| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fldc | Structured version Visualization version GIF version | ||
| Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) |
| Ref | Expression |
|---|---|
| drhmsubc.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
| drhmsubc.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
| fldhmsubc.d | ⊢ 𝐷 = (𝑈 ∩ Field) |
| fldhmsubc.f | ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) |
| Ref | Expression |
|---|---|
| fldc | ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6841 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (RingCat‘𝑈) ∈ V) | |
| 2 | drhmsubc.j | . . . . 5 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
| 3 | ovex 7386 | . . . . 5 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
| 4 | 2, 3 | fnmpoi 8012 | . . . 4 ⊢ 𝐽 Fn (𝐶 × 𝐶) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐽 Fn (𝐶 × 𝐶)) |
| 6 | fldhmsubc.f | . . . . 5 ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) | |
| 7 | 6, 3 | fnmpoi 8012 | . . . 4 ⊢ 𝐹 Fn (𝐷 × 𝐷) |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐹 Fn (𝐷 × 𝐷)) |
| 9 | drhmsubc.c | . . . 4 ⊢ 𝐶 = (𝑈 ∩ DivRing) | |
| 10 | inex1g 5261 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ DivRing) ∈ V) | |
| 11 | 9, 10 | eqeltrid 2832 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
| 12 | df-field 20635 | . . . . . 6 ⊢ Field = (DivRing ∩ CRing) | |
| 13 | inss1 4190 | . . . . . 6 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
| 14 | 12, 13 | eqsstri 3984 | . . . . 5 ⊢ Field ⊆ DivRing |
| 15 | sslin 4196 | . . . . 5 ⊢ (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) | |
| 16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
| 17 | fldhmsubc.d | . . . 4 ⊢ 𝐷 = (𝑈 ∩ Field) | |
| 18 | 16, 17, 9 | 3sstr4g 3991 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶) |
| 19 | 1, 5, 8, 11, 18 | rescabs 17758 | . 2 ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) = ((RingCat‘𝑈) ↾cat 𝐹)) |
| 20 | 9, 2, 17, 6 | fldcat 20686 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐹) ∈ Cat) |
| 21 | 19, 20 | eqeltrd 2828 | 1 ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 × cxp 5621 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Catccat 17588 ↾cat cresc 17733 CRingccrg 20137 RingHom crh 20372 RingCatcringc 20548 DivRingcdr 20632 Fieldcfield 20633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-hom 17203 df-cco 17204 df-0g 17363 df-cat 17592 df-cid 17593 df-homf 17594 df-ssc 17735 df-resc 17736 df-subc 17737 df-estrc 18047 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-grp 18833 df-ghm 19110 df-mgp 20044 df-ur 20085 df-ring 20138 df-cring 20139 df-rhm 20375 df-ringc 20549 df-field 20635 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |