MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivlti Structured version   Visualization version   GIF version

Theorem logdivlti 26663
Description: The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
logdivlti (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))

Proof of Theorem logdivlti
StepHypRef Expression
1 simpl2 1192 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
2 simpl3 1193 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e ≤ 𝐴)
3 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
4 ere 16126 . . . . . . . . . . 11 e ∈ ℝ
5 simpl1 1191 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
6 lelttr 11352 . . . . . . . . . . 11 ((e ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((e ≤ 𝐴𝐴 < 𝐵) → e < 𝐵))
74, 5, 1, 6mp3an2i 1467 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((e ≤ 𝐴𝐴 < 𝐵) → e < 𝐵))
82, 3, 7mp2and 699 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e < 𝐵)
9 epos 16244 . . . . . . . . . 10 0 < e
10 0re 11264 . . . . . . . . . . 11 0 ∈ ℝ
11 lttr 11338 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < e ∧ e < 𝐵) → 0 < 𝐵))
1210, 4, 1, 11mp3an12i 1466 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((0 < e ∧ e < 𝐵) → 0 < 𝐵))
139, 12mpani 696 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (e < 𝐵 → 0 < 𝐵))
148, 13mpd 15 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < 𝐵)
151, 14elrpd 13075 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ+)
16 ltletr 11354 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴))
1710, 4, 5, 16mp3an12i 1466 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴))
189, 17mpani 696 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (e ≤ 𝐴 → 0 < 𝐴))
192, 18mpd 15 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < 𝐴)
205, 19elrpd 13075 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ+)
2115, 20rpdivcld 13095 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℝ+)
22 relogcl 26618 . . . . . 6 ((𝐵 / 𝐴) ∈ ℝ+ → (log‘(𝐵 / 𝐴)) ∈ ℝ)
2321, 22syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) ∈ ℝ)
241, 20rerpdivcld 13109 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℝ)
25 1re 11262 . . . . . 6 1 ∈ ℝ
26 resubcl 11574 . . . . . 6 (((𝐵 / 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐵 / 𝐴) − 1) ∈ ℝ)
2724, 25, 26sylancl 586 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℝ)
28 relogcl 26618 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
2920, 28syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐴) ∈ ℝ)
3027, 29remulcld 11292 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) ∈ ℝ)
31 reeflog 26623 . . . . . . . . 9 ((𝐵 / 𝐴) ∈ ℝ+ → (exp‘(log‘(𝐵 / 𝐴))) = (𝐵 / 𝐴))
3221, 31syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) = (𝐵 / 𝐴))
33 ax-1cn 11214 . . . . . . . . 9 1 ∈ ℂ
3424recnd 11290 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℂ)
35 pncan3 11517 . . . . . . . . 9 ((1 ∈ ℂ ∧ (𝐵 / 𝐴) ∈ ℂ) → (1 + ((𝐵 / 𝐴) − 1)) = (𝐵 / 𝐴))
3633, 34, 35sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 + ((𝐵 / 𝐴) − 1)) = (𝐵 / 𝐴))
3732, 36eqtr4d 2779 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) = (1 + ((𝐵 / 𝐴) − 1)))
385recnd 11290 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
3938mullidd 11280 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · 𝐴) = 𝐴)
4039, 3eqbrtrd 5164 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · 𝐴) < 𝐵)
41 1red 11263 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ∈ ℝ)
42 ltmuldiv 12142 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 · 𝐴) < 𝐵 ↔ 1 < (𝐵 / 𝐴)))
4341, 1, 5, 19, 42syl112anc 1375 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((1 · 𝐴) < 𝐵 ↔ 1 < (𝐵 / 𝐴)))
4440, 43mpbid 232 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 < (𝐵 / 𝐴))
45 difrp 13074 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (𝐵 / 𝐴) ∈ ℝ) → (1 < (𝐵 / 𝐴) ↔ ((𝐵 / 𝐴) − 1) ∈ ℝ+))
4625, 24, 45sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 < (𝐵 / 𝐴) ↔ ((𝐵 / 𝐴) − 1) ∈ ℝ+))
4744, 46mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℝ+)
48 efgt1p 16152 . . . . . . . 8 (((𝐵 / 𝐴) − 1) ∈ ℝ+ → (1 + ((𝐵 / 𝐴) − 1)) < (exp‘((𝐵 / 𝐴) − 1)))
4947, 48syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 + ((𝐵 / 𝐴) − 1)) < (exp‘((𝐵 / 𝐴) − 1)))
5037, 49eqbrtrd 5164 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1)))
51 eflt 16154 . . . . . . 7 (((log‘(𝐵 / 𝐴)) ∈ ℝ ∧ ((𝐵 / 𝐴) − 1) ∈ ℝ) → ((log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1) ↔ (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1))))
5223, 27, 51syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1) ↔ (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1))))
5350, 52mpbird 257 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1))
5427recnd 11290 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℂ)
5554mulridd 11279 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · 1) = ((𝐵 / 𝐴) − 1))
56 df-e 16105 . . . . . . . . 9 e = (exp‘1)
57 reeflog 26623 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴)
5820, 57syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘𝐴)) = 𝐴)
592, 58breqtrrd 5170 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e ≤ (exp‘(log‘𝐴)))
6056, 59eqbrtrrid 5178 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘1) ≤ (exp‘(log‘𝐴)))
61 efle 16155 . . . . . . . . 9 ((1 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (1 ≤ (log‘𝐴) ↔ (exp‘1) ≤ (exp‘(log‘𝐴))))
6225, 29, 61sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 ≤ (log‘𝐴) ↔ (exp‘1) ≤ (exp‘(log‘𝐴))))
6360, 62mpbird 257 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ≤ (log‘𝐴))
64 posdif 11757 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (𝐵 / 𝐴) ∈ ℝ) → (1 < (𝐵 / 𝐴) ↔ 0 < ((𝐵 / 𝐴) − 1)))
6525, 24, 64sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 < (𝐵 / 𝐴) ↔ 0 < ((𝐵 / 𝐴) − 1)))
6644, 65mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < ((𝐵 / 𝐴) − 1))
67 lemul2 12121 . . . . . . . 8 ((1 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ ∧ (((𝐵 / 𝐴) − 1) ∈ ℝ ∧ 0 < ((𝐵 / 𝐴) − 1))) → (1 ≤ (log‘𝐴) ↔ (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴))))
6841, 29, 27, 66, 67syl112anc 1375 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 ≤ (log‘𝐴) ↔ (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴))))
6963, 68mpbid 232 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
7055, 69eqbrtrrd 5166 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
7123, 27, 30, 53, 70ltletrd 11422 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) < (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
72 relogdiv 26636 . . . . 5 ((𝐵 ∈ ℝ+𝐴 ∈ ℝ+) → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
7315, 20, 72syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
74 1cnd 11257 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ∈ ℂ)
7529recnd 11290 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐴) ∈ ℂ)
7634, 74, 75subdird 11721 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) = (((𝐵 / 𝐴) · (log‘𝐴)) − (1 · (log‘𝐴))))
771recnd 11290 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
7820rpne0d 13083 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ≠ 0)
7977, 38, 75, 78div32d 12067 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) · (log‘𝐴)) = (𝐵 · ((log‘𝐴) / 𝐴)))
8075mullidd 11280 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · (log‘𝐴)) = (log‘𝐴))
8179, 80oveq12d 7450 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) · (log‘𝐴)) − (1 · (log‘𝐴))) = ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
8276, 81eqtrd 2776 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) = ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
8371, 73, 823brtr3d 5173 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) − (log‘𝐴)) < ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
84 relogcl 26618 . . . . 5 (𝐵 ∈ ℝ+ → (log‘𝐵) ∈ ℝ)
8515, 84syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐵) ∈ ℝ)
8629, 20rerpdivcld 13109 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐴) / 𝐴) ∈ ℝ)
871, 86remulcld 11292 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 · ((log‘𝐴) / 𝐴)) ∈ ℝ)
8885, 87, 29ltsub1d 11873 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴)) ↔ ((log‘𝐵) − (log‘𝐴)) < ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴))))
8983, 88mpbird 257 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴)))
9085, 86, 15ltdivmuld 13129 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴) ↔ (log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴))))
9189, 90mpbird 257 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5142  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161   < clt 11296  cle 11297  cmin 11493   / cdiv 11921  +crp 13035  expce 16098  eceu 16099  logclog 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-e 16105  df-sin 16106  df-cos 16107  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-log 26599
This theorem is referenced by:  logdivlt  26664
  Copyright terms: Public domain W3C validator