MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldhmsubc Structured version   Visualization version   GIF version

Theorem fldhmsubc 20803
Description: According to df-subc 17860, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17891 and subcss2 17894). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.)
Hypotheses
Ref Expression
drhmsubc.c 𝐶 = (𝑈 ∩ DivRing)
drhmsubc.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
fldhmsubc.d 𝐷 = (𝑈 ∩ Field)
fldhmsubc.f 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
fldhmsubc (𝑈𝑉𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)))
Distinct variable groups:   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠   𝐷,𝑟,𝑠
Allowed substitution hints:   𝐹(𝑠,𝑟)   𝐽(𝑠,𝑟)

Proof of Theorem fldhmsubc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3979 . . . . . . 7 (𝑟 ∈ (DivRing ∩ CRing) ↔ (𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing))
21simprbi 496 . . . . . 6 (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ CRing)
3 crngring 20263 . . . . . 6 (𝑟 ∈ CRing → 𝑟 ∈ Ring)
42, 3syl 17 . . . . 5 (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ Ring)
5 df-field 20749 . . . . 5 Field = (DivRing ∩ CRing)
64, 5eleq2s 2857 . . . 4 (𝑟 ∈ Field → 𝑟 ∈ Ring)
76rgen 3061 . . 3 𝑟 ∈ Field 𝑟 ∈ Ring
8 fldhmsubc.d . . 3 𝐷 = (𝑈 ∩ Field)
9 fldhmsubc.f . . 3 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))
107, 8, 9srhmsubc 20697 . 2 (𝑈𝑉𝐹 ∈ (Subcat‘(RingCat‘𝑈)))
11 inss1 4245 . . . . . . 7 (DivRing ∩ CRing) ⊆ DivRing
125, 11eqsstri 4030 . . . . . 6 Field ⊆ DivRing
13 sslin 4251 . . . . . 6 (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
1412, 13ax-mp 5 . . . . 5 (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)
1514a1i 11 . . . 4 (𝑈𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
16 drhmsubc.c . . . . 5 𝐶 = (𝑈 ∩ DivRing)
178, 16sseq12i 4026 . . . 4 (𝐷𝐶 ↔ (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
1815, 17sylibr 234 . . 3 (𝑈𝑉𝐷𝐶)
19 ssidd 4019 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦))
209a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠)))
21 oveq12 7440 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
2221adantl 481 . . . . . 6 (((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝑟 = 𝑥𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
23 simprl 771 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑥𝐷)
24 simpr 484 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → 𝑦𝐷)
2524adantl 481 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑦𝐷)
26 ovexd 7466 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 RingHom 𝑦) ∈ V)
2720, 22, 23, 25, 26ovmpod 7585 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐹𝑦) = (𝑥 RingHom 𝑦))
28 drhmsubc.j . . . . . . 7 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
2928a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
3014, 17mpbir 231 . . . . . . . 8 𝐷𝐶
3130sseli 3991 . . . . . . 7 (𝑥𝐷𝑥𝐶)
3231ad2antrl 728 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑥𝐶)
3330sseli 3991 . . . . . . . 8 (𝑦𝐷𝑦𝐶)
3433adantl 481 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → 𝑦𝐶)
3534adantl 481 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑦𝐶)
3629, 22, 32, 35, 26ovmpod 7585 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦))
3719, 27, 363sstr4d 4043 . . . 4 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))
3837ralrimivva 3200 . . 3 (𝑈𝑉 → ∀𝑥𝐷𝑦𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))
39 ovex 7464 . . . . . 6 (𝑟 RingHom 𝑠) ∈ V
409, 39fnmpoi 8094 . . . . 5 𝐹 Fn (𝐷 × 𝐷)
4140a1i 11 . . . 4 (𝑈𝑉𝐹 Fn (𝐷 × 𝐷))
4228, 39fnmpoi 8094 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
4342a1i 11 . . . 4 (𝑈𝑉𝐽 Fn (𝐶 × 𝐶))
44 inex1g 5325 . . . . 5 (𝑈𝑉 → (𝑈 ∩ DivRing) ∈ V)
4516, 44eqeltrid 2843 . . . 4 (𝑈𝑉𝐶 ∈ V)
4641, 43, 45isssc 17868 . . 3 (𝑈𝑉 → (𝐹cat 𝐽 ↔ (𝐷𝐶 ∧ ∀𝑥𝐷𝑦𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))))
4718, 38, 46mpbir2and 713 . 2 (𝑈𝑉𝐹cat 𝐽)
4816, 28drhmsubc 20799 . . 3 (𝑈𝑉𝐽 ∈ (Subcat‘(RingCat‘𝑈)))
49 eqid 2735 . . . 4 ((RingCat‘𝑈) ↾cat 𝐽) = ((RingCat‘𝑈) ↾cat 𝐽)
5049subsubc 17904 . . 3 (𝐽 ∈ (Subcat‘(RingCat‘𝑈)) → (𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCat‘𝑈)) ∧ 𝐹cat 𝐽)))
5148, 50syl 17 . 2 (𝑈𝑉 → (𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCat‘𝑈)) ∧ 𝐹cat 𝐽)))
5210, 47, 51mpbir2and 713 1 (𝑈𝑉𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cin 3962  wss 3963   class class class wbr 5148   × cxp 5687   Fn wfn 6558  cfv 6563  (class class class)co 7431  cmpo 7433  cat cssc 17855  cat cresc 17856  Subcatcsubc 17857  Ringcrg 20251  CRingccrg 20252   RingHom crh 20486  RingCatcringc 20662  DivRingcdr 20746  Fieldcfield 20747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-hom 17322  df-cco 17323  df-0g 17488  df-cat 17713  df-cid 17714  df-homf 17715  df-ssc 17858  df-resc 17859  df-subc 17860  df-estrc 18178  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-ghm 19244  df-mgp 20153  df-ur 20200  df-ring 20253  df-cring 20254  df-rhm 20489  df-ringc 20663  df-drng 20748  df-field 20749
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator