| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldcALTV | Structured version Visualization version GIF version | ||
| Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| drhmsubcALTV.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
| drhmsubcALTV.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
| fldhmsubcALTV.d | ⊢ 𝐷 = (𝑈 ∩ Field) |
| fldhmsubcALTV.f | ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) |
| Ref | Expression |
|---|---|
| fldcALTV | ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6855 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (RingCatALTV‘𝑈) ∈ V) | |
| 2 | drhmsubcALTV.j | . . . . 5 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
| 3 | ovex 7402 | . . . . 5 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
| 4 | 2, 3 | fnmpoi 8028 | . . . 4 ⊢ 𝐽 Fn (𝐶 × 𝐶) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐽 Fn (𝐶 × 𝐶)) |
| 6 | fldhmsubcALTV.f | . . . . 5 ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) | |
| 7 | 6, 3 | fnmpoi 8028 | . . . 4 ⊢ 𝐹 Fn (𝐷 × 𝐷) |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐹 Fn (𝐷 × 𝐷)) |
| 9 | drhmsubcALTV.c | . . . 4 ⊢ 𝐶 = (𝑈 ∩ DivRing) | |
| 10 | inex1g 5269 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ DivRing) ∈ V) | |
| 11 | 9, 10 | eqeltrid 2832 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
| 12 | df-field 20617 | . . . . . 6 ⊢ Field = (DivRing ∩ CRing) | |
| 13 | inss1 4196 | . . . . . 6 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
| 14 | 12, 13 | eqsstri 3990 | . . . . 5 ⊢ Field ⊆ DivRing |
| 15 | sslin 4202 | . . . . 5 ⊢ (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) | |
| 16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
| 17 | fldhmsubcALTV.d | . . . 4 ⊢ 𝐷 = (𝑈 ∩ Field) | |
| 18 | 16, 17, 9 | 3sstr4g 3997 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶) |
| 19 | 1, 5, 8, 11, 18 | rescabs 17771 | . 2 ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) = ((RingCatALTV‘𝑈) ↾cat 𝐹)) |
| 20 | 9, 2, 17, 6 | fldcatALTV 48292 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐹) ∈ Cat) |
| 21 | 19, 20 | eqeltrd 2828 | 1 ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 × cxp 5629 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 Catccat 17601 ↾cat cresc 17746 CRingccrg 20119 RingHom crh 20354 DivRingcdr 20614 Fieldcfield 20615 RingCatALTVcringcALTV 48248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-hom 17220 df-cco 17221 df-0g 17380 df-cat 17605 df-cid 17606 df-homf 17607 df-ssc 17748 df-resc 17749 df-subc 17750 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-grp 18844 df-ghm 19121 df-mgp 20026 df-ur 20067 df-ring 20120 df-cring 20121 df-rhm 20357 df-field 20617 df-ringcALTV 48249 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |