| Metamath
Proof Explorer Theorem List (p. 207 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | zrninitoringc 20601* | The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing) ⇒ ⊢ (𝜑 → 𝑍 ∉ (InitO‘𝐶)) | ||
| Theorem | srhmsubclem1 20602* | Lemma 1 for srhmsubc 20605. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) ⇒ ⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (𝑈 ∩ Ring)) | ||
| Theorem | srhmsubclem2 20603* | Lemma 2 for srhmsubc 20605. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (Base‘(RingCat‘𝑈))) | ||
| Theorem | srhmsubclem3 20604* | Lemma 3 for srhmsubc 20605. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCat‘𝑈))𝑌)) | ||
| Theorem | srhmsubc 20605* | According to df-subc 17729, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17757 and subcss2 17760). Therefore, the set of special ring homomorphisms (i.e., ring homomorphisms from a special ring to another ring of that kind) is a subcategory of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCat‘𝑈))) | ||
| Theorem | sringcat 20606* | The restriction of the category of (unital) rings to the set of special ring homomorphisms is a category. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
| Theorem | crhmsubc 20607* | According to df-subc 17729, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17757 and subcss2 17760). Therefore, the set of commutative ring homomorphisms (i.e. ring homomorphisms from a commutative ring to a commutative ring) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) |
| ⊢ 𝐶 = (𝑈 ∩ CRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCat‘𝑈))) | ||
| Theorem | cringcat 20608* | The restriction of the category of (unital) rings to the set of commutative ring homomorphisms is a category, the "category of commutative rings". (Contributed by AV, 19-Feb-2020.) |
| ⊢ 𝐶 = (𝑈 ∩ CRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
| Theorem | rngcrescrhm 20609 | The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) | ||
| Theorem | rhmsubclem1 20610 | Lemma 1 for rhmsubc 20614. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) | ||
| Theorem | rhmsubclem2 20611 | Lemma 2 for rhmsubc 20614. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) | ||
| Theorem | rhmsubclem3 20612* | Lemma 3 for rhmsubc 20614. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
| Theorem | rhmsubclem4 20613* | Lemma 4 for rhmsubc 20614. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
| Theorem | rhmsubc 20614 | According to df-subc 17729, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17757 and subcss2 17760). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCat‘𝑈))) | ||
| Theorem | rhmsubccat 20615 | The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → ((RngCat‘𝑈) ↾cat 𝐻) ∈ Cat) | ||
| Syntax | crlreg 20616 | Set of left-regular elements in a ring. |
| class RLReg | ||
| Syntax | cdomn 20617 | Class of (ring theoretic) domains. |
| class Domn | ||
| Syntax | cidom 20618 | Class of integral domains. |
| class IDomn | ||
| Definition | df-rlreg 20619* | Define the set of left-regular elements in a ring as those elements which are not left zero divisors, meaning that multiplying a nonzero element on the left by a left-regular element gives a nonzero product. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) | ||
| Definition | df-domn 20620* | A domain is a nonzero ring in which there are no nontrivial zero divisors. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| ⊢ Domn = {𝑟 ∈ NzRing ∣ [(Base‘𝑟) / 𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧))} | ||
| Definition | df-idom 20621 | An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ IDomn = (CRing ∩ Domn) | ||
| Theorem | rrgval 20622* | Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} | ||
| Theorem | isrrg 20623* | Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) | ||
| Theorem | rrgeq0i 20624 | Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) | ||
| Theorem | rrgeq0 20625 | Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) | ||
| Theorem | rrgsupp 20626 | Left multiplication by a left regular element does not change the support set of a vector. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Revised by AV, 20-Jul-2019.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌:𝐼⟶𝐵) ⇒ ⊢ (𝜑 → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = (𝑌 supp 0 )) | ||
| Theorem | rrgss 20627 | Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝐸 ⊆ 𝐵 | ||
| Theorem | unitrrg 20628 | Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ 𝐸) | ||
| Theorem | rrgnz 20629 | In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸) | ||
| Theorem | isdomn 20630* | Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) | ||
| Theorem | domnnzr 20631 | A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | ||
| Theorem | domnring 20632 | A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | ||
| Theorem | domneq0 20633 | In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) | ||
| Theorem | domnmuln0 20634 | In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) | ||
| Theorem | isdomn5 20635* | The equivalence between the right conjuncts in the right hand sides of isdomn 20630 and isdomn2 20636, in predicate calculus form. (Contributed by SN, 16-Sep-2024.) |
| ⊢ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) | ||
| Theorem | isdomn2 20636 | A ring is a domain iff all nonzero elements are regular elements. (Contributed by Mario Carneiro, 28-Mar-2015.) (Proof shortened by SN, 21-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) | ||
| Theorem | isdomn2OLD 20637 | Obsolete version of isdomn2 20636 as of 21-Jun-2025. (Contributed by Mario Carneiro, 28-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) | ||
| Theorem | domnrrg 20638 | In a domain, a nonzero element is a regular element. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐸) | ||
| Theorem | isdomn6 20639 | A ring is a domain iff the regular elements are the nonzero elements. Compare isdomn2 20636, domnrrg 20638. (Contributed by Thierry Arnoux, 6-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) = 𝐸)) | ||
| Theorem | isdomn3 20640 | Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈))) | ||
| Theorem | isdomn4 20641* | A ring is a domain iff it is nonzero and the left cancellation law for multiplication holds. (Contributed by SN, 15-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))) | ||
| Theorem | opprdomnb 20642 | A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 20643. (Contributed by SN, 15-Jun-2015.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn) | ||
| Theorem | opprdomn 20643 | The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn → 𝑂 ∈ Domn) | ||
| Theorem | isdomn4r 20644* | A ring is a domain iff it is nonzero and the right cancellation law for multiplication holds. (Contributed by SN, 20-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ (𝐵 ∖ { 0 })((𝑎 · 𝑐) = (𝑏 · 𝑐) → 𝑎 = 𝑏))) | ||
| Theorem | domnlcanb 20645 | Left-cancellation law for domains, biconditional version of domnlcan 20646. (Contributed by Thierry Arnoux, 8-Jun-2025.) Shorten this theorem and domnlcan 20646 overall. (Revised by SN, 21-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Domn) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) = (𝑋 · 𝑍) ↔ 𝑌 = 𝑍)) | ||
| Theorem | domnlcan 20646 | Left-cancellation law for domains. (Contributed by Thierry Arnoux, 22-Mar-2025.) (Proof shortened by SN, 21-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → (𝑋 · 𝑌) = (𝑋 · 𝑍)) ⇒ ⊢ (𝜑 → 𝑌 = 𝑍) | ||
| Theorem | domnrcanb 20647 | Right-cancellation law for domains, biconditional version of domnrcan 20648. (Contributed by SN, 21-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝑅 ∈ Domn) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑍) = (𝑌 · 𝑍) ↔ 𝑋 = 𝑌)) | ||
| Theorem | domnrcan 20648 | Right-cancellation law for domains. (Contributed by SN, 21-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → (𝑋 · 𝑍) = (𝑌 · 𝑍)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | domneq0r 20649 | Right multiplication by a nonzero element does not change zeroness in a domain. Compare rrgeq0 20625. (Contributed by SN, 21-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝑅 ∈ Domn) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑋 = 0 )) | ||
| Theorem | isidom 20650 | An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) | ||
| Theorem | idomdomd 20651 | An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ IDomn) ⇒ ⊢ (𝜑 → 𝑅 ∈ Domn) | ||
| Theorem | idomcringd 20652 | An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) Formerly subproof of idomringd 20653. (Proof shortened by SN, 14-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ IDomn) ⇒ ⊢ (𝜑 → 𝑅 ∈ CRing) | ||
| Theorem | idomringd 20653 | An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ IDomn) ⇒ ⊢ (𝜑 → 𝑅 ∈ Ring) | ||
| Syntax | cdr 20654 | Extend class notation with class of all division rings. |
| class DivRing | ||
| Syntax | cfield 20655 | Class of fields. |
| class Field | ||
| Definition | df-drng 20656 | Define class of all division rings. A division ring is a ring in which the set of units is exactly the nonzero elements of the ring. (Contributed by NM, 18-Oct-2012.) |
| ⊢ DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} | ||
| Definition | df-field 20657 | A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ Field = (DivRing ∩ CRing) | ||
| Theorem | isdrng 20658 | The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) | ||
| Theorem | drngunit 20659 | Elementhood in the set of units when 𝑅 is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) | ||
| Theorem | drngui 20660 | The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑅 ∈ DivRing ⇒ ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) | ||
| Theorem | drngring 20661 | A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
| ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | ||
| Theorem | drngringd 20662 | A division ring is a ring. (Contributed by SN, 16-May-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ DivRing) ⇒ ⊢ (𝜑 → 𝑅 ∈ Ring) | ||
| Theorem | drnggrpd 20663 | A division ring is a group (deduction form). (Contributed by SN, 16-May-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ DivRing) ⇒ ⊢ (𝜑 → 𝑅 ∈ Grp) | ||
| Theorem | drnggrp 20664 | A division ring is a group (closed form). (Contributed by NM, 8-Sep-2011.) |
| ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) | ||
| Theorem | isfld 20665 | A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) | ||
| Theorem | flddrngd 20666 | A field is a division ring. (Contributed by SN, 17-Jan-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Field) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
| Theorem | fldcrngd 20667 | A field is a commutative ring. (Contributed by SN, 23-Nov-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ Field) ⇒ ⊢ (𝜑 → 𝑅 ∈ CRing) | ||
| Theorem | isdrng2 20668 | A division ring can equivalently be defined as a ring such that the nonzero elements form a group under multiplication (from which it follows that this is the same group as the group of units). (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ⇒ ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp)) | ||
| Theorem | drngprop 20669 | If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 28-Dec-2014.) |
| ⊢ (Base‘𝐾) = (Base‘𝐿) & ⊢ (+g‘𝐾) = (+g‘𝐿) & ⊢ (.r‘𝐾) = (.r‘𝐿) ⇒ ⊢ (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing) | ||
| Theorem | drngmgp 20670 | A division ring contains a multiplicative group. (Contributed by NM, 8-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ⇒ ⊢ (𝑅 ∈ DivRing → 𝐺 ∈ Grp) | ||
| Theorem | drngid 20671 | A division ring's unity is the identity element of its multiplicative group. (Contributed by NM, 7-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ⇒ ⊢ (𝑅 ∈ DivRing → 1 = (0g‘𝐺)) | ||
| Theorem | drngunz 20672 | A division ring's unity is different from its zero. (Contributed by NM, 8-Sep-2011.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 1 ≠ 0 ) | ||
| Theorem | drngnzr 20673 | A division ring is a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) | ||
| Theorem | drngdomn 20674 | A division ring is a domain. (Contributed by Mario Carneiro, 29-Mar-2015.) |
| ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Domn) | ||
| Theorem | drngmcl 20675 | The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011.) (Proof shortened by SN, 25-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ (𝐵 ∖ { 0 }) ∧ 𝑌 ∈ (𝐵 ∖ { 0 })) → (𝑋 · 𝑌) ∈ (𝐵 ∖ { 0 })) | ||
| Theorem | drngmclOLD 20676 | Obsolete version of drngmcl 20675 as of 25-Jun-2025. The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ (𝐵 ∖ { 0 }) ∧ 𝑌 ∈ (𝐵 ∖ { 0 })) → (𝑋 · 𝑌) ∈ (𝐵 ∖ { 0 })) | ||
| Theorem | drngid2 20677 | Properties showing that an element 𝐼 is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼)) | ||
| Theorem | drnginvrcl 20678 | Closure of the multiplicative inverse in a division ring. (reccl 11793 analog). (Contributed by NM, 19-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐵) | ||
| Theorem | drnginvrn0 20679 | The multiplicative inverse in a division ring is nonzero. (recne0 11799 analog). (Contributed by NM, 19-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ≠ 0 ) | ||
| Theorem | drnginvrcld 20680 | Closure of the multiplicative inverse in a division ring. (reccld 11900 analog). (Contributed by SN, 14-Aug-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ∈ 𝐵) | ||
| Theorem | drnginvrl 20681 | Property of the multiplicative inverse in a division ring. (recid2 11801 analog). (Contributed by NM, 19-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ((𝐼‘𝑋) · 𝑋) = 1 ) | ||
| Theorem | drnginvrr 20682 | Property of the multiplicative inverse in a division ring. (recid 11800 analog). (Contributed by NM, 19-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑋 · (𝐼‘𝑋)) = 1 ) | ||
| Theorem | drnginvrld 20683 | Property of the multiplicative inverse in a division ring. (recid2d 11903 analog). (Contributed by SN, 14-Aug-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → ((𝐼‘𝑋) · 𝑋) = 1 ) | ||
| Theorem | drnginvrrd 20684 | Property of the multiplicative inverse in a division ring. (recidd 11902 analog). (Contributed by SN, 14-Aug-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 · (𝐼‘𝑋)) = 1 ) | ||
| Theorem | drngmul0or 20685 | A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014.) (Proof shortened by SN, 25-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) | ||
| Theorem | drngmul0orOLD 20686 | Obsolete version of drngmul0or 20685 as of 25-Jun-2025. (Contributed by NM, 8-Oct-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) | ||
| Theorem | drngmulne0 20687 | A product is nonzero iff both its factors are nonzero. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) ≠ 0 ↔ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ))) | ||
| Theorem | drngmuleq0 20688 | An element is zero iff its product with a nonzero element is zero. (Contributed by NM, 8-Oct-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑋 = 0 )) | ||
| Theorem | opprdrng 20689 | The opposite of a division ring is also a division ring. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing ↔ 𝑂 ∈ DivRing) | ||
| Theorem | isdrngd 20690* | Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element 𝑥 should have a left-inverse 𝐼(𝑥). See isdrngrd 20691 for the characterization using right-inverses. (Contributed by NM, 2-Aug-2013.) Remove hypothesis. (Revised by SN, 19-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 0 = (0g‘𝑅)) & ⊢ (𝜑 → 1 = (1r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥 · 𝑦) ≠ 0 ) & ⊢ (𝜑 → 1 ≠ 0 ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → 𝐼 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝐼 · 𝑥) = 1 ) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
| Theorem | isdrngrd 20691* | Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element 𝑥 should have a right-inverse 𝐼(𝑥). See isdrngd 20690 for the characterization using left-inverses. (Contributed by NM, 10-Aug-2013.) Remove hypothesis. (Revised by SN, 19-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 0 = (0g‘𝑅)) & ⊢ (𝜑 → 1 = (1r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥 · 𝑦) ≠ 0 ) & ⊢ (𝜑 → 1 ≠ 0 ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → 𝐼 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝑥 · 𝐼) = 1 ) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
| Theorem | isdrngdOLD 20692* | Obsolete version of isdrngd 20690 as of 19-Feb-2025. (Contributed by NM, 2-Aug-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 0 = (0g‘𝑅)) & ⊢ (𝜑 → 1 = (1r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥 · 𝑦) ≠ 0 ) & ⊢ (𝜑 → 1 ≠ 0 ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → 𝐼 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → 𝐼 ≠ 0 ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝐼 · 𝑥) = 1 ) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
| Theorem | isdrngrdOLD 20693* | Obsolete version of isdrngrd 20691 as of 19-Feb-2025. (Contributed by NM, 10-Aug-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 0 = (0g‘𝑅)) & ⊢ (𝜑 → 1 = (1r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥 · 𝑦) ≠ 0 ) & ⊢ (𝜑 → 1 ≠ 0 ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → 𝐼 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → 𝐼 ≠ 0 ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝑥 · 𝐼) = 1 ) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
| Theorem | drngpropd 20694* | If two structures have the same group components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)) | ||
| Theorem | fldpropd 20695* | If two structures have the same group components (properties), one is a field iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Field ↔ 𝐿 ∈ Field)) | ||
| Theorem | fldidom 20696 | A field is an integral domain. (Contributed by Mario Carneiro, 29-Mar-2015.) (Proof shortened by SN, 11-Nov-2024.) |
| ⊢ (𝑅 ∈ Field → 𝑅 ∈ IDomn) | ||
| Theorem | fidomndrnglem 20697* | Lemma for fidomndrng 20698. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ { 0 })) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝐴)) ⇒ ⊢ (𝜑 → 𝐴 ∥ 1 ) | ||
| Theorem | fidomndrng 20698 | A finite domain is a division ring. Note that Wedderburn's little theorem (not proved) states that finite division rings are fields. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐵 ∈ Fin → (𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing)) | ||
| Theorem | fiidomfld 20699 | A finite integral domain is a field. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐵 ∈ Fin → (𝑅 ∈ IDomn ↔ 𝑅 ∈ Field)) | ||
| Theorem | rng1nnzr 20700 | The (smallest) structure representing a zero ring is not a nonzero ring. (Contributed by AV, 29-Apr-2019.) |
| ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ⇒ ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |