| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ere | Structured version Visualization version GIF version | ||
| Description: Euler's constant e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.) |
| Ref | Expression |
|---|---|
| ere | ⊢ e ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-e 15972 | . 2 ⊢ e = (exp‘1) | |
| 2 | 1re 11109 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | reefcl 15991 | . . 3 ⊢ (1 ∈ ℝ → (exp‘1) ∈ ℝ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (exp‘1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ e ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ‘cfv 6481 ℝcr 11002 1c1 11004 expce 15965 eceu 15966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-ico 13248 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-fac 14178 df-hash 14235 df-shft 14971 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-limsup 15375 df-clim 15392 df-rlim 15393 df-sum 15591 df-ef 15971 df-e 15972 |
| This theorem is referenced by: ege2le3 15994 eirrlem 16110 egt2lt3 16112 epos 16113 epr 16114 ene0 16115 ene1 16116 logdivlti 26554 logdivlt 26555 logdivle 26556 ecxp 26607 elogb 26705 logblog 26727 cxploglim2 26914 harmonicbnd3 26943 bposlem7 27226 bposlem9 27228 chebbnd1lem2 27406 chebbnd1lem3 27407 chebbnd1 27408 dchrvmasumlema 27436 logdivsum 27469 mulog2sumlem2 27471 selberg3lem1 27493 pntpbnd1a 27521 pntpbnd2 27523 pntlemb 27533 pntlemj 27539 pntlemk 27542 subfaclim 35220 subfacval3 35221 aks4d1p1p7 42106 stirlinglem3 46113 stirlinglem4 46114 stirlinglem13 46123 stirlinglem15 46125 stirlingr 46127 etransclem18 46289 etransclem23 46294 etransclem46 46317 etransclem47 46318 etransclem48 46319 etransc 46320 |
| Copyright terms: Public domain | W3C validator |