Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldhmsubcALTV Structured version   Visualization version   GIF version

Theorem fldhmsubcALTV 48056
Description: According to df-subc 17873, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17904 and subcss2 17907). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
drhmsubcALTV.c 𝐶 = (𝑈 ∩ DivRing)
drhmsubcALTV.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
fldhmsubcALTV.d 𝐷 = (𝑈 ∩ Field)
fldhmsubcALTV.f 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
fldhmsubcALTV (𝑈𝑉𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)))
Distinct variable groups:   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠   𝐷,𝑟,𝑠
Allowed substitution hints:   𝐹(𝑠,𝑟)   𝐽(𝑠,𝑟)

Proof of Theorem fldhmsubcALTV
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3992 . . . . . . 7 (𝑟 ∈ (DivRing ∩ CRing) ↔ (𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing))
21simprbi 496 . . . . . 6 (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ CRing)
3 crngring 20272 . . . . . 6 (𝑟 ∈ CRing → 𝑟 ∈ Ring)
42, 3syl 17 . . . . 5 (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ Ring)
5 df-field 20754 . . . . 5 Field = (DivRing ∩ CRing)
64, 5eleq2s 2862 . . . 4 (𝑟 ∈ Field → 𝑟 ∈ Ring)
76rgen 3069 . . 3 𝑟 ∈ Field 𝑟 ∈ Ring
8 fldhmsubcALTV.d . . 3 𝐷 = (𝑈 ∩ Field)
9 fldhmsubcALTV.f . . 3 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))
107, 8, 9srhmsubcALTV 48048 . 2 (𝑈𝑉𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈)))
11 inss1 4258 . . . . . . 7 (DivRing ∩ CRing) ⊆ DivRing
125, 11eqsstri 4043 . . . . . 6 Field ⊆ DivRing
13 sslin 4264 . . . . . 6 (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
1412, 13ax-mp 5 . . . . 5 (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)
1514a1i 11 . . . 4 (𝑈𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
16 drhmsubcALTV.c . . . . 5 𝐶 = (𝑈 ∩ DivRing)
178, 16sseq12i 4039 . . . 4 (𝐷𝐶 ↔ (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
1815, 17sylibr 234 . . 3 (𝑈𝑉𝐷𝐶)
19 ssidd 4032 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦))
209a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠)))
21 oveq12 7457 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
2221adantl 481 . . . . . 6 (((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝑟 = 𝑥𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
23 simprl 770 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑥𝐷)
24 simpr 484 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → 𝑦𝐷)
2524adantl 481 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑦𝐷)
26 ovexd 7483 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 RingHom 𝑦) ∈ V)
2720, 22, 23, 25, 26ovmpod 7602 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐹𝑦) = (𝑥 RingHom 𝑦))
28 drhmsubcALTV.j . . . . . . 7 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
2928a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
3014, 17mpbir 231 . . . . . . . 8 𝐷𝐶
3130sseli 4004 . . . . . . 7 (𝑥𝐷𝑥𝐶)
3231ad2antrl 727 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑥𝐶)
3330sseli 4004 . . . . . . . 8 (𝑦𝐷𝑦𝐶)
3433adantl 481 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → 𝑦𝐶)
3534adantl 481 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑦𝐶)
3629, 22, 32, 35, 26ovmpod 7602 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦))
3719, 27, 363sstr4d 4056 . . . 4 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))
3837ralrimivva 3208 . . 3 (𝑈𝑉 → ∀𝑥𝐷𝑦𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))
39 ovex 7481 . . . . . 6 (𝑟 RingHom 𝑠) ∈ V
409, 39fnmpoi 8111 . . . . 5 𝐹 Fn (𝐷 × 𝐷)
4140a1i 11 . . . 4 (𝑈𝑉𝐹 Fn (𝐷 × 𝐷))
4228, 39fnmpoi 8111 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
4342a1i 11 . . . 4 (𝑈𝑉𝐽 Fn (𝐶 × 𝐶))
44 inex1g 5337 . . . . 5 (𝑈𝑉 → (𝑈 ∩ DivRing) ∈ V)
4516, 44eqeltrid 2848 . . . 4 (𝑈𝑉𝐶 ∈ V)
4641, 43, 45isssc 17881 . . 3 (𝑈𝑉 → (𝐹cat 𝐽 ↔ (𝐷𝐶 ∧ ∀𝑥𝐷𝑦𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))))
4718, 38, 46mpbir2and 712 . 2 (𝑈𝑉𝐹cat 𝐽)
4816, 28drhmsubcALTV 48052 . . 3 (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
49 eqid 2740 . . . 4 ((RingCatALTV‘𝑈) ↾cat 𝐽) = ((RingCatALTV‘𝑈) ↾cat 𝐽)
5049subsubc 17917 . . 3 (𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)) → (𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈)) ∧ 𝐹cat 𝐽)))
5148, 50syl 17 . 2 (𝑈𝑉 → (𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈)) ∧ 𝐹cat 𝐽)))
5210, 47, 51mpbir2and 712 1 (𝑈𝑉𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cin 3975  wss 3976   class class class wbr 5166   × cxp 5698   Fn wfn 6568  cfv 6573  (class class class)co 7448  cmpo 7450  cat cssc 17868  cat cresc 17869  Subcatcsubc 17870  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495  DivRingcdr 20751  Fieldcfield 20752  RingCatALTVcringcALTV 48010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-hom 17335  df-cco 17336  df-0g 17501  df-cat 17726  df-cid 17727  df-homf 17728  df-ssc 17871  df-resc 17872  df-subc 17873  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-ghm 19253  df-mgp 20162  df-ur 20209  df-ring 20262  df-cring 20263  df-rhm 20498  df-drng 20753  df-field 20754  df-ringcALTV 48011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator