| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fldc | Structured version Visualization version GIF version | ||
| Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) |
| Ref | Expression |
|---|---|
| drhmsubc.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
| drhmsubc.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
| fldhmsubc.d | ⊢ 𝐷 = (𝑈 ∩ Field) |
| fldhmsubc.f | ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) |
| Ref | Expression |
|---|---|
| fldc | ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6832 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (RingCat‘𝑈) ∈ V) | |
| 2 | drhmsubc.j | . . . . 5 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
| 3 | ovex 7374 | . . . . 5 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
| 4 | 2, 3 | fnmpoi 7997 | . . . 4 ⊢ 𝐽 Fn (𝐶 × 𝐶) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐽 Fn (𝐶 × 𝐶)) |
| 6 | fldhmsubc.f | . . . . 5 ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) | |
| 7 | 6, 3 | fnmpoi 7997 | . . . 4 ⊢ 𝐹 Fn (𝐷 × 𝐷) |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐹 Fn (𝐷 × 𝐷)) |
| 9 | drhmsubc.c | . . . 4 ⊢ 𝐶 = (𝑈 ∩ DivRing) | |
| 10 | inex1g 5255 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ DivRing) ∈ V) | |
| 11 | 9, 10 | eqeltrid 2833 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
| 12 | df-field 20640 | . . . . . 6 ⊢ Field = (DivRing ∩ CRing) | |
| 13 | inss1 4185 | . . . . . 6 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
| 14 | 12, 13 | eqsstri 3979 | . . . . 5 ⊢ Field ⊆ DivRing |
| 15 | sslin 4191 | . . . . 5 ⊢ (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) | |
| 16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
| 17 | fldhmsubc.d | . . . 4 ⊢ 𝐷 = (𝑈 ∩ Field) | |
| 18 | 16, 17, 9 | 3sstr4g 3986 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶) |
| 19 | 1, 5, 8, 11, 18 | rescabs 17732 | . 2 ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) = ((RingCat‘𝑈) ↾cat 𝐹)) |
| 20 | 9, 2, 17, 6 | fldcat 20691 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐹) ∈ Cat) |
| 21 | 19, 20 | eqeltrd 2829 | 1 ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∩ cin 3899 ⊆ wss 3900 × cxp 5612 Fn wfn 6472 ‘cfv 6477 (class class class)co 7341 ∈ cmpo 7343 Catccat 17562 ↾cat cresc 17707 CRingccrg 20145 RingHom crh 20380 RingCatcringc 20553 DivRingcdr 20637 Fieldcfield 20638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-hom 17177 df-cco 17178 df-0g 17337 df-cat 17566 df-cid 17567 df-homf 17568 df-ssc 17709 df-resc 17710 df-subc 17711 df-estrc 18021 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-grp 18841 df-ghm 19118 df-mgp 20052 df-ur 20093 df-ring 20146 df-cring 20147 df-rhm 20383 df-ringc 20554 df-field 20640 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |