Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldhmsubcALTV Structured version   Visualization version   GIF version

Theorem fldhmsubcALTV 45086
 Description: According to df-subc 17134, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17162 and subcss2 17165). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
drhmsubcALTV.c 𝐶 = (𝑈 ∩ DivRing)
drhmsubcALTV.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
fldhmsubcALTV.d 𝐷 = (𝑈 ∩ Field)
fldhmsubcALTV.f 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
fldhmsubcALTV (𝑈𝑉𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)))
Distinct variable groups:   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠   𝐷,𝑟,𝑠
Allowed substitution hints:   𝐹(𝑠,𝑟)   𝐽(𝑠,𝑟)

Proof of Theorem fldhmsubcALTV
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3875 . . . . . . 7 (𝑟 ∈ (DivRing ∩ CRing) ↔ (𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing))
21simprbi 501 . . . . . 6 (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ CRing)
3 crngring 19370 . . . . . 6 (𝑟 ∈ CRing → 𝑟 ∈ Ring)
42, 3syl 17 . . . . 5 (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ Ring)
5 df-field 19566 . . . . 5 Field = (DivRing ∩ CRing)
64, 5eleq2s 2871 . . . 4 (𝑟 ∈ Field → 𝑟 ∈ Ring)
76rgen 3081 . . 3 𝑟 ∈ Field 𝑟 ∈ Ring
8 fldhmsubcALTV.d . . 3 𝐷 = (𝑈 ∩ Field)
9 fldhmsubcALTV.f . . 3 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))
107, 8, 9srhmsubcALTV 45078 . 2 (𝑈𝑉𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈)))
11 inss1 4134 . . . . . . 7 (DivRing ∩ CRing) ⊆ DivRing
125, 11eqsstri 3927 . . . . . 6 Field ⊆ DivRing
13 sslin 4140 . . . . . 6 (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
1412, 13ax-mp 5 . . . . 5 (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)
1514a1i 11 . . . 4 (𝑈𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
16 drhmsubcALTV.c . . . . 5 𝐶 = (𝑈 ∩ DivRing)
178, 16sseq12i 3923 . . . 4 (𝐷𝐶 ↔ (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
1815, 17sylibr 237 . . 3 (𝑈𝑉𝐷𝐶)
19 ssidd 3916 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦))
209a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠)))
21 oveq12 7160 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
2221adantl 486 . . . . . 6 (((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝑟 = 𝑥𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
23 simprl 771 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑥𝐷)
24 simpr 489 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → 𝑦𝐷)
2524adantl 486 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑦𝐷)
26 ovexd 7186 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 RingHom 𝑦) ∈ V)
2720, 22, 23, 25, 26ovmpod 7298 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐹𝑦) = (𝑥 RingHom 𝑦))
28 drhmsubcALTV.j . . . . . . 7 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
2928a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
3014, 17mpbir 234 . . . . . . . 8 𝐷𝐶
3130sseli 3889 . . . . . . 7 (𝑥𝐷𝑥𝐶)
3231ad2antrl 728 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑥𝐶)
3330sseli 3889 . . . . . . . 8 (𝑦𝐷𝑦𝐶)
3433adantl 486 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → 𝑦𝐶)
3534adantl 486 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑦𝐶)
3629, 22, 32, 35, 26ovmpod 7298 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦))
3719, 27, 363sstr4d 3940 . . . 4 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))
3837ralrimivva 3121 . . 3 (𝑈𝑉 → ∀𝑥𝐷𝑦𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))
39 ovex 7184 . . . . . 6 (𝑟 RingHom 𝑠) ∈ V
409, 39fnmpoi 7773 . . . . 5 𝐹 Fn (𝐷 × 𝐷)
4140a1i 11 . . . 4 (𝑈𝑉𝐹 Fn (𝐷 × 𝐷))
4228, 39fnmpoi 7773 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
4342a1i 11 . . . 4 (𝑈𝑉𝐽 Fn (𝐶 × 𝐶))
44 inex1g 5190 . . . . 5 (𝑈𝑉 → (𝑈 ∩ DivRing) ∈ V)
4516, 44eqeltrid 2857 . . . 4 (𝑈𝑉𝐶 ∈ V)
4641, 43, 45isssc 17142 . . 3 (𝑈𝑉 → (𝐹cat 𝐽 ↔ (𝐷𝐶 ∧ ∀𝑥𝐷𝑦𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))))
4718, 38, 46mpbir2and 713 . 2 (𝑈𝑉𝐹cat 𝐽)
4816, 28drhmsubcALTV 45082 . . 3 (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
49 eqid 2759 . . . 4 ((RingCatALTV‘𝑈) ↾cat 𝐽) = ((RingCatALTV‘𝑈) ↾cat 𝐽)
5049subsubc 17175 . . 3 (𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)) → (𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈)) ∧ 𝐹cat 𝐽)))
5148, 50syl 17 . 2 (𝑈𝑉 → (𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈)) ∧ 𝐹cat 𝐽)))
5210, 47, 51mpbir2and 713 1 (𝑈𝑉𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539   ∈ wcel 2112  ∀wral 3071  Vcvv 3410   ∩ cin 3858   ⊆ wss 3859   class class class wbr 5033   × cxp 5523   Fn wfn 6331  ‘cfv 6336  (class class class)co 7151   ∈ cmpo 7153   ⊆cat cssc 17129   ↾cat cresc 17130  Subcatcsubc 17131  Ringcrg 19358  CRingccrg 19359   RingHom crh 19528  DivRingcdr 19563  Fieldcfield 19564  RingCatALTVcringcALTV 44988 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-fz 12933  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-hom 16640  df-cco 16641  df-0g 16766  df-cat 16990  df-cid 16991  df-homf 16992  df-ssc 17132  df-resc 17133  df-subc 17134  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-mhm 18015  df-grp 18165  df-ghm 18416  df-mgp 19301  df-ur 19313  df-ring 19360  df-cring 19361  df-rnghom 19531  df-drng 19565  df-field 19566  df-ringcALTV 44990 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator