|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ere | Structured version Visualization version GIF version | ||
| Description: Euler's constant e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.) | 
| Ref | Expression | 
|---|---|
| ere | ⊢ e ∈ ℝ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-e 16105 | . 2 ⊢ e = (exp‘1) | |
| 2 | 1re 11262 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | reefcl 16124 | . . 3 ⊢ (1 ∈ ℝ → (exp‘1) ∈ ℝ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (exp‘1) ∈ ℝ | 
| 5 | 1, 4 | eqeltri 2836 | 1 ⊢ e ∈ ℝ | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∈ wcel 2107 ‘cfv 6560 ℝcr 11155 1c1 11157 expce 16098 eceu 16099 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-ico 13394 df-fz 13549 df-fzo 13696 df-fl 13833 df-seq 14044 df-exp 14104 df-fac 14314 df-hash 14371 df-shft 15107 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-limsup 15508 df-clim 15525 df-rlim 15526 df-sum 15724 df-ef 16104 df-e 16105 | 
| This theorem is referenced by: ege2le3 16127 eirrlem 16241 egt2lt3 16243 epos 16244 epr 16245 ene0 16246 ene1 16247 logdivlti 26663 logdivlt 26664 logdivle 26665 ecxp 26716 elogb 26814 logblog 26836 cxploglim2 27023 harmonicbnd3 27052 bposlem7 27335 bposlem9 27337 chebbnd1lem2 27515 chebbnd1lem3 27516 chebbnd1 27517 dchrvmasumlema 27545 logdivsum 27578 mulog2sumlem2 27580 selberg3lem1 27602 pntpbnd1a 27630 pntpbnd2 27632 pntlemb 27642 pntlemj 27648 pntlemk 27651 subfaclim 35194 subfacval3 35195 aks4d1p1p7 42076 stirlinglem3 46096 stirlinglem4 46097 stirlinglem13 46106 stirlinglem15 46108 stirlingr 46110 etransclem18 46272 etransclem23 46277 etransclem46 46300 etransclem47 46301 etransclem48 46302 etransc 46303 | 
| Copyright terms: Public domain | W3C validator |