Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldc | Structured version Visualization version GIF version |
Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) |
Ref | Expression |
---|---|
drhmsubc.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
drhmsubc.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
fldhmsubc.d | ⊢ 𝐷 = (𝑈 ∩ Field) |
fldhmsubc.f | ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) |
Ref | Expression |
---|---|
fldc | ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6819 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (RingCat‘𝑈) ∈ V) | |
2 | drhmsubc.j | . . . . 5 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
3 | ovex 7340 | . . . . 5 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
4 | 2, 3 | fnmpoi 7942 | . . . 4 ⊢ 𝐽 Fn (𝐶 × 𝐶) |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐽 Fn (𝐶 × 𝐶)) |
6 | fldhmsubc.f | . . . . 5 ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) | |
7 | 6, 3 | fnmpoi 7942 | . . . 4 ⊢ 𝐹 Fn (𝐷 × 𝐷) |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐹 Fn (𝐷 × 𝐷)) |
9 | drhmsubc.c | . . . 4 ⊢ 𝐶 = (𝑈 ∩ DivRing) | |
10 | inex1g 5252 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ DivRing) ∈ V) | |
11 | 9, 10 | eqeltrid 2841 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
12 | df-field 20043 | . . . . . 6 ⊢ Field = (DivRing ∩ CRing) | |
13 | inss1 4168 | . . . . . 6 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
14 | 12, 13 | eqsstri 3960 | . . . . 5 ⊢ Field ⊆ DivRing |
15 | sslin 4174 | . . . . 5 ⊢ (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) | |
16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
17 | fldhmsubc.d | . . . 4 ⊢ 𝐷 = (𝑈 ∩ Field) | |
18 | 16, 17, 9 | 3sstr4g 3971 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶) |
19 | 1, 5, 8, 11, 18 | rescabs 17596 | . 2 ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) = ((RingCat‘𝑈) ↾cat 𝐹)) |
20 | 9, 2, 17, 6 | fldcat 45884 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐹) ∈ Cat) |
21 | 19, 20 | eqeltrd 2837 | 1 ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∩ cin 3891 ⊆ wss 3892 × cxp 5598 Fn wfn 6453 ‘cfv 6458 (class class class)co 7307 ∈ cmpo 7309 Catccat 17422 ↾cat cresc 17569 CRingccrg 19833 RingHom crh 20005 DivRingcdr 20040 Fieldcfield 20041 RingCatcringc 45805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-fz 13290 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-hom 17035 df-cco 17036 df-0g 17201 df-cat 17426 df-cid 17427 df-homf 17428 df-ssc 17571 df-resc 17572 df-subc 17573 df-estrc 17888 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-mhm 18479 df-grp 18629 df-ghm 18881 df-mgp 19770 df-ur 19787 df-ring 19834 df-cring 19835 df-rnghom 20008 df-field 20043 df-ringc 45807 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |