HomeHome Metamath Proof Explorer
Theorem List (p. 207 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 20601-20700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-bl 20601* Define the metric space ball function. See blval 23548 for its value. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.)
ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧}))
 
Definitiondf-mopn 20602 Define a function whose value is the family of open sets of a metric space. See elmopn 23604 for its main property. (Contributed by NM, 1-Sep-2006.)
MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
 
Definitiondf-fbas 20603* Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑥 ∩ 𝒫 (𝑦𝑧)) ≠ ∅)})
 
Definitiondf-fg 20604* Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
 
Definitiondf-metu 20605* Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
metUnif = (𝑑 ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))))
 
Syntaxccnfld 20606 Extend class notation with the field of complex numbers.
class fld
 
Definitiondf-cnfld 20607 The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator, for instance (ℂfld ↾ 𝔸) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex 20609, cnfldadd 20611, cnfldmul 20612, cnfldcj 20613, cnfldtset 20614, cnfldle 20615, cnfldds 20616, and cnfldbas 20610. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.)

fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
 
Theoremcnfldstr 20608 The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
fld Struct ⟨1, 13⟩
 
Theoremcnfldex 20609 The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
fld ∈ V
 
Theoremcnfldbas 20610 The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
ℂ = (Base‘ℂfld)
 
Theoremcnfldadd 20611 The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
+ = (+g‘ℂfld)
 
Theoremcnfldmul 20612 The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
· = (.r‘ℂfld)
 
Theoremcnfldcj 20613 The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.)
∗ = (*𝑟‘ℂfld)
 
Theoremcnfldtset 20614 The topology component of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
(MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld)
 
Theoremcnfldle 20615 The ordering of the field of complex numbers. Note that this is not actually an ordering on , but we put it in the structure anyway because restricting to does not affect this component, so that (ℂflds ℝ) is an ordered field even though fld itself is not. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
≤ = (le‘ℂfld)
 
Theoremcnfldds 20616 The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
(abs ∘ − ) = (dist‘ℂfld)
 
Theoremcnfldunif 20617 The uniform structure component of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017.)
(metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld)
 
Theoremcnfldfun 20618 The field of complex numbers is a function. The proof is much shorter than the proof of cnfldfunALT 20619 by using cnfldstr 20608 and structn0fun 16861: in addition, it must be shown that ∅ ∉ ℂfld. (Contributed by AV, 18-Nov-2021.)
Fun ℂfld
 
TheoremcnfldfunALT 20619 The field of complex numbers is a function. Alternate proof of cnfldfun 20618 not requiring that the index set of the components is ordered, but using quadratically many inequalities for the indices. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 11-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Fun ℂfld
 
TheoremcnfldfunALTOLD 20620 Obsolete proof of cnfldfunALT 20619 as of 10-Nov-2024. The field of complex numbers is a function. (Contributed by AV, 14-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Fun ℂfld
 
Theoremxrsstr 20621 The extended real structure is a structure. (Contributed by Mario Carneiro, 21-Aug-2015.)
*𝑠 Struct ⟨1, 12⟩
 
Theoremxrsex 20622 The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.)
*𝑠 ∈ V
 
Theoremxrsbas 20623 The base set of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.)
* = (Base‘ℝ*𝑠)
 
Theoremxrsadd 20624 The addition operation of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.)
+𝑒 = (+g‘ℝ*𝑠)
 
Theoremxrsmul 20625 The multiplication operation of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.)
·e = (.r‘ℝ*𝑠)
 
Theoremxrstset 20626 The topology component of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.)
(ordTop‘ ≤ ) = (TopSet‘ℝ*𝑠)
 
Theoremxrsle 20627 The ordering of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.)
≤ = (le‘ℝ*𝑠)
 
Theoremcncrng 20628 The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.)
fld ∈ CRing
 
Theoremcnring 20629 The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
fld ∈ Ring
 
Theoremxrsmcmn 20630 The "multiplicative group" of the extended reals is a commutative monoid (even though the "additive group" is not a semigroup, see xrsmgmdifsgrp 20644.) (Contributed by Mario Carneiro, 21-Aug-2015.)
(mulGrp‘ℝ*𝑠) ∈ CMnd
 
Theoremcnfld0 20631 Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
0 = (0g‘ℂfld)
 
Theoremcnfld1 20632 One is the unit element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
1 = (1r‘ℂfld)
 
Theoremcnfldneg 20633 The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
(𝑋 ∈ ℂ → ((invg‘ℂfld)‘𝑋) = -𝑋)
 
Theoremcnfldplusf 20634 The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.)
+ = (+𝑓‘ℂfld)
 
Theoremcnfldsub 20635 The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.)
− = (-g‘ℂfld)
 
Theoremcndrng 20636 The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
fld ∈ DivRing
 
Theoremcnflddiv 20637 The division operation in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
/ = (/r‘ℂfld)
 
Theoremcnfldinv 20638 The multiplicative inverse in the field of complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋))
 
Theoremcnfldmulg 20639 The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))
 
Theoremcnfldexp 20640 The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))
 
Theoremcnsrng 20641 The complex numbers form a *-ring. (Contributed by Mario Carneiro, 6-Oct-2015.)
fld ∈ *-Ring
 
Theoremxrsmgm 20642 The "additive group" of the extended reals is a magma. (Contributed by AV, 30-Jan-2020.)
*𝑠 ∈ Mgm
 
Theoremxrsnsgrp 20643 The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.)
*𝑠 ∉ Smgrp
 
Theoremxrsmgmdifsgrp 20644 The "additive group" of the extended reals is a magma but not a semigroup, and therefore also not a monoid nor a group, in contrast to the "multiplicative group", see xrsmcmn 20630. (Contributed by AV, 30-Jan-2020.)
*𝑠 ∈ (Mgm ∖ Smgrp)
 
Theoremxrs1mnd 20645 The extended real numbers, restricted to * ∖ {-∞}, form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp 20644. (Contributed by Mario Carneiro, 27-Nov-2014.)
𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))       𝑅 ∈ Mnd
 
Theoremxrs10 20646 The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015.)
𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))       0 = (0g𝑅)
 
Theoremxrs1cmn 20647 The extended real numbers restricted to * ∖ {-∞} form a commutative monoid. They are not a group because 1 + +∞ = 2 + +∞ even though 1 ≠ 2. (Contributed by Mario Carneiro, 27-Nov-2014.)
𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))       𝑅 ∈ CMnd
 
Theoremxrge0subm 20648 The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))       (0[,]+∞) ∈ (SubMnd‘𝑅)
 
Theoremxrge0cmn 20649 The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015.)
(ℝ*𝑠s (0[,]+∞)) ∈ CMnd
 
Theoremxrsds 20650* The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.)
𝐷 = (dist‘ℝ*𝑠)       𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
 
Theoremxrsdsval 20651 The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.)
𝐷 = (dist‘ℝ*𝑠)       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)))
 
Theoremxrsdsreval 20652 The metric of the extended real number structure coincides with the real number metric on the reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝐷 = (dist‘ℝ*𝑠)       ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))
 
Theoremxrsdsreclblem 20653 Lemma for xrsdsreclb 20654. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝐷 = (dist‘ℝ*𝑠)       (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
 
Theoremxrsdsreclb 20654 The metric of the extended real number structure is only real when both arguments are real. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝐷 = (dist‘ℝ*𝑠)       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
 
Theoremcnsubmlem 20655* Lemma for nn0subm 20662 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝑥𝐴𝑥 ∈ ℂ)    &   ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)    &   0 ∈ 𝐴       𝐴 ∈ (SubMnd‘ℂfld)
 
Theoremcnsubglem 20656* Lemma for resubdrg 20822 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
(𝑥𝐴𝑥 ∈ ℂ)    &   ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)    &   (𝑥𝐴 → -𝑥𝐴)    &   𝐵𝐴       𝐴 ∈ (SubGrp‘ℂfld)
 
Theoremcnsubrglem 20657* Lemma for resubdrg 20822 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
(𝑥𝐴𝑥 ∈ ℂ)    &   ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)    &   (𝑥𝐴 → -𝑥𝐴)    &   1 ∈ 𝐴    &   ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)       𝐴 ∈ (SubRing‘ℂfld)
 
Theoremcnsubdrglem 20658* Lemma for resubdrg 20822 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
(𝑥𝐴𝑥 ∈ ℂ)    &   ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)    &   (𝑥𝐴 → -𝑥𝐴)    &   1 ∈ 𝐴    &   ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)    &   ((𝑥𝐴𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴)       (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐴) ∈ DivRing)
 
Theoremqsubdrg 20659 The rational numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
(ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
 
Theoremzsubrg 20660 The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
ℤ ∈ (SubRing‘ℂfld)
 
Theoremgzsubrg 20661 The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
ℤ[i] ∈ (SubRing‘ℂfld)
 
Theoremnn0subm 20662 The nonnegative integers form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 18-Jun-2015.)
0 ∈ (SubMnd‘ℂfld)
 
Theoremrege0subm 20663 The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.)
(0[,)+∞) ∈ (SubMnd‘ℂfld)
 
Theoremabsabv 20664 The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014.)
abs ∈ (AbsVal‘ℂfld)
 
Theoremzsssubrg 20665 The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
(𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅)
 
Theoremqsssubdrg 20666 The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → ℚ ⊆ 𝑅)
 
Theoremcnsubrg 20667 There are no subrings of the complex numbers strictly between and . (Contributed by Mario Carneiro, 15-Oct-2015.)
((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ})
 
Theoremcnmgpabl 20668 The unit group of the complex numbers is an abelian group. (Contributed by Mario Carneiro, 21-Jun-2015.)
𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))       𝑀 ∈ Abel
 
Theoremcnmgpid 20669 The group identity element of nonzero complex number multiplication is one. (Contributed by Steve Rodriguez, 23-Feb-2007.) (Revised by AV, 26-Aug-2021.)
𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))       (0g𝑀) = 1
 
Theoremcnmsubglem 20670* Lemma for rpmsubg 20671 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.)
𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))    &   (𝑥𝐴𝑥 ∈ ℂ)    &   (𝑥𝐴𝑥 ≠ 0)    &   ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)    &   1 ∈ 𝐴    &   (𝑥𝐴 → (1 / 𝑥) ∈ 𝐴)       𝐴 ∈ (SubGrp‘𝑀)
 
Theoremrpmsubg 20671 The positive reals form a multiplicative subgroup of the complex numbers. (Contributed by Mario Carneiro, 21-Jun-2015.)
𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))       + ∈ (SubGrp‘𝑀)
 
Theoremgzrngunitlem 20672 Lemma for gzrngunit 20673. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑍 = (ℂflds ℤ[i])       (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴))
 
Theoremgzrngunit 20673 The units on ℤ[i] are the gaussian integers with norm 1. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑍 = (ℂflds ℤ[i])       (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
 
Theoremgsumfsum 20674* Relate a group sum on fld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
 
Theoremregsumfsum 20675* Relate a group sum on (ℂflds ℝ) to a finite sum on the reals. Cf. gsumfsum 20674. (Contributed by Thierry Arnoux, 7-Sep-2018.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)       (𝜑 → ((ℂflds ℝ) Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
 
Theoremexpmhm 20676* Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.)
𝑁 = (ℂflds0)    &   𝑀 = (mulGrp‘ℂfld)       (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀))
 
Theoremnn0srg 20677 The nonnegative integers form a semiring (commutative by subcmn 19447). (Contributed by Thierry Arnoux, 1-May-2018.)
(ℂflds0) ∈ SRing
 
Theoremrge0srg 20678 The nonnegative real numbers form a semiring (commutative by subcmn 19447). (Contributed by Thierry Arnoux, 6-Sep-2018.)
(ℂflds (0[,)+∞)) ∈ SRing
 
10.8.2  Ring of integers

According to Wikipedia ("Integer", 25-May-2019, https://en.wikipedia.org/wiki/Integer) "The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of [unital] rings, characterizes the ring 𝑍." In set.mm, there was no explicit definition for the ring of integers until June 2019, but it was denoted by (ℂflds ℤ), the field of complex numbers restricted to the integers. In zringring 20682 it is shown that this restriction is a ring (it is actually a principal ideal ring as shown in zringlpir 20698), and zringbas 20685 shows that its base set is the integers. As of June 2019, there is an abbreviation of this expression as Definition df-zring 20680 of the ring of integers.

Remark: Instead of using the symbol "ZZrng" analogous to fld used for the field of complex numbers, we have chosen the version with an "i" to indicate that the ring of integers is a unital ring, see also Wikipedia ("Rng (algebra)", 9-Jun-2019, https://en.wikipedia.org/wiki/Rng_(algebra) 20680).

 
Syntaxczring 20679 Extend class notation with the (unital) ring of integers.
class ring
 
Definitiondf-zring 20680 The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.)
ring = (ℂflds ℤ)
 
Theoremzringcrng 20681 The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.)
ring ∈ CRing
 
Theoremzringring 20682 The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.)
ring ∈ Ring
 
Theoremzringabl 20683 The ring of integers is an (additive) abelian group. (Contributed by AV, 13-Jun-2019.)
ring ∈ Abel
 
Theoremzringgrp 20684 The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.)
ring ∈ Grp
 
Theoremzringbas 20685 The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
ℤ = (Base‘ℤring)
 
Theoremzringplusg 20686 The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.)
+ = (+g‘ℤring)
 
Theoremzringmulg 20687 The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(.g‘ℤring)𝐵) = (𝐴 · 𝐵))
 
Theoremzringmulr 20688 The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
· = (.r‘ℤring)
 
Theoremzring0 20689 The neutral element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
0 = (0g‘ℤring)
 
Theoremzring1 20690 The multiplicative neutral element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
1 = (1r‘ℤring)
 
Theoremzringnzr 20691 The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.)
ring ∈ NzRing
 
Theoremdvdsrzring 20692 Ring divisibility in the ring of integers corresponds to ordinary divisibility in . (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
∥ = (∥r‘ℤring)
 
Theoremzringlpirlem1 20693 Lemma for zringlpir 20698. A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
(𝜑𝐼 ∈ (LIdeal‘ℤring))    &   (𝜑𝐼 ≠ {0})       (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)
 
Theoremzringlpirlem2 20694 Lemma for zringlpir 20698. A nonzero ideal of integers contains the least positive element. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Revised by AV, 27-Sep-2020.)
(𝜑𝐼 ∈ (LIdeal‘ℤring))    &   (𝜑𝐼 ≠ {0})    &   𝐺 = inf((𝐼 ∩ ℕ), ℝ, < )       (𝜑𝐺𝐼)
 
Theoremzringlpirlem3 20695 Lemma for zringlpir 20698. All elements of a nonzero ideal of integers are divided by the least one. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.)
(𝜑𝐼 ∈ (LIdeal‘ℤring))    &   (𝜑𝐼 ≠ {0})    &   𝐺 = inf((𝐼 ∩ ℕ), ℝ, < )    &   (𝜑𝑋𝐼)       (𝜑𝐺𝑋)
 
Theoremzringinvg 20696 The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
(𝐴 ∈ ℤ → -𝐴 = ((invg‘ℤring)‘𝐴))
 
Theoremzringunit 20697 The units of are the integers with norm 1, i.e. 1 and -1. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
(𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
 
Theoremzringlpir 20698 The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.)
ring ∈ LPIR
 
Theoremzringndrg 20699 The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021.)
ring ∉ DivRing
 
Theoremzringcyg 20700 The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 9-Jun-2019.)
ring ∈ CycGrp
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >