| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fldhmsubc | Structured version Visualization version GIF version | ||
| Description: According to df-subc 17716, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17744 and subcss2 17747). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.) |
| Ref | Expression |
|---|---|
| drhmsubc.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
| drhmsubc.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
| fldhmsubc.d | ⊢ 𝐷 = (𝑈 ∩ Field) |
| fldhmsubc.f | ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) |
| Ref | Expression |
|---|---|
| fldhmsubc | ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3918 | . . . . . . 7 ⊢ (𝑟 ∈ (DivRing ∩ CRing) ↔ (𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing)) | |
| 2 | 1 | simprbi 496 | . . . . . 6 ⊢ (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ CRing) |
| 3 | crngring 20161 | . . . . . 6 ⊢ (𝑟 ∈ CRing → 𝑟 ∈ Ring) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ Ring) |
| 5 | df-field 20645 | . . . . 5 ⊢ Field = (DivRing ∩ CRing) | |
| 6 | 4, 5 | eleq2s 2849 | . . . 4 ⊢ (𝑟 ∈ Field → 𝑟 ∈ Ring) |
| 7 | 6 | rgen 3049 | . . 3 ⊢ ∀𝑟 ∈ Field 𝑟 ∈ Ring |
| 8 | fldhmsubc.d | . . 3 ⊢ 𝐷 = (𝑈 ∩ Field) | |
| 9 | fldhmsubc.f | . . 3 ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) | |
| 10 | 7, 8, 9 | srhmsubc 20593 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘(RingCat‘𝑈))) |
| 11 | inss1 4187 | . . . . . . 7 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
| 12 | 5, 11 | eqsstri 3981 | . . . . . 6 ⊢ Field ⊆ DivRing |
| 13 | sslin 4193 | . . . . . 6 ⊢ (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) | |
| 14 | 12, 13 | ax-mp 5 | . . . . 5 ⊢ (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing) |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
| 16 | drhmsubc.c | . . . . 5 ⊢ 𝐶 = (𝑈 ∩ DivRing) | |
| 17 | 8, 16 | sseq12i 3965 | . . . 4 ⊢ (𝐷 ⊆ 𝐶 ↔ (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
| 18 | 15, 17 | sylibr 234 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶) |
| 19 | ssidd 3958 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦)) | |
| 20 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠))) |
| 21 | oveq12 7355 | . . . . . . 7 ⊢ ((𝑟 = 𝑥 ∧ 𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦)) | |
| 22 | 21 | adantl 481 | . . . . . 6 ⊢ (((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝑟 = 𝑥 ∧ 𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦)) |
| 23 | simprl 770 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑥 ∈ 𝐷) | |
| 24 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) | |
| 25 | 24 | adantl 481 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑦 ∈ 𝐷) |
| 26 | ovexd 7381 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 RingHom 𝑦) ∈ V) | |
| 27 | 20, 22, 23, 25, 26 | ovmpod 7498 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) = (𝑥 RingHom 𝑦)) |
| 28 | drhmsubc.j | . . . . . . 7 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠))) |
| 30 | 14, 17 | mpbir 231 | . . . . . . . 8 ⊢ 𝐷 ⊆ 𝐶 |
| 31 | 30 | sseli 3930 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ 𝐶) |
| 32 | 31 | ad2antrl 728 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑥 ∈ 𝐶) |
| 33 | 30 | sseli 3930 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐷 → 𝑦 ∈ 𝐶) |
| 34 | 33 | adantl 481 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐶) |
| 35 | 34 | adantl 481 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑦 ∈ 𝐶) |
| 36 | 29, 22, 32, 35, 26 | ovmpod 7498 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦)) |
| 37 | 19, 27, 36 | 3sstr4d 3990 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦)) |
| 38 | 37 | ralrimivva 3175 | . . 3 ⊢ (𝑈 ∈ 𝑉 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦)) |
| 39 | ovex 7379 | . . . . . 6 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
| 40 | 9, 39 | fnmpoi 8002 | . . . . 5 ⊢ 𝐹 Fn (𝐷 × 𝐷) |
| 41 | 40 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐹 Fn (𝐷 × 𝐷)) |
| 42 | 28, 39 | fnmpoi 8002 | . . . . 5 ⊢ 𝐽 Fn (𝐶 × 𝐶) |
| 43 | 42 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐽 Fn (𝐶 × 𝐶)) |
| 44 | inex1g 5257 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ DivRing) ∈ V) | |
| 45 | 16, 44 | eqeltrid 2835 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
| 46 | 41, 43, 45 | isssc 17724 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (𝐹 ⊆cat 𝐽 ↔ (𝐷 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦)))) |
| 47 | 18, 38, 46 | mpbir2and 713 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝐹 ⊆cat 𝐽) |
| 48 | 16, 28 | drhmsubc 20694 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCat‘𝑈))) |
| 49 | eqid 2731 | . . . 4 ⊢ ((RingCat‘𝑈) ↾cat 𝐽) = ((RingCat‘𝑈) ↾cat 𝐽) | |
| 50 | 49 | subsubc 17757 | . . 3 ⊢ (𝐽 ∈ (Subcat‘(RingCat‘𝑈)) → (𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCat‘𝑈)) ∧ 𝐹 ⊆cat 𝐽))) |
| 51 | 48, 50 | syl 17 | . 2 ⊢ (𝑈 ∈ 𝑉 → (𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCat‘𝑈)) ∧ 𝐹 ⊆cat 𝐽))) |
| 52 | 10, 47, 51 | mpbir2and 713 | 1 ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 class class class wbr 5091 × cxp 5614 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ⊆cat cssc 17711 ↾cat cresc 17712 Subcatcsubc 17713 Ringcrg 20149 CRingccrg 20150 RingHom crh 20385 RingCatcringc 20558 DivRingcdr 20642 Fieldcfield 20643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-hom 17182 df-cco 17183 df-0g 17342 df-cat 17571 df-cid 17572 df-homf 17573 df-ssc 17714 df-resc 17715 df-subc 17716 df-estrc 18026 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-grp 18846 df-ghm 19123 df-mgp 20057 df-ur 20098 df-ring 20151 df-cring 20152 df-rhm 20388 df-ringc 20559 df-drng 20644 df-field 20645 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |