MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivlti Structured version   Visualization version   GIF version

Theorem logdivlti 26677
Description: The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
logdivlti (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))

Proof of Theorem logdivlti
StepHypRef Expression
1 simpl2 1191 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
2 simpl3 1192 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e ≤ 𝐴)
3 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
4 ere 16122 . . . . . . . . . . 11 e ∈ ℝ
5 simpl1 1190 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
6 lelttr 11349 . . . . . . . . . . 11 ((e ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((e ≤ 𝐴𝐴 < 𝐵) → e < 𝐵))
74, 5, 1, 6mp3an2i 1465 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((e ≤ 𝐴𝐴 < 𝐵) → e < 𝐵))
82, 3, 7mp2and 699 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e < 𝐵)
9 epos 16240 . . . . . . . . . 10 0 < e
10 0re 11261 . . . . . . . . . . 11 0 ∈ ℝ
11 lttr 11335 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < e ∧ e < 𝐵) → 0 < 𝐵))
1210, 4, 1, 11mp3an12i 1464 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((0 < e ∧ e < 𝐵) → 0 < 𝐵))
139, 12mpani 696 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (e < 𝐵 → 0 < 𝐵))
148, 13mpd 15 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < 𝐵)
151, 14elrpd 13072 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ+)
16 ltletr 11351 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴))
1710, 4, 5, 16mp3an12i 1464 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴))
189, 17mpani 696 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (e ≤ 𝐴 → 0 < 𝐴))
192, 18mpd 15 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < 𝐴)
205, 19elrpd 13072 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ+)
2115, 20rpdivcld 13092 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℝ+)
22 relogcl 26632 . . . . . 6 ((𝐵 / 𝐴) ∈ ℝ+ → (log‘(𝐵 / 𝐴)) ∈ ℝ)
2321, 22syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) ∈ ℝ)
241, 20rerpdivcld 13106 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℝ)
25 1re 11259 . . . . . 6 1 ∈ ℝ
26 resubcl 11571 . . . . . 6 (((𝐵 / 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐵 / 𝐴) − 1) ∈ ℝ)
2724, 25, 26sylancl 586 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℝ)
28 relogcl 26632 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
2920, 28syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐴) ∈ ℝ)
3027, 29remulcld 11289 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) ∈ ℝ)
31 reeflog 26637 . . . . . . . . 9 ((𝐵 / 𝐴) ∈ ℝ+ → (exp‘(log‘(𝐵 / 𝐴))) = (𝐵 / 𝐴))
3221, 31syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) = (𝐵 / 𝐴))
33 ax-1cn 11211 . . . . . . . . 9 1 ∈ ℂ
3424recnd 11287 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℂ)
35 pncan3 11514 . . . . . . . . 9 ((1 ∈ ℂ ∧ (𝐵 / 𝐴) ∈ ℂ) → (1 + ((𝐵 / 𝐴) − 1)) = (𝐵 / 𝐴))
3633, 34, 35sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 + ((𝐵 / 𝐴) − 1)) = (𝐵 / 𝐴))
3732, 36eqtr4d 2778 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) = (1 + ((𝐵 / 𝐴) − 1)))
385recnd 11287 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
3938mullidd 11277 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · 𝐴) = 𝐴)
4039, 3eqbrtrd 5170 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · 𝐴) < 𝐵)
41 1red 11260 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ∈ ℝ)
42 ltmuldiv 12139 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 · 𝐴) < 𝐵 ↔ 1 < (𝐵 / 𝐴)))
4341, 1, 5, 19, 42syl112anc 1373 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((1 · 𝐴) < 𝐵 ↔ 1 < (𝐵 / 𝐴)))
4440, 43mpbid 232 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 < (𝐵 / 𝐴))
45 difrp 13071 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (𝐵 / 𝐴) ∈ ℝ) → (1 < (𝐵 / 𝐴) ↔ ((𝐵 / 𝐴) − 1) ∈ ℝ+))
4625, 24, 45sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 < (𝐵 / 𝐴) ↔ ((𝐵 / 𝐴) − 1) ∈ ℝ+))
4744, 46mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℝ+)
48 efgt1p 16148 . . . . . . . 8 (((𝐵 / 𝐴) − 1) ∈ ℝ+ → (1 + ((𝐵 / 𝐴) − 1)) < (exp‘((𝐵 / 𝐴) − 1)))
4947, 48syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 + ((𝐵 / 𝐴) − 1)) < (exp‘((𝐵 / 𝐴) − 1)))
5037, 49eqbrtrd 5170 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1)))
51 eflt 16150 . . . . . . 7 (((log‘(𝐵 / 𝐴)) ∈ ℝ ∧ ((𝐵 / 𝐴) − 1) ∈ ℝ) → ((log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1) ↔ (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1))))
5223, 27, 51syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1) ↔ (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1))))
5350, 52mpbird 257 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1))
5427recnd 11287 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℂ)
5554mulridd 11276 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · 1) = ((𝐵 / 𝐴) − 1))
56 df-e 16101 . . . . . . . . 9 e = (exp‘1)
57 reeflog 26637 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴)
5820, 57syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘𝐴)) = 𝐴)
592, 58breqtrrd 5176 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e ≤ (exp‘(log‘𝐴)))
6056, 59eqbrtrrid 5184 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘1) ≤ (exp‘(log‘𝐴)))
61 efle 16151 . . . . . . . . 9 ((1 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (1 ≤ (log‘𝐴) ↔ (exp‘1) ≤ (exp‘(log‘𝐴))))
6225, 29, 61sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 ≤ (log‘𝐴) ↔ (exp‘1) ≤ (exp‘(log‘𝐴))))
6360, 62mpbird 257 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ≤ (log‘𝐴))
64 posdif 11754 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (𝐵 / 𝐴) ∈ ℝ) → (1 < (𝐵 / 𝐴) ↔ 0 < ((𝐵 / 𝐴) − 1)))
6525, 24, 64sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 < (𝐵 / 𝐴) ↔ 0 < ((𝐵 / 𝐴) − 1)))
6644, 65mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < ((𝐵 / 𝐴) − 1))
67 lemul2 12118 . . . . . . . 8 ((1 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ ∧ (((𝐵 / 𝐴) − 1) ∈ ℝ ∧ 0 < ((𝐵 / 𝐴) − 1))) → (1 ≤ (log‘𝐴) ↔ (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴))))
6841, 29, 27, 66, 67syl112anc 1373 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 ≤ (log‘𝐴) ↔ (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴))))
6963, 68mpbid 232 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
7055, 69eqbrtrrd 5172 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
7123, 27, 30, 53, 70ltletrd 11419 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) < (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
72 relogdiv 26650 . . . . 5 ((𝐵 ∈ ℝ+𝐴 ∈ ℝ+) → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
7315, 20, 72syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
74 1cnd 11254 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ∈ ℂ)
7529recnd 11287 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐴) ∈ ℂ)
7634, 74, 75subdird 11718 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) = (((𝐵 / 𝐴) · (log‘𝐴)) − (1 · (log‘𝐴))))
771recnd 11287 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
7820rpne0d 13080 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ≠ 0)
7977, 38, 75, 78div32d 12064 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) · (log‘𝐴)) = (𝐵 · ((log‘𝐴) / 𝐴)))
8075mullidd 11277 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · (log‘𝐴)) = (log‘𝐴))
8179, 80oveq12d 7449 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) · (log‘𝐴)) − (1 · (log‘𝐴))) = ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
8276, 81eqtrd 2775 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) = ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
8371, 73, 823brtr3d 5179 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) − (log‘𝐴)) < ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
84 relogcl 26632 . . . . 5 (𝐵 ∈ ℝ+ → (log‘𝐵) ∈ ℝ)
8515, 84syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐵) ∈ ℝ)
8629, 20rerpdivcld 13106 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐴) / 𝐴) ∈ ℝ)
871, 86remulcld 11289 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 · ((log‘𝐴) / 𝐴)) ∈ ℝ)
8885, 87, 29ltsub1d 11870 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴)) ↔ ((log‘𝐵) − (log‘𝐴)) < ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴))))
8983, 88mpbird 257 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴)))
9085, 86, 15ltdivmuld 13126 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴) ↔ (log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴))))
9189, 90mpbird 257 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  +crp 13032  expce 16094  eceu 16095  logclog 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-e 16101  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613
This theorem is referenced by:  logdivlt  26678
  Copyright terms: Public domain W3C validator