![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ere | Structured version Visualization version GIF version |
Description: Euler's constant e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.) |
Ref | Expression |
---|---|
ere | ⊢ e ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-e 16038 | . 2 ⊢ e = (exp‘1) | |
2 | 1re 11238 | . . 3 ⊢ 1 ∈ ℝ | |
3 | reefcl 16057 | . . 3 ⊢ (1 ∈ ℝ → (exp‘1) ∈ ℝ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (exp‘1) ∈ ℝ |
5 | 1, 4 | eqeltri 2824 | 1 ⊢ e ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 ‘cfv 6542 ℝcr 11131 1c1 11133 expce 16031 eceu 16032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-ico 13356 df-fz 13511 df-fzo 13654 df-fl 13783 df-seq 13993 df-exp 14053 df-fac 14259 df-hash 14316 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15441 df-clim 15458 df-rlim 15459 df-sum 15659 df-ef 16037 df-e 16038 |
This theorem is referenced by: ege2le3 16060 eirrlem 16174 egt2lt3 16176 epos 16177 epr 16178 ene0 16179 ene1 16180 logdivlti 26547 logdivlt 26548 logdivle 26549 ecxp 26600 elogb 26695 logblog 26717 cxploglim2 26904 harmonicbnd3 26933 bposlem7 27216 bposlem9 27218 chebbnd1lem2 27396 chebbnd1lem3 27397 chebbnd1 27398 dchrvmasumlema 27426 logdivsum 27459 mulog2sumlem2 27461 selberg3lem1 27483 pntpbnd1a 27511 pntpbnd2 27513 pntlemb 27523 pntlemj 27529 pntlemk 27532 subfaclim 34788 subfacval3 34789 aks4d1p1p7 41534 stirlinglem3 45436 stirlinglem4 45437 stirlinglem13 45446 stirlinglem15 45448 stirlingr 45450 etransclem18 45612 etransclem23 45617 etransclem46 45640 etransclem47 45641 etransclem48 45642 etransc 45643 |
Copyright terms: Public domain | W3C validator |