
(exp‘(log‘𝑁))) |
103 | | eflt 15826 |
. . . . . . . . . . . 12
⊢ (((2 /
𝐸) ∈ ℝ ∧
(log‘𝑁) ∈
ℝ) → ((2 / 𝐸)
< (log‘𝑁) ↔
(exp‘(2 / 𝐸)) <
(exp‘(log‘𝑁)))) |
104 | 70, 10, 103 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2 / 𝐸) < (log‘𝑁) ↔ (exp‘(2 / 𝐸)) < (exp‘(log‘𝑁)))) |
105 | 102, 104 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → (2 / 𝐸) < (log‘𝑁)) |
106 | 61, 70, 10, 85, 105 | lttrd 11136 |
. . . . . . . . 9
⊢ (𝜑 → 1 < (log‘𝑁)) |
107 | 61, 10, 106 | ltled 11123 |
. . . . . . . 8
⊢ (𝜑 → 1 ≤ (log‘𝑁)) |
108 | | 1re 10975 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
109 | | suble0 11489 |
. . . . . . . . 9
⊢ ((1
∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((1 −
(log‘𝑁)) ≤ 0
↔ 1 ≤ (log‘𝑁))) |
110 | 108, 10, 109 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → ((1 −
(log‘𝑁)) ≤ 0
↔ 1 ≤ (log‘𝑁))) |
111 | 107, 110 | mpbird 256 |
. . . . . . 7
⊢ (𝜑 → (1 −
(log‘𝑁)) ≤
0) |
112 | | vmage0 26270 |
. . . . . . . 8
⊢ ((𝑁 + 1) ∈ ℕ → 0
≤ (Λ‘(𝑁 +
1))) |
113 | 26, 112 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 0 ≤
(Λ‘(𝑁 +
1))) |
114 | 62, 63, 28, 111, 113 | letrd 11132 |
. . . . . 6
⊢ (𝜑 → (1 −
(log‘𝑁)) ≤
(Λ‘(𝑁 +
1))) |
115 | 34 | relogcld 25778 |
. . . . . . 7
⊢ (𝜑 → (log‘(𝑁 + 1)) ∈
ℝ) |
116 | | readdcl 10954 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → (1 +
(log‘𝑁)) ∈
ℝ) |
117 | 108, 10, 116 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (1 + (log‘𝑁)) ∈
ℝ) |
118 | | vmalelog 26353 |
. . . . . . . 8
⊢ ((𝑁 + 1) ∈ ℕ →
(Λ‘(𝑁 + 1))
≤ (log‘(𝑁 +
1))) |
119 | 26, 118 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (Λ‘(𝑁 + 1)) ≤ (log‘(𝑁 + 1))) |
120 | 71, 16 | remulcld 11005 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝑁) ∈
ℝ) |
121 | | epr 15917 |
. . . . . . . . . . . 12
⊢ e ∈
ℝ+ |
122 | | rpmulcl 12753 |
. . . . . . . . . . . 12
⊢ ((e
∈ ℝ+ ∧ 𝑁 ∈ ℝ+) → (e
· 𝑁) ∈
ℝ+) |
123 | 121, 2, 122 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝜑 → (e · 𝑁) ∈
ℝ+) |
124 | 123 | rpred 12772 |
. . . . . . . . . 10
⊢ (𝜑 → (e · 𝑁) ∈
ℝ) |
125 | 1 | nnge1d 12021 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ 𝑁) |
126 | 61, 16, 16, 125 | leadd2dd 11590 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 + 1) ≤ (𝑁 + 𝑁)) |
127 | 17 | 2timesd 12216 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁)) |
128 | 126, 127 | breqtrrd 5102 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 + 1) ≤ (2 · 𝑁)) |
129 | | ere 15798 |
. . . . . . . . . . . . 13
⊢ e ∈
ℝ |
130 | | egt2lt3 15915 |
. . . . . . . . . . . . . 14
⊢ (2 < e
∧ e < 3) |
131 | 130 | simpli 484 |
. . . . . . . . . . . . 13
⊢ 2 <
e |
132 | 64, 129, 131 | ltleii 11098 |
. . . . . . . . . . . 12
⊢ 2 ≤
e |
133 | 132 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ≤ e) |
134 | 129 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → e ∈
ℝ) |
135 | 1 | nngt0d 12022 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝑁) |
136 | | lemul1 11827 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ e ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (2 ≤ e ↔ (2
· 𝑁) ≤ (e
· 𝑁))) |
137 | 71, 134, 16, 135, 136 | syl112anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ≤ e ↔ (2
· 𝑁) ≤ (e
· 𝑁))) |
138 | 133, 137 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝑁) ≤ (e · 𝑁)) |
139 | 41, 120, 124, 128, 138 | letrd 11132 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ≤ (e · 𝑁)) |
140 | 34, 123 | logled 25782 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 + 1) ≤ (e · 𝑁) ↔ (log‘(𝑁 + 1)) ≤ (log‘(e · 𝑁)))) |
141 | 139, 140 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (log‘(𝑁 + 1)) ≤ (log‘(e
· 𝑁))) |
142 | | relogmul 25747 |
. . . . . . . . . 10
⊢ ((e
∈ ℝ+ ∧ 𝑁 ∈ ℝ+) →
(log‘(e · 𝑁))
= ((log‘e) + (log‘𝑁))) |
143 | 121, 2, 142 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → (log‘(e ·
𝑁)) = ((log‘e) +
(log‘𝑁))) |
144 | | loge 25742 |
. . . . . . . . . 10
⊢
(log‘e) = 1 |
145 | 144 | oveq1i 7285 |
. . . . . . . . 9
⊢
((log‘e) + (log‘𝑁)) = (1 + (log‘𝑁)) |
146 | 143, 145 | eqtrdi 2794 |
. . . . . . . 8
⊢ (𝜑 → (log‘(e ·
𝑁)) = (1 + (log‘𝑁))) |
147 | 141, 146 | breqtrd 5100 |
. . . . . . 7
⊢ (𝜑 → (log‘(𝑁 + 1)) ≤ (1 +
(log‘𝑁))) |
148 | 28, 115, 117, 119, 147 | letrd 11132 |
. . . . . 6
⊢ (𝜑 → (Λ‘(𝑁 + 1)) ≤ (1 +
(log‘𝑁))) |
149 | 28, 61, 10 | absdifled 15146 |
. . . . . 6
⊢ (𝜑 →
((abs‘((Λ‘(𝑁 + 1)) − 1)) ≤ (log‘𝑁) ↔ ((1 −
(log‘𝑁)) ≤
(Λ‘(𝑁 + 1))
∧ (Λ‘(𝑁 +
1)) ≤ (1 + (log‘𝑁))))) |
150 | 114, 148,
149 | mpbir2and 710 |
. . . . 5
⊢ (𝜑 →
(abs‘((Λ‘(𝑁 + 1)) − 1)) ≤ (log‘𝑁)) |
151 | 25, 32, 10, 60, 150 | letrd 11132 |
. . . 4
⊢ (𝜑 → (abs‘(𝑅‘𝑁)) ≤ (log‘𝑁)) |
152 | 25, 10, 2, 151 | lediv1dd 12830 |
. . 3
⊢ (𝜑 → ((abs‘(𝑅‘𝑁)) / 𝑁) ≤ ((log‘𝑁) / 𝑁)) |
153 | 24, 152 | eqbrtrd 5096 |
. 2
⊢ (𝜑 → (abs‘((𝑅‘𝑁) / 𝑁)) ≤ ((log‘𝑁) / 𝑁)) |
154 | 88 | relogcld 25778 |
. . . . 5
⊢ (𝜑 → (log‘𝑋) ∈
ℝ) |
155 | 154, 88 | rerpdivcld 12803 |
. . . 4
⊢ (𝜑 → ((log‘𝑋) / 𝑋) ∈ ℝ) |
156 | 61, 70, 85 | ltled 11123 |
. . . . . . . 8
⊢ (𝜑 → 1 ≤ (2 / 𝐸)) |
157 | | efle 15827 |
. . . . . . . . 9
⊢ ((1
∈ ℝ ∧ (2 / 𝐸) ∈ ℝ) → (1 ≤ (2 / 𝐸) ↔ (exp‘1) ≤
(exp‘(2 / 𝐸)))) |
158 | 108, 70, 157 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → (1 ≤ (2 / 𝐸) ↔ (exp‘1) ≤
(exp‘(2 / 𝐸)))) |
159 | 156, 158 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (exp‘1) ≤
(exp‘(2 / 𝐸))) |
160 | | df-e 15778 |
. . . . . . 7
⊢ e =
(exp‘1) |
161 | 159, 160,
86 | 3brtr4g 5108 |
. . . . . 6
⊢ (𝜑 → e ≤ 𝑋) |
162 | 144, 107 | eqbrtrid 5109 |
. . . . . . 7
⊢ (𝜑 → (log‘e) ≤
(log‘𝑁)) |
163 | | logleb 25758 |
. . . . . . . 8
⊢ ((e
∈ ℝ+ ∧ 𝑁 ∈ ℝ+) → (e ≤
𝑁 ↔ (log‘e) ≤
(log‘𝑁))) |
164 | 121, 2, 163 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (e ≤ 𝑁 ↔ (log‘e) ≤ (log‘𝑁))) |
165 | 162, 164 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → e ≤ 𝑁) |
166 | | logdivlt 25776 |
. . . . . 6
⊢ (((𝑋 ∈ ℝ ∧ e ≤
𝑋) ∧ (𝑁 ∈ ℝ ∧ e ≤ 𝑁)) → (𝑋 < 𝑁 ↔ ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋))) |
167 | 89, 161, 16, 165, 166 | syl22anc 836 |
. . . . 5
⊢ (𝜑 → (𝑋 < 𝑁 ↔ ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋))) |
168 | 99, 167 | mpbid 231 |
. . . 4
⊢ (𝜑 → ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋)) |
169 | 86 | fveq2i 6777 |
. . . . . . 7
⊢
(log‘𝑋) =
(log‘(exp‘(2 / 𝐸))) |
170 | 70 | relogefd 25783 |
. . . . . . 7
⊢ (𝜑 → (log‘(exp‘(2 /
𝐸))) = (2 / 𝐸)) |
171 | 169, 170 | eqtrid 2790 |
. . . . . 6
⊢ (𝜑 → (log‘𝑋) = (2 / 𝐸)) |
172 | 171 | oveq1d 7290 |
. . . . 5
⊢ (𝜑 → ((log‘𝑋) / 𝑋) = ((2 / 𝐸) / 𝑋)) |
173 | | 2rp 12735 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ+ |
174 | | rpdivcl 12755 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℝ+ ∧ 𝐸 ∈ ℝ+) → (2 /
𝐸) ∈
ℝ+) |
175 | 173, 68, 174 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 / 𝐸) ∈
ℝ+) |
176 | 175 | rpcnd 12774 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 / 𝐸) ∈ ℂ) |
177 | 176 | sqvald 13861 |
. . . . . . . . . 10
⊢ (𝜑 → ((2 / 𝐸)↑2) = ((2 / 𝐸) · (2 / 𝐸))) |
178 | | 2cnd 12051 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℂ) |
179 | 68 | rpcnne0d 12781 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) |
180 | | div12 11655 |
. . . . . . . . . . 11
⊢ (((2 /
𝐸) ∈ ℂ ∧ 2
∈ ℂ ∧ (𝐸
∈ ℂ ∧ 𝐸 ≠
0)) → ((2 / 𝐸)
· (2 / 𝐸)) = (2
· ((2 / 𝐸) / 𝐸))) |
181 | 176, 178,
179, 180 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝜑 → ((2 / 𝐸) · (2 / 𝐸)) = (2 · ((2 / 𝐸) / 𝐸))) |
182 | 177, 181 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → ((2 / 𝐸)↑2) = (2 · ((2 / 𝐸) / 𝐸))) |
183 | 182 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝜑 → (((2 / 𝐸)↑2) / 2) = ((2 · ((2 / 𝐸) / 𝐸)) / 2)) |
184 | 175, 68 | rpdivcld 12789 |
. . . . . . . . . 10
⊢ (𝜑 → ((2 / 𝐸) / 𝐸) ∈
ℝ+) |
185 | 184 | rpcnd 12774 |
. . . . . . . . 9
⊢ (𝜑 → ((2 / 𝐸) / 𝐸) ∈ ℂ) |
186 | | 2ne0 12077 |
. . . . . . . . . 10
⊢ 2 ≠
0 |
187 | 186 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 2 ≠ 0) |
188 | 185, 178,
187 | divcan3d 11756 |
. . . . . . . 8
⊢ (𝜑 → ((2 · ((2 / 𝐸) / 𝐸)) / 2) = ((2 / 𝐸) / 𝐸)) |
189 | 183, 188 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (((2 / 𝐸)↑2) / 2) = ((2 / 𝐸) / 𝐸)) |
190 | 70 | resqcld 13965 |
. . . . . . . . 9
⊢ (𝜑 → ((2 / 𝐸)↑2) ∈ ℝ) |
191 | 190 | rehalfcld 12220 |
. . . . . . . 8
⊢ (𝜑 → (((2 / 𝐸)↑2) / 2) ∈
ℝ) |
192 | | 1rp 12734 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ+ |
193 | | rpaddcl 12752 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ+ ∧ (2 / 𝐸) ∈ ℝ+) → (1 + (2
/ 𝐸)) ∈
ℝ+) |
194 | 192, 175,
193 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (1 + (2 / 𝐸)) ∈
ℝ+) |
195 | 194 | rpred 12772 |
. . . . . . . . 9
⊢ (𝜑 → (1 + (2 / 𝐸)) ∈
ℝ) |
196 | 195, 191 | readdcld 11004 |
. . . . . . . 8
⊢ (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) ∈
ℝ) |
197 | 191, 194 | ltaddrp2d 12806 |
. . . . . . . 8
⊢ (𝜑 → (((2 / 𝐸)↑2) / 2) < ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2))) |
198 | | efgt1p2 15823 |
. . . . . . . . . 10
⊢ ((2 /
𝐸) ∈
ℝ+ → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < (exp‘(2 / 𝐸))) |
199 | 175, 198 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < (exp‘(2 / 𝐸))) |
200 | 199, 86 | breqtrrdi 5116 |
. . . . . . . 8
⊢ (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < 𝑋) |
201 | 191, 196,
89, 197, 200 | lttrd 11136 |
. . . . . . 7
⊢ (𝜑 → (((2 / 𝐸)↑2) / 2) < 𝑋) |
202 | 189, 201 | eqbrtrrd 5098 |
. . . . . 6
⊢ (𝜑 → ((2 / 𝐸) / 𝐸) < 𝑋) |
203 | 70, 68, 88, 202 | ltdiv23d 12839 |
. . . . 5
⊢ (𝜑 → ((2 / 𝐸) / 𝑋) < 𝐸) |
204 | 172, 203 | eqbrtrd 5096 |
. . . 4
⊢ (𝜑 → ((log‘𝑋) / 𝑋) < 𝐸) |
205 | 11, 155, 14, 168, 204 | lttrd 11136 |
. . 3
⊢ (𝜑 → ((log‘𝑁) / 𝑁) < 𝐸) |
206 | 11, 14, 205 | ltled 11123 |
. 2
⊢ (𝜑 → ((log‘𝑁) / 𝑁) ≤ 𝐸) |
207 | 9, 11, 14, 153, 206 | letrd 11132 |
1
⊢ (𝜑 → (abs‘((𝑅‘𝑁) / 𝑁)) ≤ 𝐸) |