Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldhmsubcALTV Structured version   Visualization version   GIF version

Theorem fldhmsubcALTV 45660
Description: According to df-subc 17524, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17555 and subcss2 17558). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
drhmsubcALTV.c 𝐶 = (𝑈 ∩ DivRing)
drhmsubcALTV.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
fldhmsubcALTV.d 𝐷 = (𝑈 ∩ Field)
fldhmsubcALTV.f 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
fldhmsubcALTV (𝑈𝑉𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)))
Distinct variable groups:   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠   𝐷,𝑟,𝑠
Allowed substitution hints:   𝐹(𝑠,𝑟)   𝐽(𝑠,𝑟)

Proof of Theorem fldhmsubcALTV
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3903 . . . . . . 7 (𝑟 ∈ (DivRing ∩ CRing) ↔ (𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing))
21simprbi 497 . . . . . 6 (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ CRing)
3 crngring 19795 . . . . . 6 (𝑟 ∈ CRing → 𝑟 ∈ Ring)
42, 3syl 17 . . . . 5 (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ Ring)
5 df-field 19994 . . . . 5 Field = (DivRing ∩ CRing)
64, 5eleq2s 2857 . . . 4 (𝑟 ∈ Field → 𝑟 ∈ Ring)
76rgen 3074 . . 3 𝑟 ∈ Field 𝑟 ∈ Ring
8 fldhmsubcALTV.d . . 3 𝐷 = (𝑈 ∩ Field)
9 fldhmsubcALTV.f . . 3 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))
107, 8, 9srhmsubcALTV 45652 . 2 (𝑈𝑉𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈)))
11 inss1 4162 . . . . . . 7 (DivRing ∩ CRing) ⊆ DivRing
125, 11eqsstri 3955 . . . . . 6 Field ⊆ DivRing
13 sslin 4168 . . . . . 6 (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
1412, 13ax-mp 5 . . . . 5 (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)
1514a1i 11 . . . 4 (𝑈𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
16 drhmsubcALTV.c . . . . 5 𝐶 = (𝑈 ∩ DivRing)
178, 16sseq12i 3951 . . . 4 (𝐷𝐶 ↔ (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
1815, 17sylibr 233 . . 3 (𝑈𝑉𝐷𝐶)
19 ssidd 3944 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦))
209a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠)))
21 oveq12 7284 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
2221adantl 482 . . . . . 6 (((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝑟 = 𝑥𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
23 simprl 768 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑥𝐷)
24 simpr 485 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → 𝑦𝐷)
2524adantl 482 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑦𝐷)
26 ovexd 7310 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 RingHom 𝑦) ∈ V)
2720, 22, 23, 25, 26ovmpod 7425 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐹𝑦) = (𝑥 RingHom 𝑦))
28 drhmsubcALTV.j . . . . . . 7 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
2928a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
3014, 17mpbir 230 . . . . . . . 8 𝐷𝐶
3130sseli 3917 . . . . . . 7 (𝑥𝐷𝑥𝐶)
3231ad2antrl 725 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑥𝐶)
3330sseli 3917 . . . . . . . 8 (𝑦𝐷𝑦𝐶)
3433adantl 482 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → 𝑦𝐶)
3534adantl 482 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑦𝐶)
3629, 22, 32, 35, 26ovmpod 7425 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦))
3719, 27, 363sstr4d 3968 . . . 4 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))
3837ralrimivva 3123 . . 3 (𝑈𝑉 → ∀𝑥𝐷𝑦𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))
39 ovex 7308 . . . . . 6 (𝑟 RingHom 𝑠) ∈ V
409, 39fnmpoi 7910 . . . . 5 𝐹 Fn (𝐷 × 𝐷)
4140a1i 11 . . . 4 (𝑈𝑉𝐹 Fn (𝐷 × 𝐷))
4228, 39fnmpoi 7910 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
4342a1i 11 . . . 4 (𝑈𝑉𝐽 Fn (𝐶 × 𝐶))
44 inex1g 5243 . . . . 5 (𝑈𝑉 → (𝑈 ∩ DivRing) ∈ V)
4516, 44eqeltrid 2843 . . . 4 (𝑈𝑉𝐶 ∈ V)
4641, 43, 45isssc 17532 . . 3 (𝑈𝑉 → (𝐹cat 𝐽 ↔ (𝐷𝐶 ∧ ∀𝑥𝐷𝑦𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))))
4718, 38, 46mpbir2and 710 . 2 (𝑈𝑉𝐹cat 𝐽)
4816, 28drhmsubcALTV 45656 . . 3 (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
49 eqid 2738 . . . 4 ((RingCatALTV‘𝑈) ↾cat 𝐽) = ((RingCatALTV‘𝑈) ↾cat 𝐽)
5049subsubc 17568 . . 3 (𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)) → (𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈)) ∧ 𝐹cat 𝐽)))
5148, 50syl 17 . 2 (𝑈𝑉 → (𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈)) ∧ 𝐹cat 𝐽)))
5210, 47, 51mpbir2and 710 1 (𝑈𝑉𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cin 3886  wss 3887   class class class wbr 5074   × cxp 5587   Fn wfn 6428  cfv 6433  (class class class)co 7275  cmpo 7277  cat cssc 17519  cat cresc 17520  Subcatcsubc 17521  Ringcrg 19783  CRingccrg 19784   RingHom crh 19956  DivRingcdr 19991  Fieldcfield 19992  RingCatALTVcringcALTV 45562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-hom 16986  df-cco 16987  df-0g 17152  df-cat 17377  df-cid 17378  df-homf 17379  df-ssc 17522  df-resc 17523  df-subc 17524  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-ghm 18832  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-rnghom 19959  df-drng 19993  df-field 19994  df-ringcALTV 45564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator