Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldc | Structured version Visualization version GIF version |
Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) |
Ref | Expression |
---|---|
drhmsubc.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
drhmsubc.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
fldhmsubc.d | ⊢ 𝐷 = (𝑈 ∩ Field) |
fldhmsubc.f | ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) |
Ref | Expression |
---|---|
fldc | ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6783 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (RingCat‘𝑈) ∈ V) | |
2 | drhmsubc.j | . . . . 5 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
3 | ovex 7301 | . . . . 5 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
4 | 2, 3 | fnmpoi 7896 | . . . 4 ⊢ 𝐽 Fn (𝐶 × 𝐶) |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐽 Fn (𝐶 × 𝐶)) |
6 | fldhmsubc.f | . . . . 5 ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) | |
7 | 6, 3 | fnmpoi 7896 | . . . 4 ⊢ 𝐹 Fn (𝐷 × 𝐷) |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐹 Fn (𝐷 × 𝐷)) |
9 | drhmsubc.c | . . . 4 ⊢ 𝐶 = (𝑈 ∩ DivRing) | |
10 | inex1g 5246 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ DivRing) ∈ V) | |
11 | 9, 10 | eqeltrid 2844 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
12 | df-field 19975 | . . . . . 6 ⊢ Field = (DivRing ∩ CRing) | |
13 | inss1 4167 | . . . . . 6 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
14 | 12, 13 | eqsstri 3959 | . . . . 5 ⊢ Field ⊆ DivRing |
15 | sslin 4173 | . . . . 5 ⊢ (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) | |
16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
17 | fldhmsubc.d | . . . 4 ⊢ 𝐷 = (𝑈 ∩ Field) | |
18 | 16, 17, 9 | 3sstr4g 3970 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶) |
19 | 1, 5, 8, 11, 18 | rescabs 17528 | . 2 ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) = ((RingCat‘𝑈) ↾cat 𝐹)) |
20 | 9, 2, 17, 6 | fldcat 45592 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐹) ∈ Cat) |
21 | 19, 20 | eqeltrd 2840 | 1 ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∩ cin 3890 ⊆ wss 3891 × cxp 5586 Fn wfn 6425 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 Catccat 17354 ↾cat cresc 17501 CRingccrg 19765 RingHom crh 19937 DivRingcdr 19972 Fieldcfield 19973 RingCatcringc 45513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-pm 8592 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-hom 16967 df-cco 16968 df-0g 17133 df-cat 17358 df-cid 17359 df-homf 17360 df-ssc 17503 df-resc 17504 df-subc 17505 df-estrc 17820 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-grp 18561 df-ghm 18813 df-mgp 19702 df-ur 19719 df-ring 19766 df-cring 19767 df-rnghom 19940 df-field 19975 df-ringc 45515 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |