MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ege2le3 Structured version   Visualization version   GIF version

Theorem ege2le3 16126
Description: Lemma for egt2lt3 16242. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
erelem1.1 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
erelem1.2 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
Assertion
Ref Expression
ege2le3 (2 ≤ e ∧ e ≤ 3)

Proof of Theorem ege2le3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12920 . . . . . 6 0 = (ℤ‘0)
2 0nn0 12541 . . . . . . 7 0 ∈ ℕ0
32a1i 11 . . . . . 6 (⊤ → 0 ∈ ℕ0)
4 1e0p1 12775 . . . . . 6 1 = (0 + 1)
5 0z 12624 . . . . . . 7 0 ∈ ℤ
6 fveq2 6906 . . . . . . . . . . . 12 (𝑛 = 0 → (!‘𝑛) = (!‘0))
7 fac0 14315 . . . . . . . . . . . 12 (!‘0) = 1
86, 7eqtrdi 2793 . . . . . . . . . . 11 (𝑛 = 0 → (!‘𝑛) = 1)
98oveq2d 7447 . . . . . . . . . 10 (𝑛 = 0 → (1 / (!‘𝑛)) = (1 / 1))
10 ax-1cn 11213 . . . . . . . . . . 11 1 ∈ ℂ
1110div1i 11995 . . . . . . . . . 10 (1 / 1) = 1
129, 11eqtrdi 2793 . . . . . . . . 9 (𝑛 = 0 → (1 / (!‘𝑛)) = 1)
13 erelem1.2 . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
14 1ex 11257 . . . . . . . . 9 1 ∈ V
1512, 13, 14fvmpt 7016 . . . . . . . 8 (0 ∈ ℕ0 → (𝐺‘0) = 1)
162, 15mp1i 13 . . . . . . 7 (⊤ → (𝐺‘0) = 1)
175, 16seq1i 14056 . . . . . 6 (⊤ → (seq0( + , 𝐺)‘0) = 1)
18 1nn0 12542 . . . . . . 7 1 ∈ ℕ0
19 fveq2 6906 . . . . . . . . . . 11 (𝑛 = 1 → (!‘𝑛) = (!‘1))
20 fac1 14316 . . . . . . . . . . 11 (!‘1) = 1
2119, 20eqtrdi 2793 . . . . . . . . . 10 (𝑛 = 1 → (!‘𝑛) = 1)
2221oveq2d 7447 . . . . . . . . 9 (𝑛 = 1 → (1 / (!‘𝑛)) = (1 / 1))
2322, 11eqtrdi 2793 . . . . . . . 8 (𝑛 = 1 → (1 / (!‘𝑛)) = 1)
2423, 13, 14fvmpt 7016 . . . . . . 7 (1 ∈ ℕ0 → (𝐺‘1) = 1)
2518, 24mp1i 13 . . . . . 6 (⊤ → (𝐺‘1) = 1)
261, 3, 4, 17, 25seqp1d 14059 . . . . 5 (⊤ → (seq0( + , 𝐺)‘1) = (1 + 1))
27 df-2 12329 . . . . 5 2 = (1 + 1)
2826, 27eqtr4di 2795 . . . 4 (⊤ → (seq0( + , 𝐺)‘1) = 2)
2918a1i 11 . . . . 5 (⊤ → 1 ∈ ℕ0)
30 nn0z 12638 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
31 1exp 14132 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
3230, 31syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
3332oveq1d 7446 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
3433mpteq2ia 5245 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
3513, 34eqtr4i 2768 . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
3635efcvg 16121 . . . . . . 7 (1 ∈ ℂ → seq0( + , 𝐺) ⇝ (exp‘1))
3710, 36mp1i 13 . . . . . 6 (⊤ → seq0( + , 𝐺) ⇝ (exp‘1))
38 df-e 16104 . . . . . 6 e = (exp‘1)
3937, 38breqtrrdi 5185 . . . . 5 (⊤ → seq0( + , 𝐺) ⇝ e)
40 fveq2 6906 . . . . . . . . 9 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
4140oveq2d 7447 . . . . . . . 8 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
42 ovex 7464 . . . . . . . 8 (1 / (!‘𝑘)) ∈ V
4341, 13, 42fvmpt 7016 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐺𝑘) = (1 / (!‘𝑘)))
4443adantl 481 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = (1 / (!‘𝑘)))
45 faccl 14322 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4645adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
4746nnrecred 12317 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ)
4844, 47eqeltrd 2841 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℝ)
4946nnred 12281 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
5046nngt0d 12315 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < (!‘𝑘))
51 1re 11261 . . . . . . . 8 1 ∈ ℝ
52 0le1 11786 . . . . . . . 8 0 ≤ 1
53 divge0 12137 . . . . . . . 8 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (1 / (!‘𝑘)))
5451, 52, 53mpanl12 702 . . . . . . 7 (((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘)) → 0 ≤ (1 / (!‘𝑘)))
5549, 50, 54syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 ≤ (1 / (!‘𝑘)))
5655, 44breqtrrd 5171 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐺𝑘))
571, 29, 39, 48, 56climserle 15699 . . . 4 (⊤ → (seq0( + , 𝐺)‘1) ≤ e)
5828, 57eqbrtrrd 5167 . . 3 (⊤ → 2 ≤ e)
5958mptru 1547 . 2 2 ≤ e
60 nnuz 12921 . . . . . 6 ℕ = (ℤ‘1)
61 1zzd 12648 . . . . . 6 (⊤ → 1 ∈ ℤ)
6248recnd 11289 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
631, 3, 62, 39clim2ser 15691 . . . . . . 7 (⊤ → seq(0 + 1)( + , 𝐺) ⇝ (e − (seq0( + , 𝐺)‘0)))
64 0p1e1 12388 . . . . . . . 8 (0 + 1) = 1
65 seqeq1 14045 . . . . . . . 8 ((0 + 1) = 1 → seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺))
6664, 65ax-mp 5 . . . . . . 7 seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺)
6717mptru 1547 . . . . . . . 8 (seq0( + , 𝐺)‘0) = 1
6867oveq2i 7442 . . . . . . 7 (e − (seq0( + , 𝐺)‘0)) = (e − 1)
6963, 66, 683brtr3g 5176 . . . . . 6 (⊤ → seq1( + , 𝐺) ⇝ (e − 1))
70 2cnd 12344 . . . . . . . 8 (⊤ → 2 ∈ ℂ)
71 oveq2 7439 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑘))
72 eqid 2737 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
73 ovex 7464 . . . . . . . . . . . . 13 ((1 / 2)↑𝑘) ∈ V
7471, 72, 73fvmpt 7016 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
7574adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
76 halfre 12480 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
77 simpr 484 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
78 reexpcl 14119 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ)
7976, 77, 78sylancr 587 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ)
8079recnd 11289 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℂ)
8175, 80eqeltrd 2841 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ)
82 1lt2 12437 . . . . . . . . . . . . . 14 1 < 2
83 2re 12340 . . . . . . . . . . . . . . 15 2 ∈ ℝ
84 0le2 12368 . . . . . . . . . . . . . . 15 0 ≤ 2
85 absid 15335 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
8683, 84, 85mp2an 692 . . . . . . . . . . . . . 14 (abs‘2) = 2
8782, 86breqtrri 5170 . . . . . . . . . . . . 13 1 < (abs‘2)
8887a1i 11 . . . . . . . . . . . 12 (⊤ → 1 < (abs‘2))
8970, 88, 75georeclim 15908 . . . . . . . . . . 11 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 / (2 − 1)))
90 2m1e1 12392 . . . . . . . . . . . . 13 (2 − 1) = 1
9190oveq2i 7442 . . . . . . . . . . . 12 (2 / (2 − 1)) = (2 / 1)
92 2cn 12341 . . . . . . . . . . . . 13 2 ∈ ℂ
9392div1i 11995 . . . . . . . . . . . 12 (2 / 1) = 2
9491, 93eqtri 2765 . . . . . . . . . . 11 (2 / (2 − 1)) = 2
9589, 94breqtrdi 5184 . . . . . . . . . 10 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 2)
961, 3, 81, 95clim2ser 15691 . . . . . . . . 9 (⊤ → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)))
97 seqeq1 14045 . . . . . . . . . 10 ((0 + 1) = 1 → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))))
9864, 97ax-mp 5 . . . . . . . . 9 seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))
99 oveq2 7439 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → ((1 / 2)↑𝑛) = ((1 / 2)↑0))
100 ovex 7464 . . . . . . . . . . . . . . . . 17 ((1 / 2)↑0) ∈ V
10199, 72, 100fvmpt 7016 . . . . . . . . . . . . . . . 16 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 / 2)↑0))
1022, 101ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 / 2)↑0)
103 halfcn 12481 . . . . . . . . . . . . . . . 16 (1 / 2) ∈ ℂ
104 exp0 14106 . . . . . . . . . . . . . . . 16 ((1 / 2) ∈ ℂ → ((1 / 2)↑0) = 1)
105103, 104ax-mp 5 . . . . . . . . . . . . . . 15 ((1 / 2)↑0) = 1
106102, 105eqtri 2765 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = 1
107106a1i 11 . . . . . . . . . . . . 13 (⊤ → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = 1)
1085, 107seq1i 14056 . . . . . . . . . . . 12 (⊤ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1)
109108mptru 1547 . . . . . . . . . . 11 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1
110109oveq2i 7442 . . . . . . . . . 10 (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = (2 − 1)
111110, 90eqtri 2765 . . . . . . . . 9 (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = 1
11296, 98, 1113brtr3g 5176 . . . . . . . 8 (⊤ → seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 1)
113 nnnn0 12533 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
114113, 81sylan2 593 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ)
11571oveq2d 7447 . . . . . . . . . . 11 (𝑛 = 𝑘 → (2 · ((1 / 2)↑𝑛)) = (2 · ((1 / 2)↑𝑘)))
116 erelem1.1 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
117 ovex 7464 . . . . . . . . . . 11 (2 · ((1 / 2)↑𝑘)) ∈ V
118115, 116, 117fvmpt 7016 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
119118adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
120113, 75sylan2 593 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
121120oveq2d 7447 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘)) = (2 · ((1 / 2)↑𝑘)))
122119, 121eqtr4d 2780 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (2 · ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘)))
12360, 61, 70, 112, 114, 122isermulc2 15694 . . . . . . 7 (⊤ → seq1( + , 𝐹) ⇝ (2 · 1))
124 2t1e2 12429 . . . . . . 7 (2 · 1) = 2
125123, 124breqtrdi 5184 . . . . . 6 (⊤ → seq1( + , 𝐹) ⇝ 2)
126113, 48sylan2 593 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
127 remulcl 11240 . . . . . . . . 9 ((2 ∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
12883, 79, 127sylancr 587 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
129113, 128sylan2 593 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
130119, 129eqeltrd 2841 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
131 faclbnd2 14330 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) / 2) ≤ (!‘𝑘))
132131adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑘) / 2) ≤ (!‘𝑘))
133 2nn 12339 . . . . . . . . . . . . . 14 2 ∈ ℕ
134 nnexpcl 14115 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
135133, 77, 134sylancr 587 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
136135nnrpd 13075 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℝ+)
137136rphalfcld 13089 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑘) / 2) ∈ ℝ+)
13846nnrpd 13075 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
139137, 138lerecd 13096 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (((2↑𝑘) / 2) ≤ (!‘𝑘) ↔ (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2))))
140132, 139mpbid 232 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2)))
141 2cnd 12344 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℂ)
142135nncnd 12282 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℂ)
143135nnne0d 12316 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ≠ 0)
144141, 142, 143divrecd 12046 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 / (2↑𝑘)) = (2 · (1 / (2↑𝑘))))
145 2ne0 12370 . . . . . . . . . . . 12 2 ≠ 0
146 recdiv 11973 . . . . . . . . . . . 12 ((((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
14792, 145, 146mpanr12 705 . . . . . . . . . . 11 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
148142, 143, 147syl2anc 584 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
149145a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ≠ 0)
150 nn0z 12638 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
151150adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
152141, 149, 151exprecd 14194 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
153152oveq2d 7447 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (2 · (1 / (2↑𝑘))))
154144, 148, 1533eqtr4rd 2788 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (1 / ((2↑𝑘) / 2)))
155140, 154breqtrrd 5171 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘)))
156113, 155sylan2 593 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘)))
157113, 44sylan2 593 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (1 / (!‘𝑘)))
158156, 157, 1193brtr4d 5175 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹𝑘))
15960, 61, 69, 125, 126, 130, 158iserle 15696 . . . . 5 (⊤ → (e − 1) ≤ 2)
160159mptru 1547 . . . 4 (e − 1) ≤ 2
161 ere 16125 . . . . 5 e ∈ ℝ
162161, 51, 83lesubaddi 11821 . . . 4 ((e − 1) ≤ 2 ↔ e ≤ (2 + 1))
163160, 162mpbi 230 . . 3 e ≤ (2 + 1)
164 df-3 12330 . . 3 3 = (2 + 1)
165163, 164breqtrri 5170 . 2 e ≤ 3
16659, 165pm3.2i 470 1 (2 ≤ e ∧ e ≤ 3)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2940   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  3c3 12322  0cn0 12526  cz 12613  seqcseq 14042  cexp 14102  !cfa 14312  abscabs 15273  cli 15520  expce 16097  eceu 16098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-fac 14313  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-e 16104
This theorem is referenced by:  egt2lt3  16242
  Copyright terms: Public domain W3C validator