MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ere Structured version   Visualization version   GIF version

Theorem ere 15436
Description: Euler's constant e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.)
Assertion
Ref Expression
ere e ∈ ℝ

Proof of Theorem ere
StepHypRef Expression
1 df-e 15416 . 2 e = (exp‘1)
2 1re 10635 . . 3 1 ∈ ℝ
3 reefcl 15434 . . 3 (1 ∈ ℝ → (exp‘1) ∈ ℝ)
42, 3ax-mp 5 . 2 (exp‘1) ∈ ℝ
51, 4eqeltri 2909 1 e ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2110  cfv 6350  cr 10530  1c1 10532  expce 15409  eceu 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-fac 13628  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-e 15416
This theorem is referenced by:  ege2le3  15437  eirrlem  15551  egt2lt3  15553  epos  15554  epr  15555  ene0  15556  ene1  15557  logdivlti  25197  logdivlt  25198  logdivle  25199  ecxp  25250  elogb  25342  logblog  25364  cxploglim2  25550  harmonicbnd3  25579  bposlem7  25860  bposlem9  25862  chebbnd1lem2  26040  chebbnd1lem3  26041  chebbnd1  26042  dchrvmasumlema  26070  logdivsum  26103  mulog2sumlem2  26105  selberg3lem1  26127  pntpbnd1a  26155  pntpbnd2  26157  pntlemb  26167  pntlemj  26173  pntlemk  26176  subfaclim  32430  subfacval3  32431  stirlinglem3  42354  stirlinglem4  42355  stirlinglem13  42364  stirlinglem15  42366  stirlingr  42368  etransclem18  42530  etransclem23  42535  etransclem46  42558  etransclem47  42559  etransclem48  42560  etransc  42561
  Copyright terms: Public domain W3C validator