| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldhmsubcALTV | Structured version Visualization version GIF version | ||
| Description: According to df-subc 17830, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17858 and subcss2 17861). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| drhmsubcALTV.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
| drhmsubcALTV.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
| fldhmsubcALTV.d | ⊢ 𝐷 = (𝑈 ∩ Field) |
| fldhmsubcALTV.f | ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) |
| Ref | Expression |
|---|---|
| fldhmsubcALTV | ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3947 | . . . . . . 7 ⊢ (𝑟 ∈ (DivRing ∩ CRing) ↔ (𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing)) | |
| 2 | 1 | simprbi 496 | . . . . . 6 ⊢ (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ CRing) |
| 3 | crngring 20210 | . . . . . 6 ⊢ (𝑟 ∈ CRing → 𝑟 ∈ Ring) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ Ring) |
| 5 | df-field 20697 | . . . . 5 ⊢ Field = (DivRing ∩ CRing) | |
| 6 | 4, 5 | eleq2s 2853 | . . . 4 ⊢ (𝑟 ∈ Field → 𝑟 ∈ Ring) |
| 7 | 6 | rgen 3054 | . . 3 ⊢ ∀𝑟 ∈ Field 𝑟 ∈ Ring |
| 8 | fldhmsubcALTV.d | . . 3 ⊢ 𝐷 = (𝑈 ∩ Field) | |
| 9 | fldhmsubcALTV.f | . . 3 ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) | |
| 10 | 7, 8, 9 | srhmsubcALTV 48267 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈))) |
| 11 | inss1 4217 | . . . . . . 7 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
| 12 | 5, 11 | eqsstri 4010 | . . . . . 6 ⊢ Field ⊆ DivRing |
| 13 | sslin 4223 | . . . . . 6 ⊢ (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) | |
| 14 | 12, 13 | ax-mp 5 | . . . . 5 ⊢ (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing) |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
| 16 | drhmsubcALTV.c | . . . . 5 ⊢ 𝐶 = (𝑈 ∩ DivRing) | |
| 17 | 8, 16 | sseq12i 3994 | . . . 4 ⊢ (𝐷 ⊆ 𝐶 ↔ (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
| 18 | 15, 17 | sylibr 234 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶) |
| 19 | ssidd 3987 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦)) | |
| 20 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠))) |
| 21 | oveq12 7419 | . . . . . . 7 ⊢ ((𝑟 = 𝑥 ∧ 𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦)) | |
| 22 | 21 | adantl 481 | . . . . . 6 ⊢ (((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝑟 = 𝑥 ∧ 𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦)) |
| 23 | simprl 770 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑥 ∈ 𝐷) | |
| 24 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) | |
| 25 | 24 | adantl 481 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑦 ∈ 𝐷) |
| 26 | ovexd 7445 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 RingHom 𝑦) ∈ V) | |
| 27 | 20, 22, 23, 25, 26 | ovmpod 7564 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) = (𝑥 RingHom 𝑦)) |
| 28 | drhmsubcALTV.j | . . . . . . 7 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠))) |
| 30 | 14, 17 | mpbir 231 | . . . . . . . 8 ⊢ 𝐷 ⊆ 𝐶 |
| 31 | 30 | sseli 3959 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ 𝐶) |
| 32 | 31 | ad2antrl 728 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑥 ∈ 𝐶) |
| 33 | 30 | sseli 3959 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐷 → 𝑦 ∈ 𝐶) |
| 34 | 33 | adantl 481 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐶) |
| 35 | 34 | adantl 481 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → 𝑦 ∈ 𝐶) |
| 36 | 29, 22, 32, 35, 26 | ovmpod 7564 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦)) |
| 37 | 19, 27, 36 | 3sstr4d 4019 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦)) |
| 38 | 37 | ralrimivva 3188 | . . 3 ⊢ (𝑈 ∈ 𝑉 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦)) |
| 39 | ovex 7443 | . . . . . 6 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
| 40 | 9, 39 | fnmpoi 8074 | . . . . 5 ⊢ 𝐹 Fn (𝐷 × 𝐷) |
| 41 | 40 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐹 Fn (𝐷 × 𝐷)) |
| 42 | 28, 39 | fnmpoi 8074 | . . . . 5 ⊢ 𝐽 Fn (𝐶 × 𝐶) |
| 43 | 42 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐽 Fn (𝐶 × 𝐶)) |
| 44 | inex1g 5294 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ DivRing) ∈ V) | |
| 45 | 16, 44 | eqeltrid 2839 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
| 46 | 41, 43, 45 | isssc 17838 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (𝐹 ⊆cat 𝐽 ↔ (𝐷 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦)))) |
| 47 | 18, 38, 46 | mpbir2and 713 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝐹 ⊆cat 𝐽) |
| 48 | 16, 28 | drhmsubcALTV 48271 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈))) |
| 49 | eqid 2736 | . . . 4 ⊢ ((RingCatALTV‘𝑈) ↾cat 𝐽) = ((RingCatALTV‘𝑈) ↾cat 𝐽) | |
| 50 | 49 | subsubc 17871 | . . 3 ⊢ (𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)) → (𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈)) ∧ 𝐹 ⊆cat 𝐽))) |
| 51 | 48, 50 | syl 17 | . 2 ⊢ (𝑈 ∈ 𝑉 → (𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈)) ∧ 𝐹 ⊆cat 𝐽))) |
| 52 | 10, 47, 51 | mpbir2and 713 | 1 ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 class class class wbr 5124 × cxp 5657 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ⊆cat cssc 17825 ↾cat cresc 17826 Subcatcsubc 17827 Ringcrg 20198 CRingccrg 20199 RingHom crh 20434 DivRingcdr 20694 Fieldcfield 20695 RingCatALTVcringcALTV 48229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-hom 17300 df-cco 17301 df-0g 17460 df-cat 17685 df-cid 17686 df-homf 17687 df-ssc 17828 df-resc 17829 df-subc 17830 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-grp 18924 df-ghm 19201 df-mgp 20106 df-ur 20147 df-ring 20200 df-cring 20201 df-rhm 20437 df-drng 20696 df-field 20697 df-ringcALTV 48230 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |