MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ege2le3 Structured version   Visualization version   GIF version

Theorem ege2le3 16122
Description: Lemma for egt2lt3 16238. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
erelem1.1 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
erelem1.2 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
Assertion
Ref Expression
ege2le3 (2 ≤ e ∧ e ≤ 3)

Proof of Theorem ege2le3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12917 . . . . . 6 0 = (ℤ‘0)
2 0nn0 12538 . . . . . . 7 0 ∈ ℕ0
32a1i 11 . . . . . 6 (⊤ → 0 ∈ ℕ0)
4 1e0p1 12772 . . . . . 6 1 = (0 + 1)
5 0z 12621 . . . . . . 7 0 ∈ ℤ
6 fveq2 6906 . . . . . . . . . . . 12 (𝑛 = 0 → (!‘𝑛) = (!‘0))
7 fac0 14311 . . . . . . . . . . . 12 (!‘0) = 1
86, 7eqtrdi 2790 . . . . . . . . . . 11 (𝑛 = 0 → (!‘𝑛) = 1)
98oveq2d 7446 . . . . . . . . . 10 (𝑛 = 0 → (1 / (!‘𝑛)) = (1 / 1))
10 ax-1cn 11210 . . . . . . . . . . 11 1 ∈ ℂ
1110div1i 11992 . . . . . . . . . 10 (1 / 1) = 1
129, 11eqtrdi 2790 . . . . . . . . 9 (𝑛 = 0 → (1 / (!‘𝑛)) = 1)
13 erelem1.2 . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
14 1ex 11254 . . . . . . . . 9 1 ∈ V
1512, 13, 14fvmpt 7015 . . . . . . . 8 (0 ∈ ℕ0 → (𝐺‘0) = 1)
162, 15mp1i 13 . . . . . . 7 (⊤ → (𝐺‘0) = 1)
175, 16seq1i 14052 . . . . . 6 (⊤ → (seq0( + , 𝐺)‘0) = 1)
18 1nn0 12539 . . . . . . 7 1 ∈ ℕ0
19 fveq2 6906 . . . . . . . . . . 11 (𝑛 = 1 → (!‘𝑛) = (!‘1))
20 fac1 14312 . . . . . . . . . . 11 (!‘1) = 1
2119, 20eqtrdi 2790 . . . . . . . . . 10 (𝑛 = 1 → (!‘𝑛) = 1)
2221oveq2d 7446 . . . . . . . . 9 (𝑛 = 1 → (1 / (!‘𝑛)) = (1 / 1))
2322, 11eqtrdi 2790 . . . . . . . 8 (𝑛 = 1 → (1 / (!‘𝑛)) = 1)
2423, 13, 14fvmpt 7015 . . . . . . 7 (1 ∈ ℕ0 → (𝐺‘1) = 1)
2518, 24mp1i 13 . . . . . 6 (⊤ → (𝐺‘1) = 1)
261, 3, 4, 17, 25seqp1d 14055 . . . . 5 (⊤ → (seq0( + , 𝐺)‘1) = (1 + 1))
27 df-2 12326 . . . . 5 2 = (1 + 1)
2826, 27eqtr4di 2792 . . . 4 (⊤ → (seq0( + , 𝐺)‘1) = 2)
2918a1i 11 . . . . 5 (⊤ → 1 ∈ ℕ0)
30 nn0z 12635 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
31 1exp 14128 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
3230, 31syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
3332oveq1d 7445 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
3433mpteq2ia 5250 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
3513, 34eqtr4i 2765 . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
3635efcvg 16117 . . . . . . 7 (1 ∈ ℂ → seq0( + , 𝐺) ⇝ (exp‘1))
3710, 36mp1i 13 . . . . . 6 (⊤ → seq0( + , 𝐺) ⇝ (exp‘1))
38 df-e 16100 . . . . . 6 e = (exp‘1)
3937, 38breqtrrdi 5189 . . . . 5 (⊤ → seq0( + , 𝐺) ⇝ e)
40 fveq2 6906 . . . . . . . . 9 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
4140oveq2d 7446 . . . . . . . 8 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
42 ovex 7463 . . . . . . . 8 (1 / (!‘𝑘)) ∈ V
4341, 13, 42fvmpt 7015 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐺𝑘) = (1 / (!‘𝑘)))
4443adantl 481 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = (1 / (!‘𝑘)))
45 faccl 14318 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4645adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
4746nnrecred 12314 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ)
4844, 47eqeltrd 2838 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℝ)
4946nnred 12278 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
5046nngt0d 12312 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < (!‘𝑘))
51 1re 11258 . . . . . . . 8 1 ∈ ℝ
52 0le1 11783 . . . . . . . 8 0 ≤ 1
53 divge0 12134 . . . . . . . 8 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (1 / (!‘𝑘)))
5451, 52, 53mpanl12 702 . . . . . . 7 (((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘)) → 0 ≤ (1 / (!‘𝑘)))
5549, 50, 54syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 ≤ (1 / (!‘𝑘)))
5655, 44breqtrrd 5175 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐺𝑘))
571, 29, 39, 48, 56climserle 15695 . . . 4 (⊤ → (seq0( + , 𝐺)‘1) ≤ e)
5828, 57eqbrtrrd 5171 . . 3 (⊤ → 2 ≤ e)
5958mptru 1543 . 2 2 ≤ e
60 nnuz 12918 . . . . . 6 ℕ = (ℤ‘1)
61 1zzd 12645 . . . . . 6 (⊤ → 1 ∈ ℤ)
6248recnd 11286 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
631, 3, 62, 39clim2ser 15687 . . . . . . 7 (⊤ → seq(0 + 1)( + , 𝐺) ⇝ (e − (seq0( + , 𝐺)‘0)))
64 0p1e1 12385 . . . . . . . 8 (0 + 1) = 1
65 seqeq1 14041 . . . . . . . 8 ((0 + 1) = 1 → seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺))
6664, 65ax-mp 5 . . . . . . 7 seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺)
6717mptru 1543 . . . . . . . 8 (seq0( + , 𝐺)‘0) = 1
6867oveq2i 7441 . . . . . . 7 (e − (seq0( + , 𝐺)‘0)) = (e − 1)
6963, 66, 683brtr3g 5180 . . . . . 6 (⊤ → seq1( + , 𝐺) ⇝ (e − 1))
70 2cnd 12341 . . . . . . . 8 (⊤ → 2 ∈ ℂ)
71 oveq2 7438 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑘))
72 eqid 2734 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
73 ovex 7463 . . . . . . . . . . . . 13 ((1 / 2)↑𝑘) ∈ V
7471, 72, 73fvmpt 7015 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
7574adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
76 halfre 12477 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
77 simpr 484 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
78 reexpcl 14115 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ)
7976, 77, 78sylancr 587 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ)
8079recnd 11286 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℂ)
8175, 80eqeltrd 2838 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ)
82 1lt2 12434 . . . . . . . . . . . . . 14 1 < 2
83 2re 12337 . . . . . . . . . . . . . . 15 2 ∈ ℝ
84 0le2 12365 . . . . . . . . . . . . . . 15 0 ≤ 2
85 absid 15331 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
8683, 84, 85mp2an 692 . . . . . . . . . . . . . 14 (abs‘2) = 2
8782, 86breqtrri 5174 . . . . . . . . . . . . 13 1 < (abs‘2)
8887a1i 11 . . . . . . . . . . . 12 (⊤ → 1 < (abs‘2))
8970, 88, 75georeclim 15904 . . . . . . . . . . 11 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 / (2 − 1)))
90 2m1e1 12389 . . . . . . . . . . . . 13 (2 − 1) = 1
9190oveq2i 7441 . . . . . . . . . . . 12 (2 / (2 − 1)) = (2 / 1)
92 2cn 12338 . . . . . . . . . . . . 13 2 ∈ ℂ
9392div1i 11992 . . . . . . . . . . . 12 (2 / 1) = 2
9491, 93eqtri 2762 . . . . . . . . . . 11 (2 / (2 − 1)) = 2
9589, 94breqtrdi 5188 . . . . . . . . . 10 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 2)
961, 3, 81, 95clim2ser 15687 . . . . . . . . 9 (⊤ → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)))
97 seqeq1 14041 . . . . . . . . . 10 ((0 + 1) = 1 → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))))
9864, 97ax-mp 5 . . . . . . . . 9 seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))
99 oveq2 7438 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → ((1 / 2)↑𝑛) = ((1 / 2)↑0))
100 ovex 7463 . . . . . . . . . . . . . . . . 17 ((1 / 2)↑0) ∈ V
10199, 72, 100fvmpt 7015 . . . . . . . . . . . . . . . 16 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 / 2)↑0))
1022, 101ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 / 2)↑0)
103 halfcn 12478 . . . . . . . . . . . . . . . 16 (1 / 2) ∈ ℂ
104 exp0 14102 . . . . . . . . . . . . . . . 16 ((1 / 2) ∈ ℂ → ((1 / 2)↑0) = 1)
105103, 104ax-mp 5 . . . . . . . . . . . . . . 15 ((1 / 2)↑0) = 1
106102, 105eqtri 2762 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = 1
107106a1i 11 . . . . . . . . . . . . 13 (⊤ → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = 1)
1085, 107seq1i 14052 . . . . . . . . . . . 12 (⊤ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1)
109108mptru 1543 . . . . . . . . . . 11 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1
110109oveq2i 7441 . . . . . . . . . 10 (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = (2 − 1)
111110, 90eqtri 2762 . . . . . . . . 9 (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = 1
11296, 98, 1113brtr3g 5180 . . . . . . . 8 (⊤ → seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 1)
113 nnnn0 12530 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
114113, 81sylan2 593 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ)
11571oveq2d 7446 . . . . . . . . . . 11 (𝑛 = 𝑘 → (2 · ((1 / 2)↑𝑛)) = (2 · ((1 / 2)↑𝑘)))
116 erelem1.1 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
117 ovex 7463 . . . . . . . . . . 11 (2 · ((1 / 2)↑𝑘)) ∈ V
118115, 116, 117fvmpt 7015 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
119118adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
120113, 75sylan2 593 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
121120oveq2d 7446 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘)) = (2 · ((1 / 2)↑𝑘)))
122119, 121eqtr4d 2777 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (2 · ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘)))
12360, 61, 70, 112, 114, 122isermulc2 15690 . . . . . . 7 (⊤ → seq1( + , 𝐹) ⇝ (2 · 1))
124 2t1e2 12426 . . . . . . 7 (2 · 1) = 2
125123, 124breqtrdi 5188 . . . . . 6 (⊤ → seq1( + , 𝐹) ⇝ 2)
126113, 48sylan2 593 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
127 remulcl 11237 . . . . . . . . 9 ((2 ∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
12883, 79, 127sylancr 587 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
129113, 128sylan2 593 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
130119, 129eqeltrd 2838 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
131 faclbnd2 14326 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) / 2) ≤ (!‘𝑘))
132131adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑘) / 2) ≤ (!‘𝑘))
133 2nn 12336 . . . . . . . . . . . . . 14 2 ∈ ℕ
134 nnexpcl 14111 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
135133, 77, 134sylancr 587 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
136135nnrpd 13072 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℝ+)
137136rphalfcld 13086 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑘) / 2) ∈ ℝ+)
13846nnrpd 13072 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
139137, 138lerecd 13093 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (((2↑𝑘) / 2) ≤ (!‘𝑘) ↔ (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2))))
140132, 139mpbid 232 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2)))
141 2cnd 12341 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℂ)
142135nncnd 12279 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℂ)
143135nnne0d 12313 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ≠ 0)
144141, 142, 143divrecd 12043 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 / (2↑𝑘)) = (2 · (1 / (2↑𝑘))))
145 2ne0 12367 . . . . . . . . . . . 12 2 ≠ 0
146 recdiv 11970 . . . . . . . . . . . 12 ((((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
14792, 145, 146mpanr12 705 . . . . . . . . . . 11 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
148142, 143, 147syl2anc 584 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
149145a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ≠ 0)
150 nn0z 12635 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
151150adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
152141, 149, 151exprecd 14190 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
153152oveq2d 7446 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (2 · (1 / (2↑𝑘))))
154144, 148, 1533eqtr4rd 2785 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (1 / ((2↑𝑘) / 2)))
155140, 154breqtrrd 5175 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘)))
156113, 155sylan2 593 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘)))
157113, 44sylan2 593 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (1 / (!‘𝑘)))
158156, 157, 1193brtr4d 5179 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹𝑘))
15960, 61, 69, 125, 126, 130, 158iserle 15692 . . . . 5 (⊤ → (e − 1) ≤ 2)
160159mptru 1543 . . . 4 (e − 1) ≤ 2
161 ere 16121 . . . . 5 e ∈ ℝ
162161, 51, 83lesubaddi 11818 . . . 4 ((e − 1) ≤ 2 ↔ e ≤ (2 + 1))
163160, 162mpbi 230 . . 3 e ≤ (2 + 1)
164 df-3 12327 . . 3 3 = (2 + 1)
165163, 164breqtrri 5174 . 2 e ≤ 3
16659, 165pm3.2i 470 1 (2 ≤ e ∧ e ≤ 3)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1536  wtru 1537  wcel 2105  wne 2937   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  2c2 12318  3c3 12319  0cn0 12523  cz 12610  seqcseq 14038  cexp 14098  !cfa 14308  abscabs 15269  cli 15516  expce 16093  eceu 16094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-ico 13389  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-fac 14309  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-e 16100
This theorem is referenced by:  egt2lt3  16238
  Copyright terms: Public domain W3C validator