MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ege2le3 Structured version   Visualization version   GIF version

Theorem ege2le3 15614
Description: Lemma for egt2lt3 15730. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
erelem1.1 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
erelem1.2 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
Assertion
Ref Expression
ege2le3 (2 ≤ e ∧ e ≤ 3)

Proof of Theorem ege2le3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12441 . . . . . 6 0 = (ℤ‘0)
2 0nn0 12070 . . . . . . 7 0 ∈ ℕ0
32a1i 11 . . . . . 6 (⊤ → 0 ∈ ℕ0)
4 1e0p1 12300 . . . . . 6 1 = (0 + 1)
5 0z 12152 . . . . . . 7 0 ∈ ℤ
6 fveq2 6695 . . . . . . . . . . . 12 (𝑛 = 0 → (!‘𝑛) = (!‘0))
7 fac0 13807 . . . . . . . . . . . 12 (!‘0) = 1
86, 7eqtrdi 2787 . . . . . . . . . . 11 (𝑛 = 0 → (!‘𝑛) = 1)
98oveq2d 7207 . . . . . . . . . 10 (𝑛 = 0 → (1 / (!‘𝑛)) = (1 / 1))
10 ax-1cn 10752 . . . . . . . . . . 11 1 ∈ ℂ
1110div1i 11525 . . . . . . . . . 10 (1 / 1) = 1
129, 11eqtrdi 2787 . . . . . . . . 9 (𝑛 = 0 → (1 / (!‘𝑛)) = 1)
13 erelem1.2 . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
14 1ex 10794 . . . . . . . . 9 1 ∈ V
1512, 13, 14fvmpt 6796 . . . . . . . 8 (0 ∈ ℕ0 → (𝐺‘0) = 1)
162, 15mp1i 13 . . . . . . 7 (⊤ → (𝐺‘0) = 1)
175, 16seq1i 13553 . . . . . 6 (⊤ → (seq0( + , 𝐺)‘0) = 1)
18 1nn0 12071 . . . . . . 7 1 ∈ ℕ0
19 fveq2 6695 . . . . . . . . . . 11 (𝑛 = 1 → (!‘𝑛) = (!‘1))
20 fac1 13808 . . . . . . . . . . 11 (!‘1) = 1
2119, 20eqtrdi 2787 . . . . . . . . . 10 (𝑛 = 1 → (!‘𝑛) = 1)
2221oveq2d 7207 . . . . . . . . 9 (𝑛 = 1 → (1 / (!‘𝑛)) = (1 / 1))
2322, 11eqtrdi 2787 . . . . . . . 8 (𝑛 = 1 → (1 / (!‘𝑛)) = 1)
2423, 13, 14fvmpt 6796 . . . . . . 7 (1 ∈ ℕ0 → (𝐺‘1) = 1)
2518, 24mp1i 13 . . . . . 6 (⊤ → (𝐺‘1) = 1)
261, 3, 4, 17, 25seqp1d 13556 . . . . 5 (⊤ → (seq0( + , 𝐺)‘1) = (1 + 1))
27 df-2 11858 . . . . 5 2 = (1 + 1)
2826, 27eqtr4di 2789 . . . 4 (⊤ → (seq0( + , 𝐺)‘1) = 2)
2918a1i 11 . . . . 5 (⊤ → 1 ∈ ℕ0)
30 nn0z 12165 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
31 1exp 13629 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
3230, 31syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
3332oveq1d 7206 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
3433mpteq2ia 5131 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
3513, 34eqtr4i 2762 . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
3635efcvg 15609 . . . . . . 7 (1 ∈ ℂ → seq0( + , 𝐺) ⇝ (exp‘1))
3710, 36mp1i 13 . . . . . 6 (⊤ → seq0( + , 𝐺) ⇝ (exp‘1))
38 df-e 15593 . . . . . 6 e = (exp‘1)
3937, 38breqtrrdi 5081 . . . . 5 (⊤ → seq0( + , 𝐺) ⇝ e)
40 fveq2 6695 . . . . . . . . 9 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
4140oveq2d 7207 . . . . . . . 8 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
42 ovex 7224 . . . . . . . 8 (1 / (!‘𝑘)) ∈ V
4341, 13, 42fvmpt 6796 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐺𝑘) = (1 / (!‘𝑘)))
4443adantl 485 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = (1 / (!‘𝑘)))
45 faccl 13814 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4645adantl 485 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
4746nnrecred 11846 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ)
4844, 47eqeltrd 2831 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℝ)
4946nnred 11810 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
5046nngt0d 11844 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < (!‘𝑘))
51 1re 10798 . . . . . . . 8 1 ∈ ℝ
52 0le1 11320 . . . . . . . 8 0 ≤ 1
53 divge0 11666 . . . . . . . 8 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (1 / (!‘𝑘)))
5451, 52, 53mpanl12 702 . . . . . . 7 (((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘)) → 0 ≤ (1 / (!‘𝑘)))
5549, 50, 54syl2anc 587 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 ≤ (1 / (!‘𝑘)))
5655, 44breqtrrd 5067 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐺𝑘))
571, 29, 39, 48, 56climserle 15191 . . . 4 (⊤ → (seq0( + , 𝐺)‘1) ≤ e)
5828, 57eqbrtrrd 5063 . . 3 (⊤ → 2 ≤ e)
5958mptru 1550 . 2 2 ≤ e
60 nnuz 12442 . . . . . 6 ℕ = (ℤ‘1)
61 1zzd 12173 . . . . . 6 (⊤ → 1 ∈ ℤ)
6248recnd 10826 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
631, 3, 62, 39clim2ser 15183 . . . . . . 7 (⊤ → seq(0 + 1)( + , 𝐺) ⇝ (e − (seq0( + , 𝐺)‘0)))
64 0p1e1 11917 . . . . . . . 8 (0 + 1) = 1
