![]() |
Metamath
Proof Explorer Theorem List (p. 207 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | subrgid 20601 | Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) | ||
Theorem | subrgring 20602 | A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) | ||
Theorem | subrgcrng 20603 | A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing) | ||
Theorem | subrgrcl 20604 | Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.) |
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | ||
Theorem | subrgsubg 20605 | A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | ||
Theorem | subrgsubrng 20606 | A subring of a unital ring is a subring of a non-unital ring. (Contributed by AV, 30-Mar-2025.) |
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubRng‘𝑅)) | ||
Theorem | subrg0 20607 | A subring always has the same additive identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘𝑆)) | ||
Theorem | subrg1cl 20608 | A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) | ||
Theorem | subrgbas 20609 | Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) | ||
Theorem | subrg1 20610 | A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r‘𝑆)) | ||
Theorem | subrgacl 20611 | A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 + 𝑌) ∈ 𝐴) | ||
Theorem | subrgmcl 20612 | A subring is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 30-Mar-2025.) |
⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 · 𝑌) ∈ 𝐴) | ||
Theorem | subrgsubm 20613 | A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) | ||
Theorem | subrgdvds 20614 | If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝐸 = (∥r‘𝑆) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 ⊆ ∥ ) | ||
Theorem | subrguss 20615 | A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) | ||
Theorem | subrginv 20616 | A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝐽 = (invr‘𝑆) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) = (𝐽‘𝑋)) | ||
Theorem | subrgdv 20617 | A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ / = (/r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝐸 = (/r‘𝑆) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌)) | ||
Theorem | subrgunit 20618 | An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴))) | ||
Theorem | subrgugrp 20619 | The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) | ||
Theorem | issubrg2 20620* | Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) | ||
Theorem | opprsubrg 20621 | Being a subring is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.) |
⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (SubRing‘𝑅) = (SubRing‘𝑂) | ||
Theorem | subrgnzr 20622 | A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ NzRing) | ||
Theorem | subrgint 20623 | The intersection of a nonempty collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
⊢ ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRing‘𝑅)) | ||
Theorem | subrgin 20624 | The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑅)) → (𝐴 ∩ 𝐵) ∈ (SubRing‘𝑅)) | ||
Theorem | subrgmre 20625 | The subrings of a ring are a Moore system. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (Moore‘𝐵)) | ||
Theorem | subsubrg 20626 | A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) | ||
Theorem | subsubrg2 20627 | The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (SubRing‘𝑆) = ((SubRing‘𝑅) ∩ 𝒫 𝐴)) | ||
Theorem | issubrg3 20628 | A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)))) | ||
Theorem | resrhm 20629 | Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.) |
⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇)) | ||
Theorem | resrhm2b 20630 | Restriction of the codomain of a (ring) homomorphism. resghm2b 19274 analog. (Contributed by SN, 7-Feb-2025.) |
⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈))) | ||
Theorem | rhmeql 20631 | The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆)) | ||
Theorem | rhmima 20632 | The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubRing‘𝑁)) | ||
Theorem | rnrhmsubrg 20633 | The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.) |
⊢ (𝐹 ∈ (𝑀 RingHom 𝑁) → ran 𝐹 ∈ (SubRing‘𝑁)) | ||
Theorem | cntzsubr 20634 | Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubRing‘𝑅)) | ||
Theorem | pwsdiagrhm 20635* | Diagonal homomorphism into a structure power (Rings). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌)) | ||
Theorem | subrgpropd 20636* | If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿)) | ||
Theorem | rhmpropd 20637* | Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐽)𝑦) = (𝑥(.r‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀)) | ||
The "category of non-unital rings" RngCat is the category of all non-unital rings Rng in a universe and non-unital ring homomorphisms RngHom between these rings. This category is defined as "category restriction" of the category of extensible structures ExtStrCat, which restricts the objects to non-unital rings and the morphisms to the non-unital ring homomorphisms, while the composition of morphisms is preserved, see df-rngc 20639. Alternately, the category of non-unital rings could have been defined as extensible structure consisting of three components/slots for the objects, morphisms and composition, see dfrngc2 20650. Since we consider only "small categories" (i.e. categories whose objects and morphisms are actually sets and not proper classes), the objects of the category (i.e. the base set of the category regarded as extensible structure) are a subset of the non-unital rings (relativized to a subset or "universe" 𝑢) (𝑢 ∩ Rng), see rngcbas 20643, and the morphisms/arrows are the non-unital ring homomorphisms restricted to this subset of the non-unital rings ( RngHom ↾ (𝐵 × 𝐵)), see rngchomfval 20644, whereas the composition is the ordinary composition of functions, see rngccofval 20648 and rngcco 20649. By showing that the non-unital ring homomorphisms between non-unital rings are a subcategory subset (⊆cat) of the mappings between base sets of extensible structures, see rnghmsscmap 20652, it can be shown that the non-unital ring homomorphisms between non-unital rings are a subcategory (Subcat) of the category of extensible structures, see rnghmsubcsetc 20655. It follows that the category of non-unital rings RngCat is actually a category, see rngccat 20656 with the identity function as identity arrow, see rngcid 20657. | ||
Syntax | crngc 20638 | Extend class notation to include the category Rng. |
class RngCat | ||
Definition | df-rngc 20639 | Definition of the category Rng, relativized to a subset 𝑢. This is the category of all non-unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))))) | ||
Theorem | rngcval 20640 | Value of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) | ||
Theorem | rnghmresfn 20641 | The class of non-unital ring homomorphisms restricted to subsets of non-unital rings is a function. (Contributed by AV, 4-Mar-2020.) |
⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) | ||
Theorem | rnghmresel 20642 | An element of the non-unital ring homomorphisms restricted to a subset of non-unital rings is a non-unital ring homomorphisms. (Contributed by AV, 9-Mar-2020.) |
⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHom 𝑌)) | ||
Theorem | rngcbas 20643 | Set of objects of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | ||
Theorem | rngchomfval 20644 | Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | ||
Theorem | rngchom 20645 | Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RngHom 𝑌)) | ||
Theorem | elrngchom 20646 | A morphism of non-unital rings is a function. (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) | ||
Theorem | rngchomfeqhom 20647 | The functionalized Hom-set operation equals the Hom-set operation in the category of non-unital rings (in a universe). (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) | ||
Theorem | rngccofval 20648 | Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | ||
Theorem | rngcco 20649 | Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) & ⊢ (𝜑 → 𝐺:(Base‘𝑌)⟶(Base‘𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) | ||
Theorem | dfrngc2 20650 | Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | ||
Theorem | rnghmsscmap2 20651* | The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of non-unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Rng ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
Theorem | rnghmsscmap 20652* | The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Rng ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
Theorem | rnghmsubcsetclem1 20653 | Lemma 1 for rnghmsubcsetc 20655. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
Theorem | rnghmsubcsetclem2 20654* | Lemma 2 for rnghmsubcsetc 20655. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
Theorem | rnghmsubcsetc 20655 | The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | ||
Theorem | rngccat 20656 | The category of non-unital rings is a category. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 9-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
Theorem | rngcid 20657 | The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑆 = (Base‘𝑋) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) | ||
Theorem | rngcsect 20658 | A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Base‘𝑋) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) | ||
Theorem | rngcinv 20659 | An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = ◡𝐹))) | ||
Theorem | rngciso 20660 | An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIso 𝑌))) | ||
Theorem | rngcifuestrc 20661* | The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020.) |
⊢ 𝑅 = (RngCat‘𝑈) & ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝐸)𝐺) | ||
Theorem | funcrngcsetc 20662* | The "natural forgetful functor" from the category of non-unital rings into the category of sets which sends each non-unital ring to its underlying set (base set) and the morphisms (non-unital ring homomorphisms) to mappings of the corresponding base sets. An alternate proof is provided in funcrngcsetcALT 20663, using cofuval2 17951 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 20661, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 18218. (Contributed by AV, 26-Mar-2020.) |
⊢ 𝑅 = (RngCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
Theorem | funcrngcsetcALT 20663* | Alternate proof of funcrngcsetc 20662, using cofuval2 17951 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 20661, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 18218. Surprisingly, this proof is longer than the direct proof given in funcrngcsetc 20662. (Contributed by AV, 30-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑅 = (RngCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
Theorem | zrinitorngc 20664 | The zero ring is an initial object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (InitO‘𝐶)) | ||
Theorem | zrtermorngc 20665 | The zero ring is a terminal object in the category of non-unital rings. (Contributed by AV, 17-Apr-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (TermO‘𝐶)) | ||
Theorem | zrzeroorngc 20666 | The zero ring is a zero object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (ZeroO‘𝐶)) | ||
The "category of unital rings" RingCat is the category of all (unital) rings Ring in a universe and (unital) ring homomorphisms RingHom between these rings. This category is defined as "category restriction" of the category of extensible structures ExtStrCat, which restricts the objects to (unital) rings and the morphisms to the (unital) ring homomorphisms, while the composition of morphisms is preserved, see df-ringc 20668. Alternately, the category of unital rings could have been defined as extensible structure consisting of three components/slots for the objects, morphisms and composition, see dfringc2 20679. In the following, we omit the predicate "unital", so that "ring" and "ring homomorphism" (without predicate) always mean "unital ring" and "unital ring homomorphism". Since we consider only "small categories" (i.e., categories whose objects and morphisms are actually sets and not proper classes), the objects of the category (i.e. the base set of the category regarded as extensible structure) are a subset of the rings (relativized to a subset or "universe" 𝑢) (𝑢 ∩ Ring), see ringcbas 20672, and the morphisms/arrows are the ring homomorphisms restricted to this subset of the rings ( RingHom ↾ (𝐵 × 𝐵)), see ringchomfval 20673, whereas the composition is the ordinary composition of functions, see ringccofval 20677 and ringcco 20678. By showing that the ring homomorphisms between rings are a subcategory subset (⊆cat) of the mappings between base sets of extensible structures, see rhmsscmap 20681, it can be shown that the ring homomorphisms between rings are a subcategory (Subcat) of the category of extensible structures, see rhmsubcsetc 20684. It follows that the category of rings RingCat is actually a category, see ringccat 20685 with the identity function as identity arrow, see ringcid 20686. Furthermore, it is shown that the ring homomorphisms between rings are a subcategory subset of the non-unital ring homomorphisms between non-unital rings, see rhmsscrnghm 20687, and that the ring homomorphisms between rings are a subcategory of the category of non-unital rings, see rhmsubcrngc 20690. By this, the restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings, see rngcresringcat 20691: ((RngCat‘𝑈) ↾cat ( RingHom ↾ (𝐵 × 𝐵))) = (RingCat‘𝑈)). Finally, it is shown that the "natural forgetful functor" from the category of rings into the category of sets is the function which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets, see funcringcsetc 20696. | ||
Syntax | cringc 20667 | Extend class notation to include the category Ring. |
class RingCat | ||
Definition | df-ringc 20668 | Definition of the category Ring, relativized to a subset 𝑢. See also the note in [Lang] p. 91, and the item Rng in [Adamek] p. 478. This is the category of all unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))))) | ||
Theorem | ringcval 20669 | Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) | ||
Theorem | rhmresfn 20670 | The class of unital ring homomorphisms restricted to subsets of unital rings is a function. (Contributed by AV, 10-Mar-2020.) |
⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) | ||
Theorem | rhmresel 20671 | An element of the unital ring homomorphisms restricted to a subset of unital rings is a unital ring homomorphism. (Contributed by AV, 10-Mar-2020.) |
⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RingHom 𝑌)) | ||
Theorem | ringcbas 20672 | Set of objects of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | ||
Theorem | ringchomfval 20673 | Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | ||
Theorem | ringchom 20674 | Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) | ||
Theorem | elringchom 20675 | A morphism of unital rings is a function. (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) | ||
Theorem | ringchomfeqhom 20676 | The functionalized Hom-set operation equals the Hom-set operation in the category of unital rings (in a universe). (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) | ||
Theorem | ringccofval 20677 | Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | ||
Theorem | ringcco 20678 | Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) & ⊢ (𝜑 → 𝐺:(Base‘𝑌)⟶(Base‘𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) | ||
Theorem | dfringc2 20679 | Alternate definition of the category of unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | ||
Theorem | rhmsscmap2 20680* | The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
Theorem | rhmsscmap 20681* | The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
Theorem | rhmsubcsetclem1 20682 | Lemma 1 for rhmsubcsetc 20684. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
Theorem | rhmsubcsetclem2 20683* | Lemma 2 for rhmsubcsetc 20684. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
Theorem | rhmsubcsetc 20684 | The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | ||
Theorem | ringccat 20685 | The category of unital rings is a category. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 9-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
Theorem | ringcid 20686 | The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑆 = (Base‘𝑋) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) | ||
Theorem | rhmsscrnghm 20687 | The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the non-unital ring homomorphisms between non-unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝑆 = (Rng ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHom ↾ (𝑆 × 𝑆))) | ||
Theorem | rhmsubcrngclem1 20688 | Lemma 1 for rhmsubcrngc 20690. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
Theorem | rhmsubcrngclem2 20689* | Lemma 2 for rhmsubcrngc 20690. (Contributed by AV, 12-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
Theorem | rhmsubcrngc 20690 | The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of non-unital rings. (Contributed by AV, 12-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | ||
Theorem | rngcresringcat 20691 | The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = (RingCat‘𝑈)) | ||
Theorem | ringcsect 20692 | A section in the category of unital rings, written out. (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Base‘𝑋) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) | ||
Theorem | ringcinv 20693 | An inverse in the category of unital rings is the converse operation. (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹))) | ||
Theorem | ringciso 20694 | An isomorphism in the category of unital rings is a bijection. (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) | ||
Theorem | ringcbasbas 20695 | An element of the base set of the base set of the category of unital rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ 𝐵) → (Base‘𝑅) ∈ 𝑈) | ||
Theorem | funcringcsetc 20696* | The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 26-Mar-2020.) |
⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
Theorem | zrtermoringc 20697 | The zero ring is a terminal object in the category of unital rings. (Contributed by AV, 17-Apr-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (TermO‘𝐶)) | ||
Theorem | zrninitoringc 20698* | The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing) ⇒ ⊢ (𝜑 → 𝑍 ∉ (InitO‘𝐶)) | ||
Theorem | srhmsubclem1 20699* | Lemma 1 for srhmsubc 20702. (Contributed by AV, 19-Feb-2020.) |
⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) ⇒ ⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (𝑈 ∩ Ring)) | ||
Theorem | srhmsubclem2 20700* | Lemma 2 for srhmsubc 20702. (Contributed by AV, 19-Feb-2020.) |
⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (Base‘(RingCat‘𝑈))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |