![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fldhmsubc | Structured version Visualization version GIF version |
Description: According to df-subc 17860, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17891 and subcss2 17894). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.) |
Ref | Expression |
---|---|
drhmsubc.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
drhmsubc.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
fldhmsubc.d | ⊢ 𝐷 = (𝑈 ∩ Field) |
fldhmsubc.f | ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) |
Ref | Expression |
---|---|
fldhmsubc | ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3979 | . . . . . . 7 ⊢ (𝑟 ∈ (DivRing ∩ CRing) ↔ (𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing)) | |
2 | 1 | simprbi 496 | . . . . . 6 ⊢ (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ CRing) |
3 | crngring 20263 | . . . . . 6 ⊢ (𝑟 ∈ CRing → 𝑟 ∈ Ring) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ Ring) |
5 | df-field 20749 | . . . . 5 ⊢ Field = (DivRing ∩ CRing) | |
6 | 4, 5 | eleq2s 2857 | . . . 4 ⊢ (𝑟 ∈ Field → 𝑟 ∈ Ring) |
7 | 6 | rgen 3061 | . . 3 ⊢ ∀𝑟 ∈ Field 𝑟 ∈ Ring |
8 | fldhmsubc.d | . . 3 ⊢ 𝐷 = (𝑈 ∩ Field) | |
9 | fldhmsubc.f | . . 3 ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) | |
10 | 7, 8, 9 | srhmsubc 20697 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘(RingCat‘𝑈))) |
11 | inss1 4245 | . . . . . . 7 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
12 | 5, 11 | eqsstri 4030 | . . . . . 6 ⊢ Field ⊆ DivRing |
13 | sslin 4251 | . . . . . 6 ⊢ (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) | |
14 | 12, 13 | ax-mp 5 | . . . . 5 ⊢ (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing) |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
16 | drhmsubc.c | . . . . 5 ⊢ 𝐶 = (𝑈 ∩ DivRing) | |
17 | 8, 16 | sseq12i 4026 | . . . 4 ⊢ (𝐷 ⊆ 𝐶 ↔ (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
18 | 15, 17 | sylibr 234 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶) |
19 | ssidd 4019 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦)) | |
20 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠))) |
21 | oveq12 7440 | . . . . . . 7 ⊢ ((𝑟 = 𝑥 ∧ 𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦)) | |
22 | 21 | adantl 481 | . . . . . 6 ⊢ (((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝑟 = 𝑥 ∧ 𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦)) |
23 | simprl 771 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑥 ∈ 𝐷) | |
24 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) | |
25 | 24 | adantl 481 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑦 ∈ 𝐷) |
26 | ovexd 7466 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 RingHom 𝑦) ∈ V) | |
27 | 20, 22, 23, 25, 26 | ovmpod 7585 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) = (𝑥 RingHom 𝑦)) |
28 | drhmsubc.j | . . . . . . 7 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠))) |
30 | 14, 17 | mpbir 231 | . . . . . . . 8 ⊢ 𝐷 ⊆ 𝐶 |
31 | 30 | sseli 3991 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ 𝐶) |
32 | 31 | ad2antrl 728 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑥 ∈ 𝐶) |
33 | 30 | sseli 3991 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐷 → 𝑦 ∈ 𝐶) |
34 | 33 | adantl 481 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐶) |
35 | 34 | adantl 481 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑦 ∈ 𝐶) |
36 | 29, 22, 32, 35, 26 | ovmpod 7585 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦)) |
37 | 19, 27, 36 | 3sstr4d 4043 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦)) |
38 | 37 | ralrimivva 3200 | . . 3 ⊢ (𝑈 ∈ 𝑉 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦)) |
39 | ovex 7464 | . . . . . 6 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
40 | 9, 39 | fnmpoi 8094 | . . . . 5 ⊢ 𝐹 Fn (𝐷 × 𝐷) |
41 | 40 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐹 Fn (𝐷 × 𝐷)) |
42 | 28, 39 | fnmpoi 8094 | . . . . 5 ⊢ 𝐽 Fn (𝐶 × 𝐶) |
43 | 42 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐽 Fn (𝐶 × 𝐶)) |
44 | inex1g 5325 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ DivRing) ∈ V) | |
45 | 16, 44 | eqeltrid 2843 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
46 | 41, 43, 45 | isssc 17868 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (𝐹 ⊆cat 𝐽 ↔ (𝐷 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦)))) |
47 | 18, 38, 46 | mpbir2and 713 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝐹 ⊆cat 𝐽) |
48 | 16, 28 | drhmsubc 20799 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCat‘𝑈))) |
49 | eqid 2735 | . . . 4 ⊢ ((RingCat‘𝑈) ↾cat 𝐽) = ((RingCat‘𝑈) ↾cat 𝐽) | |
50 | 49 | subsubc 17904 | . . 3 ⊢ (𝐽 ∈ (Subcat‘(RingCat‘𝑈)) → (𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCat‘𝑈)) ∧ 𝐹 ⊆cat 𝐽))) |
51 | 48, 50 | syl 17 | . 2 ⊢ (𝑈 ∈ 𝑉 → (𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCat‘𝑈)) ∧ 𝐹 ⊆cat 𝐽))) |
52 | 10, 47, 51 | mpbir2and 713 | 1 ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 class class class wbr 5148 × cxp 5687 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 ⊆cat cssc 17855 ↾cat cresc 17856 Subcatcsubc 17857 Ringcrg 20251 CRingccrg 20252 RingHom crh 20486 RingCatcringc 20662 DivRingcdr 20746 Fieldcfield 20747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-hom 17322 df-cco 17323 df-0g 17488 df-cat 17713 df-cid 17714 df-homf 17715 df-ssc 17858 df-resc 17859 df-subc 17860 df-estrc 18178 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-grp 18967 df-ghm 19244 df-mgp 20153 df-ur 20200 df-ring 20253 df-cring 20254 df-rhm 20489 df-ringc 20663 df-drng 20748 df-field 20749 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |