MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd1a Structured version   Visualization version   GIF version

Theorem pntpbnd1a 26163
Description: Lemma for pntpbnd 26166. (Contributed by Mario Carneiro, 11-Apr-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.)
Hypotheses
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntpbnd1.e (𝜑𝐸 ∈ (0(,)1))
pntpbnd1.x 𝑋 = (exp‘(2 / 𝐸))
pntpbnd1.y (𝜑𝑌 ∈ (𝑋(,)+∞))
pntpbnd1a.1 (𝜑𝑁 ∈ ℕ)
pntpbnd1a.2 (𝜑 → (𝑌 < 𝑁𝑁 ≤ (𝐾 · 𝑌)))
pntpbnd1a.3 (𝜑 → (abs‘(𝑅𝑁)) ≤ (abs‘((𝑅‘(𝑁 + 1)) − (𝑅𝑁))))
Assertion
Ref Expression
pntpbnd1a (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ≤ 𝐸)
Distinct variable group:   𝑁,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝑅(𝑎)   𝐸(𝑎)   𝐾(𝑎)   𝑋(𝑎)   𝑌(𝑎)

Proof of Theorem pntpbnd1a
StepHypRef Expression
1 pntpbnd1a.1 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
21nnrpd 12432 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
3 pntpbnd.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
43pntrf 26141 . . . . . . 7 𝑅:ℝ+⟶ℝ
54ffvelrni 6852 . . . . . 6 (𝑁 ∈ ℝ+ → (𝑅𝑁) ∈ ℝ)
62, 5syl 17 . . . . 5 (𝜑 → (𝑅𝑁) ∈ ℝ)
76, 2rerpdivcld 12465 . . . 4 (𝜑 → ((𝑅𝑁) / 𝑁) ∈ ℝ)
87recnd 10671 . . 3 (𝜑 → ((𝑅𝑁) / 𝑁) ∈ ℂ)
98abscld 14798 . 2 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ∈ ℝ)
102relogcld 25208 . . 3 (𝜑 → (log‘𝑁) ∈ ℝ)
1110, 2rerpdivcld 12465 . 2 (𝜑 → ((log‘𝑁) / 𝑁) ∈ ℝ)
12 ioossre 12801 . . 3 (0(,)1) ⊆ ℝ
13 pntpbnd1.e . . 3 (𝜑𝐸 ∈ (0(,)1))
1412, 13sseldi 3967 . 2 (𝜑𝐸 ∈ ℝ)
156recnd 10671 . . . . 5 (𝜑 → (𝑅𝑁) ∈ ℂ)
161nnred 11655 . . . . . 6 (𝜑𝑁 ∈ ℝ)
1716recnd 10671 . . . . 5 (𝜑𝑁 ∈ ℂ)
181nnne0d 11690 . . . . 5 (𝜑𝑁 ≠ 0)
1915, 17, 18absdivd 14817 . . . 4 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) = ((abs‘(𝑅𝑁)) / (abs‘𝑁)))
201nnnn0d 11958 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
2120nn0ge0d 11961 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
2216, 21absidd 14784 . . . . 5 (𝜑 → (abs‘𝑁) = 𝑁)
2322oveq2d 7174 . . . 4 (𝜑 → ((abs‘(𝑅𝑁)) / (abs‘𝑁)) = ((abs‘(𝑅𝑁)) / 𝑁))
2419, 23eqtrd 2858 . . 3 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) = ((abs‘(𝑅𝑁)) / 𝑁))
2515abscld 14798 . . . 4 (𝜑 → (abs‘(𝑅𝑁)) ∈ ℝ)
261peano2nnd 11657 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ)
27 vmacl 25697 . . . . . . . . 9 ((𝑁 + 1) ∈ ℕ → (Λ‘(𝑁 + 1)) ∈ ℝ)
2826, 27syl 17 . . . . . . . 8 (𝜑 → (Λ‘(𝑁 + 1)) ∈ ℝ)
29 peano2rem 10955 . . . . . . . 8 ((Λ‘(𝑁 + 1)) ∈ ℝ → ((Λ‘(𝑁 + 1)) − 1) ∈ ℝ)
3028, 29syl 17 . . . . . . 7 (𝜑 → ((Λ‘(𝑁 + 1)) − 1) ∈ ℝ)
3130recnd 10671 . . . . . 6 (𝜑 → ((Λ‘(𝑁 + 1)) − 1) ∈ ℂ)
3231abscld 14798 . . . . 5 (𝜑 → (abs‘((Λ‘(𝑁 + 1)) − 1)) ∈ ℝ)
33 pntpbnd1a.3 . . . . . 6 (𝜑 → (abs‘(𝑅𝑁)) ≤ (abs‘((𝑅‘(𝑁 + 1)) − (𝑅𝑁))))
3426nnrpd 12432 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℝ+)
353pntrval 26140 . . . . . . . . . 10 ((𝑁 + 1) ∈ ℝ+ → (𝑅‘(𝑁 + 1)) = ((ψ‘(𝑁 + 1)) − (𝑁 + 1)))
3634, 35syl 17 . . . . . . . . 9 (𝜑 → (𝑅‘(𝑁 + 1)) = ((ψ‘(𝑁 + 1)) − (𝑁 + 1)))
373pntrval 26140 . . . . . . . . . 10 (𝑁 ∈ ℝ+ → (𝑅𝑁) = ((ψ‘𝑁) − 𝑁))
382, 37syl 17 . . . . . . . . 9 (𝜑 → (𝑅𝑁) = ((ψ‘𝑁) − 𝑁))
3936, 38oveq12d 7176 . . . . . . . 8 (𝜑 → ((𝑅‘(𝑁 + 1)) − (𝑅𝑁)) = (((ψ‘(𝑁 + 1)) − (𝑁 + 1)) − ((ψ‘𝑁) − 𝑁)))
40 peano2re 10815 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
4116, 40syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℝ)
42 chpcl 25703 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℝ → (ψ‘(𝑁 + 1)) ∈ ℝ)
4341, 42syl 17 . . . . . . . . . 10 (𝜑 → (ψ‘(𝑁 + 1)) ∈ ℝ)
4443recnd 10671 . . . . . . . . 9 (𝜑 → (ψ‘(𝑁 + 1)) ∈ ℂ)
4541recnd 10671 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℂ)
46 chpcl 25703 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (ψ‘𝑁) ∈ ℝ)
4716, 46syl 17 . . . . . . . . . 10 (𝜑 → (ψ‘𝑁) ∈ ℝ)
4847recnd 10671 . . . . . . . . 9 (𝜑 → (ψ‘𝑁) ∈ ℂ)
4944, 45, 48, 17sub4d 11048 . . . . . . . 8 (𝜑 → (((ψ‘(𝑁 + 1)) − (𝑁 + 1)) − ((ψ‘𝑁) − 𝑁)) = (((ψ‘(𝑁 + 1)) − (ψ‘𝑁)) − ((𝑁 + 1) − 𝑁)))
5028recnd 10671 . . . . . . . . . 10 (𝜑 → (Λ‘(𝑁 + 1)) ∈ ℂ)
51 chpp1 25734 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (ψ‘(𝑁 + 1)) = ((ψ‘𝑁) + (Λ‘(𝑁 + 1))))
5220, 51syl 17 . . . . . . . . . 10 (𝜑 → (ψ‘(𝑁 + 1)) = ((ψ‘𝑁) + (Λ‘(𝑁 + 1))))
5348, 50, 52mvrladdd 11055 . . . . . . . . 9 (𝜑 → ((ψ‘(𝑁 + 1)) − (ψ‘𝑁)) = (Λ‘(𝑁 + 1)))
54 ax-1cn 10597 . . . . . . . . . 10 1 ∈ ℂ
55 pncan2 10895 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 𝑁) = 1)
5617, 54, 55sylancl 588 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) − 𝑁) = 1)
5753, 56oveq12d 7176 . . . . . . . 8 (𝜑 → (((ψ‘(𝑁 + 1)) − (ψ‘𝑁)) − ((𝑁 + 1) − 𝑁)) = ((Λ‘(𝑁 + 1)) − 1))
5839, 49, 573eqtrd 2862 . . . . . . 7 (𝜑 → ((𝑅‘(𝑁 + 1)) − (𝑅𝑁)) = ((Λ‘(𝑁 + 1)) − 1))
5958fveq2d 6676 . . . . . 6 (𝜑 → (abs‘((𝑅‘(𝑁 + 1)) − (𝑅𝑁))) = (abs‘((Λ‘(𝑁 + 1)) − 1)))
6033, 59breqtrd 5094 . . . . 5 (𝜑 → (abs‘(𝑅𝑁)) ≤ (abs‘((Λ‘(𝑁 + 1)) − 1)))
61 1red 10644 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
6261, 10resubcld 11070 . . . . . . 7 (𝜑 → (1 − (log‘𝑁)) ∈ ℝ)
63 0red 10646 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
64 2re 11714 . . . . . . . . . . 11 2 ∈ ℝ
65 eliooord 12799 . . . . . . . . . . . . . 14 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
6613, 65syl 17 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝐸𝐸 < 1))
6766simpld 497 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐸)
6814, 67elrpd 12431 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
69 rerpdivcl 12422 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (2 / 𝐸) ∈ ℝ)
7064, 68, 69sylancr 589 . . . . . . . . . 10 (𝜑 → (2 / 𝐸) ∈ ℝ)
7164a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
72 1lt2 11811 . . . . . . . . . . . 12 1 < 2
7372a1i 11 . . . . . . . . . . 11 (𝜑 → 1 < 2)
74 2cn 11715 . . . . . . . . . . . . 13 2 ∈ ℂ
7574div1i 11370 . . . . . . . . . . . 12 (2 / 1) = 2
7666simprd 498 . . . . . . . . . . . . 13 (𝜑𝐸 < 1)
77 0lt1 11164 . . . . . . . . . . . . . . 15 0 < 1
7877a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 1)
79 2pos 11743 . . . . . . . . . . . . . . 15 0 < 2
8079a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 2)
81 ltdiv2 11528 . . . . . . . . . . . . . 14 (((𝐸 ∈ ℝ ∧ 0 < 𝐸) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐸 < 1 ↔ (2 / 1) < (2 / 𝐸)))
8214, 67, 61, 78, 71, 80, 81syl222anc 1382 . . . . . . . . . . . . 13 (𝜑 → (𝐸 < 1 ↔ (2 / 1) < (2 / 𝐸)))
8376, 82mpbid 234 . . . . . . . . . . . 12 (𝜑 → (2 / 1) < (2 / 𝐸))
8475, 83eqbrtrrid 5104 . . . . . . . . . . 11 (𝜑 → 2 < (2 / 𝐸))
8561, 71, 70, 73, 84lttrd 10803 . . . . . . . . . 10 (𝜑 → 1 < (2 / 𝐸))
86 pntpbnd1.x . . . . . . . . . . . . 13 𝑋 = (exp‘(2 / 𝐸))
8770rpefcld 15460 . . . . . . . . . . . . . . . 16 (𝜑 → (exp‘(2 / 𝐸)) ∈ ℝ+)
8886, 87eqeltrid 2919 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ+)
8988rpred 12434 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
90 pntpbnd1.y . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ (𝑋(,)+∞))
9188rpxrd 12435 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ℝ*)
92 elioopnf 12834 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ* → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
9391, 92syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
9490, 93mpbid 234 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌))
9594simpld 497 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
9694simprd 498 . . . . . . . . . . . . . 14 (𝜑𝑋 < 𝑌)
97 pntpbnd1a.2 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 < 𝑁𝑁 ≤ (𝐾 · 𝑌)))
9897simpld 497 . . . . . . . . . . . . . 14 (𝜑𝑌 < 𝑁)
9989, 95, 16, 96, 98lttrd 10803 . . . . . . . . . . . . 13 (𝜑𝑋 < 𝑁)
10086, 99eqbrtrrid 5104 . . . . . . . . . . . 12 (𝜑 → (exp‘(2 / 𝐸)) < 𝑁)
1012reeflogd 25209 . . . . . . . . . . . 12 (𝜑 → (exp‘(log‘𝑁)) = 𝑁)
102100, 101breqtrrd 5096 . . . . . . . . . . 11 (𝜑 → (exp‘(2 / 𝐸)) < (exp‘(log‘𝑁)))
103 eflt 15472 . . . . . . . . . . . 12 (((2 / 𝐸) ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((2 / 𝐸) < (log‘𝑁) ↔ (exp‘(2 / 𝐸)) < (exp‘(log‘𝑁))))
10470, 10, 103syl2anc 586 . . . . . . . . . . 11 (𝜑 → ((2 / 𝐸) < (log‘𝑁) ↔ (exp‘(2 / 𝐸)) < (exp‘(log‘𝑁))))
105102, 104mpbird 259 . . . . . . . . . 10 (𝜑 → (2 / 𝐸) < (log‘𝑁))
10661, 70, 10, 85, 105lttrd 10803 . . . . . . . . 9 (𝜑 → 1 < (log‘𝑁))
10761, 10, 106ltled 10790 . . . . . . . 8 (𝜑 → 1 ≤ (log‘𝑁))
108 1re 10643 . . . . . . . . 9 1 ∈ ℝ
109 suble0 11156 . . . . . . . . 9 ((1 ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((1 − (log‘𝑁)) ≤ 0 ↔ 1 ≤ (log‘𝑁)))
110108, 10, 109sylancr 589 . . . . . . . 8 (𝜑 → ((1 − (log‘𝑁)) ≤ 0 ↔ 1 ≤ (log‘𝑁)))
111107, 110mpbird 259 . . . . . . 7 (𝜑 → (1 − (log‘𝑁)) ≤ 0)
112 vmage0 25700 . . . . . . . 8 ((𝑁 + 1) ∈ ℕ → 0 ≤ (Λ‘(𝑁 + 1)))
11326, 112syl 17 . . . . . . 7 (𝜑 → 0 ≤ (Λ‘(𝑁 + 1)))
11462, 63, 28, 111, 113letrd 10799 . . . . . 6 (𝜑 → (1 − (log‘𝑁)) ≤ (Λ‘(𝑁 + 1)))
11534relogcld 25208 . . . . . . 7 (𝜑 → (log‘(𝑁 + 1)) ∈ ℝ)
116 readdcl 10622 . . . . . . . 8 ((1 ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → (1 + (log‘𝑁)) ∈ ℝ)
117108, 10, 116sylancr 589 . . . . . . 7 (𝜑 → (1 + (log‘𝑁)) ∈ ℝ)
118 vmalelog 25783 . . . . . . . 8 ((𝑁 + 1) ∈ ℕ → (Λ‘(𝑁 + 1)) ≤ (log‘(𝑁 + 1)))
11926, 118syl 17 . . . . . . 7 (𝜑 → (Λ‘(𝑁 + 1)) ≤ (log‘(𝑁 + 1)))
12071, 16remulcld 10673 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
121 epr 15563 . . . . . . . . . . . 12 e ∈ ℝ+
122 rpmulcl 12415 . . . . . . . . . . . 12 ((e ∈ ℝ+𝑁 ∈ ℝ+) → (e · 𝑁) ∈ ℝ+)
123121, 2, 122sylancr 589 . . . . . . . . . . 11 (𝜑 → (e · 𝑁) ∈ ℝ+)
124123rpred 12434 . . . . . . . . . 10 (𝜑 → (e · 𝑁) ∈ ℝ)
1251nnge1d 11688 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑁)
12661, 16, 16, 125leadd2dd 11257 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ≤ (𝑁 + 𝑁))
127172timesd 11883 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
128126, 127breqtrrd 5096 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ≤ (2 · 𝑁))
129 ere 15444 . . . . . . . . . . . . 13 e ∈ ℝ
130 egt2lt3 15561 . . . . . . . . . . . . . 14 (2 < e ∧ e < 3)
131130simpli 486 . . . . . . . . . . . . 13 2 < e
13264, 129, 131ltleii 10765 . . . . . . . . . . . 12 2 ≤ e
133132a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ≤ e)
134129a1i 11 . . . . . . . . . . . 12 (𝜑 → e ∈ ℝ)
1351nngt0d 11689 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑁)
136 lemul1 11494 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ e ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (2 ≤ e ↔ (2 · 𝑁) ≤ (e · 𝑁)))
13771, 134, 16, 135, 136syl112anc 1370 . . . . . . . . . . 11 (𝜑 → (2 ≤ e ↔ (2 · 𝑁) ≤ (e · 𝑁)))
138133, 137mpbid 234 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ≤ (e · 𝑁))
13941, 120, 124, 128, 138letrd 10799 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ≤ (e · 𝑁))
14034, 123logled 25212 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) ≤ (e · 𝑁) ↔ (log‘(𝑁 + 1)) ≤ (log‘(e · 𝑁))))
141139, 140mpbid 234 . . . . . . . 8 (𝜑 → (log‘(𝑁 + 1)) ≤ (log‘(e · 𝑁)))
142 relogmul 25177 . . . . . . . . . 10 ((e ∈ ℝ+𝑁 ∈ ℝ+) → (log‘(e · 𝑁)) = ((log‘e) + (log‘𝑁)))
143121, 2, 142sylancr 589 . . . . . . . . 9 (𝜑 → (log‘(e · 𝑁)) = ((log‘e) + (log‘𝑁)))
144 loge 25172 . . . . . . . . . 10 (log‘e) = 1
145144oveq1i 7168 . . . . . . . . 9 ((log‘e) + (log‘𝑁)) = (1 + (log‘𝑁))
146143, 145syl6eq 2874 . . . . . . . 8 (𝜑 → (log‘(e · 𝑁)) = (1 + (log‘𝑁)))
147141, 146breqtrd 5094 . . . . . . 7 (𝜑 → (log‘(𝑁 + 1)) ≤ (1 + (log‘𝑁)))
14828, 115, 117, 119, 147letrd 10799 . . . . . 6 (𝜑 → (Λ‘(𝑁 + 1)) ≤ (1 + (log‘𝑁)))
14928, 61, 10absdifled 14796 . . . . . 6 (𝜑 → ((abs‘((Λ‘(𝑁 + 1)) − 1)) ≤ (log‘𝑁) ↔ ((1 − (log‘𝑁)) ≤ (Λ‘(𝑁 + 1)) ∧ (Λ‘(𝑁 + 1)) ≤ (1 + (log‘𝑁)))))
150114, 148, 149mpbir2and 711 . . . . 5 (𝜑 → (abs‘((Λ‘(𝑁 + 1)) − 1)) ≤ (log‘𝑁))
15125, 32, 10, 60, 150letrd 10799 . . . 4 (𝜑 → (abs‘(𝑅𝑁)) ≤ (log‘𝑁))
15225, 10, 2, 151lediv1dd 12492 . . 3 (𝜑 → ((abs‘(𝑅𝑁)) / 𝑁) ≤ ((log‘𝑁) / 𝑁))
15324, 152eqbrtrd 5090 . 2 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ≤ ((log‘𝑁) / 𝑁))
15488relogcld 25208 . . . . 5 (𝜑 → (log‘𝑋) ∈ ℝ)
155154, 88rerpdivcld 12465 . . . 4 (𝜑 → ((log‘𝑋) / 𝑋) ∈ ℝ)
15661, 70, 85ltled 10790 . . . . . . . 8 (𝜑 → 1 ≤ (2 / 𝐸))
157 efle 15473 . . . . . . . . 9 ((1 ∈ ℝ ∧ (2 / 𝐸) ∈ ℝ) → (1 ≤ (2 / 𝐸) ↔ (exp‘1) ≤ (exp‘(2 / 𝐸))))
158108, 70, 157sylancr 589 . . . . . . . 8 (𝜑 → (1 ≤ (2 / 𝐸) ↔ (exp‘1) ≤ (exp‘(2 / 𝐸))))
159156, 158mpbid 234 . . . . . . 7 (𝜑 → (exp‘1) ≤ (exp‘(2 / 𝐸)))
160 df-e 15424 . . . . . . 7 e = (exp‘1)
161159, 160, 863brtr4g 5102 . . . . . 6 (𝜑 → e ≤ 𝑋)
162144, 107eqbrtrid 5103 . . . . . . 7 (𝜑 → (log‘e) ≤ (log‘𝑁))
163 logleb 25188 . . . . . . . 8 ((e ∈ ℝ+𝑁 ∈ ℝ+) → (e ≤ 𝑁 ↔ (log‘e) ≤ (log‘𝑁)))
164121, 2, 163sylancr 589 . . . . . . 7 (𝜑 → (e ≤ 𝑁 ↔ (log‘e) ≤ (log‘𝑁)))
165162, 164mpbird 259 . . . . . 6 (𝜑 → e ≤ 𝑁)
166 logdivlt 25206 . . . . . 6 (((𝑋 ∈ ℝ ∧ e ≤ 𝑋) ∧ (𝑁 ∈ ℝ ∧ e ≤ 𝑁)) → (𝑋 < 𝑁 ↔ ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋)))
16789, 161, 16, 165, 166syl22anc 836 . . . . 5 (𝜑 → (𝑋 < 𝑁 ↔ ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋)))
16899, 167mpbid 234 . . . 4 (𝜑 → ((log‘𝑁) / 𝑁) < ((log‘𝑋) / 𝑋))
16986fveq2i 6675 . . . . . . 7 (log‘𝑋) = (log‘(exp‘(2 / 𝐸)))
17070relogefd 25213 . . . . . . 7 (𝜑 → (log‘(exp‘(2 / 𝐸))) = (2 / 𝐸))
171169, 170syl5eq 2870 . . . . . 6 (𝜑 → (log‘𝑋) = (2 / 𝐸))
172171oveq1d 7173 . . . . 5 (𝜑 → ((log‘𝑋) / 𝑋) = ((2 / 𝐸) / 𝑋))
173 2rp 12397 . . . . . . . . . . . . 13 2 ∈ ℝ+
174 rpdivcl 12417 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝐸 ∈ ℝ+) → (2 / 𝐸) ∈ ℝ+)
175173, 68, 174sylancr 589 . . . . . . . . . . . 12 (𝜑 → (2 / 𝐸) ∈ ℝ+)
176175rpcnd 12436 . . . . . . . . . . 11 (𝜑 → (2 / 𝐸) ∈ ℂ)
177176sqvald 13510 . . . . . . . . . 10 (𝜑 → ((2 / 𝐸)↑2) = ((2 / 𝐸) · (2 / 𝐸)))
178 2cnd 11718 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
17968rpcnne0d 12443 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
180 div12 11322 . . . . . . . . . . 11 (((2 / 𝐸) ∈ ℂ ∧ 2 ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) → ((2 / 𝐸) · (2 / 𝐸)) = (2 · ((2 / 𝐸) / 𝐸)))
181176, 178, 179, 180syl3anc 1367 . . . . . . . . . 10 (𝜑 → ((2 / 𝐸) · (2 / 𝐸)) = (2 · ((2 / 𝐸) / 𝐸)))
182177, 181eqtrd 2858 . . . . . . . . 9 (𝜑 → ((2 / 𝐸)↑2) = (2 · ((2 / 𝐸) / 𝐸)))
183182oveq1d 7173 . . . . . . . 8 (𝜑 → (((2 / 𝐸)↑2) / 2) = ((2 · ((2 / 𝐸) / 𝐸)) / 2))
184175, 68rpdivcld 12451 . . . . . . . . . 10 (𝜑 → ((2 / 𝐸) / 𝐸) ∈ ℝ+)
185184rpcnd 12436 . . . . . . . . 9 (𝜑 → ((2 / 𝐸) / 𝐸) ∈ ℂ)
186 2ne0 11744 . . . . . . . . . 10 2 ≠ 0
187186a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
188185, 178, 187divcan3d 11423 . . . . . . . 8 (𝜑 → ((2 · ((2 / 𝐸) / 𝐸)) / 2) = ((2 / 𝐸) / 𝐸))
189183, 188eqtrd 2858 . . . . . . 7 (𝜑 → (((2 / 𝐸)↑2) / 2) = ((2 / 𝐸) / 𝐸))
19070resqcld 13614 . . . . . . . . 9 (𝜑 → ((2 / 𝐸)↑2) ∈ ℝ)
191190rehalfcld 11887 . . . . . . . 8 (𝜑 → (((2 / 𝐸)↑2) / 2) ∈ ℝ)
192 1rp 12396 . . . . . . . . . . 11 1 ∈ ℝ+
193 rpaddcl 12414 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (2 / 𝐸) ∈ ℝ+) → (1 + (2 / 𝐸)) ∈ ℝ+)
194192, 175, 193sylancr 589 . . . . . . . . . 10 (𝜑 → (1 + (2 / 𝐸)) ∈ ℝ+)
195194rpred 12434 . . . . . . . . 9 (𝜑 → (1 + (2 / 𝐸)) ∈ ℝ)
196195, 191readdcld 10672 . . . . . . . 8 (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) ∈ ℝ)
197191, 194ltaddrp2d 12468 . . . . . . . 8 (𝜑 → (((2 / 𝐸)↑2) / 2) < ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)))
198 efgt1p2 15469 . . . . . . . . . 10 ((2 / 𝐸) ∈ ℝ+ → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < (exp‘(2 / 𝐸)))
199175, 198syl 17 . . . . . . . . 9 (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < (exp‘(2 / 𝐸)))
200199, 86breqtrrdi 5110 . . . . . . . 8 (𝜑 → ((1 + (2 / 𝐸)) + (((2 / 𝐸)↑2) / 2)) < 𝑋)
201191, 196, 89, 197, 200lttrd 10803 . . . . . . 7 (𝜑 → (((2 / 𝐸)↑2) / 2) < 𝑋)
202189, 201eqbrtrrd 5092 . . . . . 6 (𝜑 → ((2 / 𝐸) / 𝐸) < 𝑋)
20370, 68, 88, 202ltdiv23d 12501 . . . . 5 (𝜑 → ((2 / 𝐸) / 𝑋) < 𝐸)
204172, 203eqbrtrd 5090 . . . 4 (𝜑 → ((log‘𝑋) / 𝑋) < 𝐸)
20511, 155, 14, 168, 204lttrd 10803 . . 3 (𝜑 → ((log‘𝑁) / 𝑁) < 𝐸)
20611, 14, 205ltled 10790 . 2 (𝜑 → ((log‘𝑁) / 𝑁) ≤ 𝐸)
2079, 11, 14, 153, 206letrd 10799 1 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ≤ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  3c3 11696  0cn0 11900  +crp 12392  (,)cioo 12741  cexp 13432  abscabs 14595  expce 15417  eceu 15418  logclog 25140  Λcvma 25671  ψcchp 25672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-e 15424  df-sin 15425  df-cos 15426  df-pi 15428  df-dvds 15610  df-gcd 15846  df-prm 16018  df-pc 16176  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-vma 25677  df-chp 25678
This theorem is referenced by:  pntpbnd1  26164
  Copyright terms: Public domain W3C validator