![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldc | Structured version Visualization version GIF version |
Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) |
Ref | Expression |
---|---|
drhmsubc.c | β’ πΆ = (π β© DivRing) |
drhmsubc.j | β’ π½ = (π β πΆ, π β πΆ β¦ (π RingHom π )) |
fldhmsubc.d | β’ π· = (π β© Field) |
fldhmsubc.f | β’ πΉ = (π β π·, π β π· β¦ (π RingHom π )) |
Ref | Expression |
---|---|
fldc | β’ (π β π β (((RingCatβπ) βΎcat π½) βΎcat πΉ) β Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6906 | . . 3 β’ (π β π β (RingCatβπ) β V) | |
2 | drhmsubc.j | . . . . 5 β’ π½ = (π β πΆ, π β πΆ β¦ (π RingHom π )) | |
3 | ovex 7445 | . . . . 5 β’ (π RingHom π ) β V | |
4 | 2, 3 | fnmpoi 8060 | . . . 4 β’ π½ Fn (πΆ Γ πΆ) |
5 | 4 | a1i 11 | . . 3 β’ (π β π β π½ Fn (πΆ Γ πΆ)) |
6 | fldhmsubc.f | . . . . 5 β’ πΉ = (π β π·, π β π· β¦ (π RingHom π )) | |
7 | 6, 3 | fnmpoi 8060 | . . . 4 β’ πΉ Fn (π· Γ π·) |
8 | 7 | a1i 11 | . . 3 β’ (π β π β πΉ Fn (π· Γ π·)) |
9 | drhmsubc.c | . . . 4 β’ πΆ = (π β© DivRing) | |
10 | inex1g 5319 | . . . 4 β’ (π β π β (π β© DivRing) β V) | |
11 | 9, 10 | eqeltrid 2836 | . . 3 β’ (π β π β πΆ β V) |
12 | df-field 20507 | . . . . . 6 β’ Field = (DivRing β© CRing) | |
13 | inss1 4228 | . . . . . 6 β’ (DivRing β© CRing) β DivRing | |
14 | 12, 13 | eqsstri 4016 | . . . . 5 β’ Field β DivRing |
15 | sslin 4234 | . . . . 5 β’ (Field β DivRing β (π β© Field) β (π β© DivRing)) | |
16 | 14, 15 | mp1i 13 | . . . 4 β’ (π β π β (π β© Field) β (π β© DivRing)) |
17 | fldhmsubc.d | . . . 4 β’ π· = (π β© Field) | |
18 | 16, 17, 9 | 3sstr4g 4027 | . . 3 β’ (π β π β π· β πΆ) |
19 | 1, 5, 8, 11, 18 | rescabs 17789 | . 2 β’ (π β π β (((RingCatβπ) βΎcat π½) βΎcat πΉ) = ((RingCatβπ) βΎcat πΉ)) |
20 | 9, 2, 17, 6 | fldcat 47081 | . 2 β’ (π β π β ((RingCatβπ) βΎcat πΉ) β Cat) |
21 | 19, 20 | eqeltrd 2832 | 1 β’ (π β π β (((RingCatβπ) βΎcat π½) βΎcat πΉ) β Cat) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 Vcvv 3473 β© cin 3947 β wss 3948 Γ cxp 5674 Fn wfn 6538 βcfv 6543 (class class class)co 7412 β cmpo 7414 Catccat 17615 βΎcat cresc 17762 CRingccrg 20132 RingHom crh 20364 DivRingcdr 20504 Fieldcfield 20505 RingCatcringc 47002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-hom 17228 df-cco 17229 df-0g 17394 df-cat 17619 df-cid 17620 df-homf 17621 df-ssc 17764 df-resc 17765 df-subc 17766 df-estrc 18081 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-mhm 18708 df-grp 18861 df-ghm 19132 df-mgp 20033 df-ur 20080 df-ring 20133 df-cring 20134 df-rhm 20367 df-field 20507 df-ringc 47004 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |