Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldhmsubc | Structured version Visualization version GIF version |
Description: According to df-subc 17441, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17471 and subcss2 17474). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.) |
Ref | Expression |
---|---|
drhmsubc.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
drhmsubc.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
fldhmsubc.d | ⊢ 𝐷 = (𝑈 ∩ Field) |
fldhmsubc.f | ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) |
Ref | Expression |
---|---|
fldhmsubc | ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3899 | . . . . . . 7 ⊢ (𝑟 ∈ (DivRing ∩ CRing) ↔ (𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing)) | |
2 | 1 | simprbi 496 | . . . . . 6 ⊢ (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ CRing) |
3 | crngring 19710 | . . . . . 6 ⊢ (𝑟 ∈ CRing → 𝑟 ∈ Ring) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ Ring) |
5 | df-field 19909 | . . . . 5 ⊢ Field = (DivRing ∩ CRing) | |
6 | 4, 5 | eleq2s 2857 | . . . 4 ⊢ (𝑟 ∈ Field → 𝑟 ∈ Ring) |
7 | 6 | rgen 3073 | . . 3 ⊢ ∀𝑟 ∈ Field 𝑟 ∈ Ring |
8 | fldhmsubc.d | . . 3 ⊢ 𝐷 = (𝑈 ∩ Field) | |
9 | fldhmsubc.f | . . 3 ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) | |
10 | 7, 8, 9 | srhmsubc 45522 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘(RingCat‘𝑈))) |
11 | inss1 4159 | . . . . . . 7 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
12 | 5, 11 | eqsstri 3951 | . . . . . 6 ⊢ Field ⊆ DivRing |
13 | sslin 4165 | . . . . . 6 ⊢ (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) | |
14 | 12, 13 | ax-mp 5 | . . . . 5 ⊢ (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing) |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
16 | drhmsubc.c | . . . . 5 ⊢ 𝐶 = (𝑈 ∩ DivRing) | |
17 | 8, 16 | sseq12i 3947 | . . . 4 ⊢ (𝐷 ⊆ 𝐶 ↔ (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
18 | 15, 17 | sylibr 233 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶) |
19 | ssidd 3940 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦)) | |
20 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠))) |
21 | oveq12 7264 | . . . . . . 7 ⊢ ((𝑟 = 𝑥 ∧ 𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦)) | |
22 | 21 | adantl 481 | . . . . . 6 ⊢ (((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝑟 = 𝑥 ∧ 𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦)) |
23 | simprl 767 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑥 ∈ 𝐷) | |
24 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) | |
25 | 24 | adantl 481 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑦 ∈ 𝐷) |
26 | ovexd 7290 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 RingHom 𝑦) ∈ V) | |
27 | 20, 22, 23, 25, 26 | ovmpod 7403 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) = (𝑥 RingHom 𝑦)) |
28 | drhmsubc.j | . . . . . . 7 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠))) |
30 | 14, 17 | mpbir 230 | . . . . . . . 8 ⊢ 𝐷 ⊆ 𝐶 |
31 | 30 | sseli 3913 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ 𝐶) |
32 | 31 | ad2antrl 724 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑥 ∈ 𝐶) |
33 | 30 | sseli 3913 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐷 → 𝑦 ∈ 𝐶) |
34 | 33 | adantl 481 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐶) |
35 | 34 | adantl 481 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑦 ∈ 𝐶) |
36 | 29, 22, 32, 35, 26 | ovmpod 7403 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦)) |
37 | 19, 27, 36 | 3sstr4d 3964 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦)) |
38 | 37 | ralrimivva 3114 | . . 3 ⊢ (𝑈 ∈ 𝑉 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦)) |
39 | ovex 7288 | . . . . . 6 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
40 | 9, 39 | fnmpoi 7883 | . . . . 5 ⊢ 𝐹 Fn (𝐷 × 𝐷) |
41 | 40 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐹 Fn (𝐷 × 𝐷)) |
42 | 28, 39 | fnmpoi 7883 | . . . . 5 ⊢ 𝐽 Fn (𝐶 × 𝐶) |
43 | 42 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐽 Fn (𝐶 × 𝐶)) |
44 | inex1g 5238 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ DivRing) ∈ V) | |
45 | 16, 44 | eqeltrid 2843 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
46 | 41, 43, 45 | isssc 17449 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (𝐹 ⊆cat 𝐽 ↔ (𝐷 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦)))) |
47 | 18, 38, 46 | mpbir2and 709 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝐹 ⊆cat 𝐽) |
48 | 16, 28 | drhmsubc 45526 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCat‘𝑈))) |
49 | eqid 2738 | . . . 4 ⊢ ((RingCat‘𝑈) ↾cat 𝐽) = ((RingCat‘𝑈) ↾cat 𝐽) | |
50 | 49 | subsubc 17484 | . . 3 ⊢ (𝐽 ∈ (Subcat‘(RingCat‘𝑈)) → (𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCat‘𝑈)) ∧ 𝐹 ⊆cat 𝐽))) |
51 | 48, 50 | syl 17 | . 2 ⊢ (𝑈 ∈ 𝑉 → (𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCat‘𝑈)) ∧ 𝐹 ⊆cat 𝐽))) |
52 | 10, 47, 51 | mpbir2and 709 | 1 ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 × cxp 5578 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ⊆cat cssc 17436 ↾cat cresc 17437 Subcatcsubc 17438 Ringcrg 19698 CRingccrg 19699 RingHom crh 19871 DivRingcdr 19906 Fieldcfield 19907 RingCatcringc 45449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-hom 16912 df-cco 16913 df-0g 17069 df-cat 17294 df-cid 17295 df-homf 17296 df-ssc 17439 df-resc 17440 df-subc 17441 df-estrc 17755 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-ghm 18747 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-rnghom 19874 df-drng 19908 df-field 19909 df-ringc 45451 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |