![]() |
Metamath
Proof Explorer Theorem List (p. 207 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28347) |
![]() (28348-29872) |
![]() (29873-43650) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mndvcl 20601 | Tuple-wise additive closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼) ∧ 𝑌 ∈ (𝐵 ↑𝑚 𝐼)) → (𝑋 ∘𝑓 + 𝑌) ∈ (𝐵 ↑𝑚 𝐼)) | ||
Theorem | mndvass 20602 | Tuple-wise associativity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑𝑚 𝐼) ∧ 𝑌 ∈ (𝐵 ↑𝑚 𝐼) ∧ 𝑍 ∈ (𝐵 ↑𝑚 𝐼))) → ((𝑋 ∘𝑓 + 𝑌) ∘𝑓 + 𝑍) = (𝑋 ∘𝑓 + (𝑌 ∘𝑓 + 𝑍))) | ||
Theorem | mndvlid 20603 | Tuple-wise left identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 0 = (0g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → ((𝐼 × { 0 }) ∘𝑓 + 𝑋) = 𝑋) | ||
Theorem | mndvrid 20604 | Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 0 = (0g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → (𝑋 ∘𝑓 + (𝐼 × { 0 })) = 𝑋) | ||
Theorem | grpvlinv 20605 | Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → ((𝑁 ∘ 𝑋) ∘𝑓 + 𝑋) = (𝐼 × { 0 })) | ||
Theorem | grpvrinv 20606 | Tuple-wise right inverse in groups. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → (𝑋 ∘𝑓 + (𝑁 ∘ 𝑋)) = (𝐼 × { 0 })) | ||
Theorem | mhmvlin 20607 | Tuple extension of monoid homomorphisms. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ ⨣ = (+g‘𝑁) ⇒ ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼) ∧ 𝑌 ∈ (𝐵 ↑𝑚 𝐼)) → (𝐹 ∘ (𝑋 ∘𝑓 + 𝑌)) = ((𝐹 ∘ 𝑋) ∘𝑓 ⨣ (𝐹 ∘ 𝑌))) | ||
Theorem | ringvcl 20608 | Tuple-wise multiplication closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼) ∧ 𝑌 ∈ (𝐵 ↑𝑚 𝐼)) → (𝑋 ∘𝑓 · 𝑌) ∈ (𝐵 ↑𝑚 𝐼)) | ||
Theorem | gsumcom3 20609* | A commutative law for finitely supported iterated sums. (Contributed by Stefan O'Rear, 2-Nov-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ 𝑋))))) | ||
Theorem | gsumcom3fi 20610* | A commutative law for finite iterated sums. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ 𝑋))))) | ||
Theorem | mamucl 20611 | Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑃))) ⇒ ⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑃))) | ||
Theorem | mamuass 20612 | Matrix multiplication is associative, see also statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑𝑚 (𝑂 × 𝑃))) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ 𝐺 = (𝑅 maMul 〈𝑀, 𝑂, 𝑃〉) & ⊢ 𝐻 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐼 = (𝑅 maMul 〈𝑁, 𝑂, 𝑃〉) ⇒ ⊢ (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍))) | ||
Theorem | mamudi 20613 | Matrix multiplication distributes over addition on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ + = (+g‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) ⇒ ⊢ (𝜑 → ((𝑋 ∘𝑓 + 𝑌)𝐹𝑍) = ((𝑋𝐹𝑍) ∘𝑓 + (𝑌𝐹𝑍))) | ||
Theorem | mamudir 20614 | Matrix multiplication distributes over addition on the right. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ + = (+g‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) ⇒ ⊢ (𝜑 → (𝑋𝐹(𝑌 ∘𝑓 + 𝑍)) = ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))) | ||
Theorem | mamuvs1 20615 | Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) ⇒ ⊢ (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))) | ||
Theorem | mamuvs2 20616 | Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.) |
⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) ⇒ ⊢ (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))) | ||
In the following, the square matrix algebra is defined as extensible structure Mat. In this subsection, however, only square matrices and their basic properties are regarded. This includes showing that (𝑁 Mat 𝑅) is a left module, see matlmod 20639. That (𝑁 Mat 𝑅) is a ring and an associative algebra is shown in the next subsection, after theorems about the identity matrix are available. Nevertheless, (𝑁 Mat 𝑅) is called "matrix ring" or "matrix algebra" already in this subsection. | ||
Syntax | cmat 20617 | Syntax for the square matrix algebra. |
class Mat | ||
Definition | df-mat 20618* | Define the algebra of n x n matrices over a ring r. (Contributed by Stefan O'Rear, 31-Aug-2015.) |
⊢ Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx), (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) | ||
Theorem | matbas0pc 20619 | There is no matrix with a proper class either as dimension or as underlying ring. (Contributed by AV, 28-Dec-2018.) |
⊢ (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) | ||
Theorem | matbas0 20620 | There is no matrix for a not finite dimension or a proper class as the underlying ring. (Contributed by AV, 28-Dec-2018.) |
⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) | ||
Theorem | matval 20621 | Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) & ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = (𝐺 sSet 〈(.r‘ndx), · 〉)) | ||
Theorem | matrcl 20622 | Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) | ||
Theorem | matbas 20623 | The matrix ring has the same base set as its underlying group. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Base‘𝐺) = (Base‘𝐴)) | ||
Theorem | matplusg 20624 | The matrix ring has the same addition as its underlying group. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (+g‘𝐺) = (+g‘𝐴)) | ||
Theorem | matsca 20625 | The matrix ring has the same scalars as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Scalar‘𝐺) = (Scalar‘𝐴)) | ||
Theorem | matvsca 20626 | The matrix ring has the same scalar multiplication as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → ( ·𝑠 ‘𝐺) = ( ·𝑠 ‘𝐴)) | ||
Theorem | mat0 20627 | The matrix ring has the same zero as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (0g‘𝐺) = (0g‘𝐴)) | ||
Theorem | matinvg 20628 | The matrix ring has the same additive inverse as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (invg‘𝐺) = (invg‘𝐴)) | ||
Theorem | mat0op 20629* | Value of a zero matrix as operation. (Contributed by AV, 2-Dec-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 0 )) | ||
Theorem | matsca2 20630 | The scalars of the matrix ring are the underlying ring. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 = (Scalar‘𝐴)) | ||
Theorem | matbas2 20631 | The base set of the matrix ring as a set exponential. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 16-Dec-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝐾 ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) | ||
Theorem | matbas2i 20632 | A matrix is a function. (Contributed by Stefan O'Rear, 11-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁))) | ||
Theorem | matbas2d 20633* | The base set of the matrix ring as a mapping operation. (Contributed by Stefan O'Rear, 11-Jul-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ 𝐵) | ||
Theorem | eqmat 20634* | Two square matrices of the same dimension are equal if they have the same entries. (Contributed by AV, 25-Sep-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑋𝑗) = (𝑖𝑌𝑗))) | ||
Theorem | matecl 20635 | Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring. (Contributed by AV, 16-Dec-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾) | ||
Theorem | matecld 20636 | Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring, deduction form. (Contributed by AV, 27-Nov-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ (𝜑 → 𝐽 ∈ 𝑁) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼𝑀𝐽) ∈ 𝐾) | ||
Theorem | matplusg2 20637 | Addition in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ ✚ = (+g‘𝐴) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘𝑓 + 𝑌)) | ||
Theorem | matvsca2 20638 | Scalar multiplication in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ × = (.r‘𝑅) & ⊢ 𝐶 = (𝑁 × 𝑁) ⇒ ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘𝑓 × 𝑌)) | ||
Theorem | matlmod 20639 | The matrix ring is a linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) | ||
Theorem | matgrp 20640 | The matrix ring is a group. (Contributed by AV, 21-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp) | ||
Theorem | matvscl 20641 | Closure of the scalar multiplication in the matrix ring. (lmodvscl 19272 analog.) (Contributed by AV, 27-Nov-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = ( ·𝑠 ‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵)) → (𝐶 · 𝑋) ∈ 𝐵) | ||
Theorem | matsubg 20642 | The matrix ring has the same addition as its underlying group. (Contributed by AV, 2-Aug-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (-g‘𝐺) = (-g‘𝐴)) | ||
Theorem | matplusgcell 20643 | Addition in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ ✚ = (+g‘𝐴) & ⊢ + = (+g‘𝑅) ⇒ ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) | ||
Theorem | matsubgcell 20644 | Subtraction in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (-g‘𝐴) & ⊢ − = (-g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = ((𝐼𝑋𝐽) − (𝐼𝑌𝐽))) | ||
Theorem | matinvgcell 20645 | Additive inversion in the matrix ring is cell-wise. (Contributed by AV, 17-Nov-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = (invg‘𝑅) & ⊢ 𝑊 = (invg‘𝐴) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑊‘𝑋)𝐽) = (𝑉‘(𝐼𝑋𝐽))) | ||
Theorem | matvscacell 20646 | Scalar multiplication in the matrix ring is cell-wise. (Contributed by AV, 7-Aug-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ × = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝑋 × (𝐼𝑌𝐽))) | ||
Theorem | matgsum 20647* | Finite commutative sums in a matrix algebra are taken componentwise. (Contributed by AV, 26-Sep-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈) ∈ 𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈)) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐴 Σg (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) | ||
The main result of this subsection are the theorems showing that (𝑁 Mat 𝑅) is a ring (see matring 20653) and an associative algebra (see matassa 20654). Additionally, theorems for the identity matrix and transposed matrices are provided. | ||
Theorem | matmulr 20648 | Multiplication in the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘𝐴)) | ||
Theorem | mamumat1cl 20649* | The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) ⇒ ⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑀))) | ||
Theorem | mat1comp 20650* | The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) ⇒ ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) | ||
Theorem | mamulid 20651* | The identity matrix (as operation in maps-to notation) is a left identity (for any matrix with the same number of rows). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑀, 𝑁〉) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) ⇒ ⊢ (𝜑 → (𝐼𝐹𝑋) = 𝑋) | ||
Theorem | mamurid 20652* | The identity matrix (as operation in maps-to notation) is a right identity (for any matrix with the same number of columns). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ 𝐹 = (𝑅 maMul 〈𝑁, 𝑀, 𝑀〉) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑀))) ⇒ ⊢ (𝜑 → (𝑋𝐹𝐼) = 𝑋) | ||
Theorem | matring 20653 | Existence of the matrix ring, see also the statement in [Lang] p. 504: "For a given integer n > 0 the set of square n x n matrices form a ring." (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) | ||
Theorem | matassa 20654 | Existence of the matrix algebra, see also the statement in [Lang] p. 505: "Then Matn(R) is an algebra over R" . (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ AssAlg) | ||
Theorem | matmulcell 20655* | Multiplication in the matrix ring for a single cell of a matrix. (Contributed by AV, 17-Nov-2019.) (Revised by AV, 3-Jul-2022.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ × = (.r‘𝐴) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝐽))))) | ||
Theorem | matmulcellOLD 20656* | Obsolete version of matmulcell 20655 as of 3-Jul-2022 . (Contributed by AV, 17-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝐴) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝐽))))) | ||
Theorem | mpt2matmul 20657* | Multiplication of two N x N matrices given in maps-to notation. (Contributed by AV, 29-Oct-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝐴) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ 𝑋 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐶) & ⊢ 𝑌 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐸) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐸 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑘 = 𝑖 ∧ 𝑚 = 𝑗)) → 𝐷 = 𝐶) & ⊢ ((𝜑 ∧ (𝑚 = 𝑖 ∧ 𝑙 = 𝑗)) → 𝐹 = 𝐸) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑚 ∈ 𝑁) → 𝐷 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑅 Σg (𝑚 ∈ 𝑁 ↦ (𝐷 · 𝐹))))) | ||
Theorem | mat1 20658* | Value of an identity matrix, see also the statement in [Lang] p. 504: "The unit element of the ring of n x n matrices is the matrix In ... whose components are equal to 0 except on the diagonal, in which case they are equal to 1.". (Contributed by Stefan O'Rear, 7-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) | ||
Theorem | mat1ov 20659 | Entries of an identity matrix, deduction form. (Contributed by Stefan O'Rear, 10-Jul-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ (𝜑 → 𝐽 ∈ 𝑁) & ⊢ 𝑈 = (1r‘𝐴) ⇒ ⊢ (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, 1 , 0 )) | ||
Theorem | mat1bas 20660 | The identity matrix is a matrix. (Contributed by AV, 15-Feb-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘(𝑁 Mat 𝑅)) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈ 𝐵) | ||
Theorem | matsc 20661* | The identity matrix multiplied with a scalar. (Contributed by Stefan O'Rear, 16-Jul-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) | ||
Theorem | ofco2 20662 | Distribution law for the function operation and the composition of functions. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘𝑓 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘ 𝐻) ∘𝑓 𝑅(𝐺 ∘ 𝐻))) | ||
Theorem | oftpos 20663 | The transposition of the value of a function operation for two functions is the value of the function operation for the two functions transposed. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos (𝐹 ∘𝑓 𝑅𝐺) = (tpos 𝐹 ∘𝑓 𝑅tpos 𝐺)) | ||
Theorem | mattposcl 20664 | The transpose of a square matrix is a square matrix of the same size. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵) | ||
Theorem | mattpostpos 20665 | The transpose of the transpose of a square matrix is the square matrix itself. (Contributed by SO, 17-Jul-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → tpos tpos 𝑀 = 𝑀) | ||
Theorem | mattposvs 20666 | The transposition of a matrix multiplied with a scalar equals the transposed matrix multiplied with the scalar, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = (𝑋 · tpos 𝑌)) | ||
Theorem | mattpos1 20667 | The transposition of the identity matrix is the identity matrix. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → tpos 1 = 1 ) | ||
Theorem | tposmap 20668 | The transposition of an I X J -matrix is a J X I -matrix, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
⊢ (𝐴 ∈ (𝐵 ↑𝑚 (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵 ↑𝑚 (𝐽 × 𝐼))) | ||
Theorem | mamutpos 20669 | Behavior of transposes in matrix products, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐺 = (𝑅 maMul 〈𝑃, 𝑁, 𝑀〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑃))) ⇒ ⊢ (𝜑 → tpos (𝑋𝐹𝑌) = (tpos 𝑌𝐺tpos 𝑋)) | ||
Theorem | mattposm 20670 | Multiplying two transposed matrices results in the transposition of the product of the two matrices. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = (.r‘𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = (tpos 𝑌 · tpos 𝑋)) | ||
Theorem | matgsumcl 20671* | Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) | ||
Theorem | madetsumid 20672* | The identity summand in the Leibniz' formula of a determinant for a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑈 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) | ||
Theorem | matepmcl 20673* | Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) | ||
Theorem | matepm2cl 20674* | Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 (𝑛𝑀(𝑄‘𝑛)) ∈ (Base‘𝑅)) | ||
Theorem | madetsmelbas 20675* | A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → (((𝑌 ∘ 𝑆)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) | ||
Theorem | madetsmelbas2 20676* | A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → (((𝑌 ∘ 𝑆)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛𝑀(𝑄‘𝑛))))) ∈ (Base‘𝑅)) | ||
As already mentioned before, and shown in mat0dimbas0 20677, the empty set is the sole zero-dimensional matrix (also called "empty matrix", see Wikipedia https://en.wikipedia.org/wiki/Matrix_(mathematics)#Empty_matrices). In the following, some properties of the empty matrix are shown, especially that the empty matrix over an arbitrary ring forms a commutative ring, see mat0dimcrng 20681. For the one-dimensional case, it can be shown that a ring of matrices with dimension 1 is isomorphic to the underlying ring, see mat1ric 20698. | ||
Theorem | mat0dimbas0 20677 | The empty set is the one and only matrix of dimension 0, called "the empty matrix". (Contributed by AV, 27-Feb-2019.) |
⊢ (𝑅 ∈ 𝑉 → (Base‘(∅ Mat 𝑅)) = {∅}) | ||
Theorem | mat0dim0 20678 | The zero of the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
⊢ 𝐴 = (∅ Mat 𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (0g‘𝐴) = ∅) | ||
Theorem | mat0dimid 20679 | The identity of the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
⊢ 𝐴 = (∅ Mat 𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (1r‘𝐴) = ∅) | ||
Theorem | mat0dimscm 20680 | The scalar multiplication in the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
⊢ 𝐴 = (∅ Mat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) | ||
Theorem | mat0dimcrng 20681 | The algebra of matrices with dimension 0 (over an arbitrary ring!) is a commutative ring. (Contributed by AV, 10-Aug-2019.) |
⊢ 𝐴 = (∅ Mat 𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐴 ∈ CRing) | ||
Theorem | mat1dimelbas 20682* | A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.) |
⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ ∃𝑟 ∈ 𝐵 𝑀 = {〈𝑂, 𝑟〉})) | ||
Theorem | mat1dimbas 20683 | A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.) |
⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → {〈𝑂, 𝑋〉} ∈ (Base‘𝐴)) | ||
Theorem | mat1dim0 20684 | The zero of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019.) |
⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (0g‘𝐴) = {〈𝑂, (0g‘𝑅)〉}) | ||
Theorem | mat1dimid 20685 | The identity of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019.) |
⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (1r‘𝐴) = {〈𝑂, (1r‘𝑅)〉}) | ||
Theorem | mat1dimscm 20686 | The scalar multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.) |
⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝐴){〈𝑂, 𝑌〉}) = {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉}) | ||
Theorem | mat1dimmul 20687 | The ring multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.) (Proof shortened by AV, 18-Apr-2021.) |
⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑋〉} (.r‘𝐴){〈𝑂, 𝑌〉}) = {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉}) | ||
Theorem | mat1dimcrng 20688 | The algebra of matrices with dimension 1 over a commutative ring is a commutative ring. (Contributed by AV, 16-Aug-2019.) |
⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) → 𝐴 ∈ CRing) | ||
Theorem | mat1f1o 20689* | There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) | ||
Theorem | mat1rhmval 20690* | The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = {〈𝑂, 𝑋〉}) | ||
Theorem | mat1rhmelval 20691* | The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐸(𝐹‘𝑋)𝐸) = 𝑋) | ||
Theorem | mat1rhmcl 20692* | The value of the ring homomorphism 𝐹 is a matrix with dimension 1. (Contributed by AV, 22-Dec-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) ∈ 𝐵) | ||
Theorem | mat1f 20693* | There is a function from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾⟶𝐵) | ||
Theorem | mat1ghm 20694* | There is a group homomorphism from the additive group of a ring to the additive group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 ∈ (𝑅 GrpHom 𝐴)) | ||
Theorem | mat1mhm 20695* | There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝐴) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 ∈ (𝑀 MndHom 𝑁)) | ||
Theorem | mat1rhm 20696* | There is a ring homomorphism from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 ∈ (𝑅 RingHom 𝐴)) | ||
Theorem | mat1rngiso 20697* | There is a ring isomorphism from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 ∈ (𝑅 RingIso 𝐴)) | ||
Theorem | mat1ric 20698 | A ring is isomorphic to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 30-Dec-2019.) |
⊢ 𝐴 = ({𝐸} Mat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑅 ≃𝑟 𝐴) | ||
According to Wikipedia ("Diagonal Matrix", 8-Dec-2019, https://en.wikipedia.org/wiki/Diagonal_matrix): "In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices." The diagonal matrices are mentioned in [Lang] p. 576, but without giving them a dedicated definition. Furthermore, "A diagonal matrix with all its main diagonal entries equal is a scalar matrix, that is, a scalar multiple 𝜆 ∗ 𝐼 of the identity matrix 𝐼. Its effect on a vector is scalar multiplication by 𝜆 [see scmatscm 20724!]". The scalar multiples of the identity matrix are mentioned in [Lang] p. 504, but without giving them a special name. The main results of this subsection are the definitions of the sets of diagonal and scalar matrices (df-dmat 20701 and df-scmat 20702), basic properties of (elements of) these sets, and theorems showing that the diagonal matrices are a subring of the ring of square matrices (dmatsrng 20712), that the scalar matrices are a subring of the ring of square matrices (scmatsrng 20731), that the scalar matrices are a subring of the ring of diagonal matrices (scmatsrng1 20734) and that the ring of scalar matrices (over a commutative ring) is a commutative ring (scmatcrng 20732). | ||
Syntax | cdmat 20699 | Extend class notation for the algebra of diagonal matrices. |
class DMat | ||
Syntax | cscmat 20700 | Extend class notation for the algebra of scalar matrices. |
class ScMat |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |