![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ere | Structured version Visualization version GIF version |
Description: Euler's constant e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.) |
Ref | Expression |
---|---|
ere | ⊢ e ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-e 15139 | . 2 ⊢ e = (exp‘1) | |
2 | 1re 10332 | . . 3 ⊢ 1 ∈ ℝ | |
3 | reefcl 15157 | . . 3 ⊢ (1 ∈ ℝ → (exp‘1) ∈ ℝ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (exp‘1) ∈ ℝ |
5 | 1, 4 | eqeltri 2878 | 1 ⊢ e ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 ‘cfv 6105 ℝcr 10227 1c1 10229 expce 15132 eceu 15133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-rep 4968 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 ax-un 7187 ax-inf2 8792 ax-cnex 10284 ax-resscn 10285 ax-1cn 10286 ax-icn 10287 ax-addcl 10288 ax-addrcl 10289 ax-mulcl 10290 ax-mulrcl 10291 ax-mulcom 10292 ax-addass 10293 ax-mulass 10294 ax-distr 10295 ax-i2m1 10296 ax-1ne0 10297 ax-1rid 10298 ax-rnegex 10299 ax-rrecex 10300 ax-cnre 10301 ax-pre-lttri 10302 ax-pre-lttrn 10303 ax-pre-ltadd 10304 ax-pre-mulgt0 10305 ax-pre-sup 10306 ax-addf 10307 ax-mulf 10308 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ne 2976 df-nel 3079 df-ral 3098 df-rex 3099 df-reu 3100 df-rmo 3101 df-rab 3102 df-v 3391 df-sbc 3638 df-csb 3733 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-pss 3789 df-nul 4120 df-if 4282 df-pw 4355 df-sn 4373 df-pr 4375 df-tp 4377 df-op 4379 df-uni 4633 df-int 4672 df-iun 4716 df-br 4848 df-opab 4910 df-mpt 4927 df-tr 4950 df-id 5224 df-eprel 5229 df-po 5237 df-so 5238 df-fr 5275 df-se 5276 df-we 5277 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-rn 5327 df-res 5328 df-ima 5329 df-pred 5902 df-ord 5948 df-on 5949 df-lim 5950 df-suc 5951 df-iota 6068 df-fun 6107 df-fn 6108 df-f 6109 df-f1 6110 df-fo 6111 df-f1o 6112 df-fv 6113 df-isom 6114 df-riota 6843 df-ov 6885 df-oprab 6886 df-mpt2 6887 df-om 7304 df-1st 7405 df-2nd 7406 df-wrecs 7649 df-recs 7711 df-rdg 7749 df-1o 7803 df-oadd 7807 df-er 7986 df-pm 8102 df-en 8200 df-dom 8201 df-sdom 8202 df-fin 8203 df-sup 8594 df-inf 8595 df-oi 8661 df-card 9055 df-pnf 10369 df-mnf 10370 df-xr 10371 df-ltxr 10372 df-le 10373 df-sub 10562 df-neg 10563 df-div 10981 df-nn 11317 df-2 11380 df-3 11381 df-n0 11585 df-z 11671 df-uz 11935 df-rp 12079 df-ico 12434 df-fz 12585 df-fzo 12725 df-fl 12852 df-seq 13060 df-exp 13119 df-fac 13318 df-hash 13375 df-shft 14152 df-cj 14184 df-re 14185 df-im 14186 df-sqrt 14320 df-abs 14321 df-limsup 14547 df-clim 14564 df-rlim 14565 df-sum 14762 df-ef 15138 df-e 15139 |
This theorem is referenced by: ege2le3 15160 eirrlem 15272 egt2lt3 15274 epos 15275 epr 15276 ene0 15277 ene1 15278 logdivlti 24711 logdivlt 24712 logdivle 24713 ecxp 24764 elogb 24856 logblog 24878 cxploglim2 25061 harmonicbnd3 25090 bposlem7 25371 bposlem9 25373 chebbnd1lem2 25515 chebbnd1lem3 25516 chebbnd1 25517 dchrvmasumlema 25545 logdivsum 25578 mulog2sumlem2 25580 selberg3lem1 25602 pntpbnd1a 25630 pntpbnd2 25632 pntlemb 25642 pntlemj 25648 pntlemk 25651 subfaclim 31691 subfacval3 31692 stirlinglem3 41040 stirlinglem4 41041 stirlinglem13 41050 stirlinglem15 41052 stirlingr 41054 etransclem18 41216 etransclem23 41221 etransclem46 41244 etransclem47 41245 etransclem48 41246 etransc 41247 |
Copyright terms: Public domain | W3C validator |