65 seqeq1 13542 . . . . . . . 8 ((0 + 1) = 1 → seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺))
6664, 65ax-mp 5 . . . . . . 7 seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺)
6717mptru 1550 . . . . . . . 8 (seq0( + , 𝐺)‘0) = 1
6867oveq2i 7202 . . . . . . 7 (e − (seq0( + , 𝐺)‘0)) = (e − 1)
6963, 66, 683brtr3g 5072 . . . . . 6 (⊤ → seq1( + , 𝐺) ⇝ (e − 1))
70 2cnd 11873 . . . . . . . 8 (⊤ → 2 ∈ ℂ)
71 oveq2 7199 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑘))
72 eqid 2736 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
73 ovex 7224 . . . . . . . . . . . . 13 ((1 / 2)↑𝑘) ∈ V
7471, 72, 73fvmpt 6796 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
7574adantl 485 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
76 halfre 12009 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
77 simpr 488 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
78 reexpcl 13617 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ)
7976, 77, 78sylancr 590 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ)
8079recnd 10826 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℂ)
8175, 80eqeltrd 2831 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ)
82 1lt2 11966 . . . . . . . . . . . . . 14 1 < 2
83 2re 11869 . . . . . . . . . . . . . . 15 2 ∈ ℝ
84 0le2 11897 . . . . . . . . . . . . . . 15 0 ≤ 2
85 absid 14825 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
8683, 84, 85mp2an 692 . . . . . . . . . . . . . 14 (abs‘2) = 2
8782, 86breqtrri 5066 . . . . . . . . . . . . 13 1 < (abs‘2)
8887a1i 11 . . . . . . . . . . . 12 (⊤ → 1 < (abs‘2))
8970, 88, 75georeclim 15399 . . . . . . . . . . 11 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 / (2 − 1)))
90 2m1e1 11921 . . . . . . . . . . . . 13 (2 − 1) = 1
9190oveq2i 7202 . . . . . . . . . . . 12 (2 / (2 − 1)) = (2 / 1)
92 2cn 11870 . . . . . . . . . . . . 13 2 ∈ ℂ
9392div1i 11525 . . . . . . . . . . . 12 (2 / 1) = 2
9491, 93eqtri 2759 . . . . . . . . . . 11 (2 / (2 − 1)) = 2
9589, 94breqtrdi 5080 . . . . . . . . . 10 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 2)
961, 3, 81, 95clim2ser 15183 . . . . . . . . 9 (⊤ → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)))
97 seqeq1 13542 . . . . . . . . . 10 ((0 + 1) = 1 → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))))
9864, 97ax-mp 5 . . . . . . . . 9 seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))
99 oveq2 7199 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → ((1 / 2)↑𝑛) = ((1 / 2)↑0))
100 ovex 7224 . . . . . . . . . . . . . . . . 17 ((1 / 2)↑0) ∈ V
10199, 72, 100fvmpt 6796 . . . . . . . . . . . . . . . 16 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 / 2)↑0))
1022, 101ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 / 2)↑0)
103 halfcn 12010 . . . . . . . . . . . . . . . 16 (1 / 2) ∈ ℂ
104 exp0 13604 . . . . . . . . . . . . . . . 16 ((1 / 2) ∈ ℂ → ((1 / 2)↑0) = 1)
105103, 104ax-mp 5 . . . . . . . . . . . . . . 15 ((1 / 2)↑0) = 1
106102, 105eqtri 2759 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = 1
107106a1i 11 . . . . . . . . . . . . 13 (⊤ → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = 1)
1085, 107seq1i 13553 . . . . . . . . . . . 12 (⊤ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1)
109108mptru 1550 . . . . . . . . . . 11 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1
110109oveq2i 7202 . . . . . . . . . 10 (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = (2 − 1)
111110, 90eqtri 2759 . . . . . . . . 9 (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = 1
11296, 98, 1113brtr3g 5072 . . . . . . . 8 (⊤ → seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 1)
113 nnnn0 12062 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
114113, 81sylan2 596 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ)
11571oveq2d 7207 . . . . . . . . . . 11 (𝑛 = 𝑘 → (2 · ((1 / 2)↑𝑛)) = (2 · ((1 / 2)↑𝑘)))
116 erelem1.1 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
117 ovex 7224 . . . . . . . . . . 11 (2 · ((1 / 2)↑𝑘)) ∈ V
118115, 116, 117fvmpt 6796 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
119118adantl 485 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
120113, 75sylan2 596 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
121120oveq2d 7207 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘)) = (2 · ((1 / 2)↑𝑘)))
122119, 121eqtr4d 2774 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (2 · ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘)))
12360, 61, 70, 112, 114, 122isermulc2 15186 . . . . . . 7 (⊤ → seq1( + , 𝐹) ⇝ (2 · 1))
124 2t1e2 11958 . . . . . . 7 (2 · 1) = 2
125123, 124breqtrdi 5080 . . . . . 6 (⊤ → seq1( + , 𝐹) ⇝ 2)
126113, 48sylan2 596 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
127 remulcl 10779 . . . . . . . . 9 ((2 ∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
12883, 79, 127sylancr 590 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
129113, 128sylan2 596 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
130119, 129eqeltrd 2831 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
131 faclbnd2 13822 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) / 2) ≤ (!‘𝑘))
132131adantl 485 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑘) / 2) ≤ (!‘𝑘))
133 2nn 11868 . . . . . . . . . . . . . 14 2 ∈ ℕ
134 nnexpcl 13613 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
135133, 77, 134sylancr 590 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
136135nnrpd 12591 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℝ+)
137136rphalfcld 12605 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑘) / 2) ∈ ℝ+)
13846nnrpd 12591 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
139137, 138lerecd 12612 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (((2↑𝑘) / 2) ≤ (!‘𝑘) ↔ (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2))))
140132, 139mpbid 235 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2)))
141 2cnd 11873 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℂ)
142135nncnd 11811 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℂ)
143135nnne0d 11845 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ≠ 0)
144141, 142, 143divrecd 11576 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 / (2↑𝑘)) = (2 · (1 / (2↑𝑘))))
145 2ne0 11899 . . . . . . . . . . . 12 2 ≠ 0
146 recdiv 11503 . . . . . . . . . . . 12 ((((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
14792, 145, 146mpanr12 705 . . . . . . . . . . 11 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
148142, 143, 147syl2anc 587 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
149145a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ≠ 0)
150 nn0z 12165 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
151150adantl 485 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
152141, 149, 151exprecd 13689 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
153152oveq2d 7207 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (2 · (1 / (2↑𝑘))))
154144, 148, 1533eqtr4rd 2782 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (1 / ((2↑𝑘) / 2)))
155140, 154breqtrrd 5067 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘)))
156113, 155sylan2 596 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘)))
157113, 44sylan2 596 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (1 / (!‘𝑘)))
158156, 157, 1193brtr4d 5071 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹𝑘))
15960, 61, 69, 125, 126, 130, 158iserle 15188 . . . . 5 (⊤ → (e − 1) ≤ 2)
160159mptru 1550 . . . 4 (e − 1) ≤ 2
161 ere 15613 . . . . 5 e ∈ ℝ
162161, 51, 83lesubaddi 11355 . . . 4 ((e − 1) ≤ 2 ↔ e ≤ (2 + 1))
163160, 162mpbi 233 . . 3 e ≤ (2 + 1)
164 df-3 11859 . . 3 3 = (2 + 1)
165163, 164breqtrri 5066 . 2 e ≤ 3
16659, 165pm3.2i 474 1 (2 ≤ e ∧ e ≤ 3)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wtru 1544  wcel 2112  wne 2932   class class class wbr 5039  cmpt 5120  cfv 6358  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699   < clt 10832  cle 10833  cmin 11027   / cdiv 11454  cn 11795  2c2 11850  3c3 11851  0cn0 12055  cz 12141  seqcseq 13539  cexp 13600  !cfa 13804  abscabs 14762  cli 15010  expce 15586  eceu 15587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-ico 12906  df-fz 13061  df-fzo 13204  df-fl 13332  df-seq 13540  df-exp 13601  df-fac 13805  df-hash 13862  df-shft 14595  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-limsup 14997  df-clim 15014  df-rlim 15015  df-sum 15215  df-ef 15592  df-e 15593
This theorem is referenced by:  egt2lt3  15730
  Copyright terms: Public domain W3C validator