![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldcALTV | Structured version Visualization version GIF version |
Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
drhmsubcALTV.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
drhmsubcALTV.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
fldhmsubcALTV.d | ⊢ 𝐷 = (𝑈 ∩ Field) |
fldhmsubcALTV.f | ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) |
Ref | Expression |
---|---|
fldcALTV | ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6908 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (RingCatALTV‘𝑈) ∈ V) | |
2 | drhmsubcALTV.j | . . . . 5 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
3 | ovex 7449 | . . . . 5 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
4 | 2, 3 | fnmpoi 8076 | . . . 4 ⊢ 𝐽 Fn (𝐶 × 𝐶) |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐽 Fn (𝐶 × 𝐶)) |
6 | fldhmsubcALTV.f | . . . . 5 ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) | |
7 | 6, 3 | fnmpoi 8076 | . . . 4 ⊢ 𝐹 Fn (𝐷 × 𝐷) |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐹 Fn (𝐷 × 𝐷)) |
9 | drhmsubcALTV.c | . . . 4 ⊢ 𝐶 = (𝑈 ∩ DivRing) | |
10 | inex1g 5316 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ DivRing) ∈ V) | |
11 | 9, 10 | eqeltrid 2830 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
12 | df-field 20706 | . . . . . 6 ⊢ Field = (DivRing ∩ CRing) | |
13 | inss1 4227 | . . . . . 6 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
14 | 12, 13 | eqsstri 4013 | . . . . 5 ⊢ Field ⊆ DivRing |
15 | sslin 4233 | . . . . 5 ⊢ (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) | |
16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
17 | fldhmsubcALTV.d | . . . 4 ⊢ 𝐷 = (𝑈 ∩ Field) | |
18 | 16, 17, 9 | 3sstr4g 4024 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶) |
19 | 1, 5, 8, 11, 18 | rescabs 17846 | . 2 ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) = ((RingCatALTV‘𝑈) ↾cat 𝐹)) |
20 | 9, 2, 17, 6 | fldcatALTV 47744 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐹) ∈ Cat) |
21 | 19, 20 | eqeltrd 2826 | 1 ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ∩ cin 3945 ⊆ wss 3946 × cxp 5672 Fn wfn 6541 ‘cfv 6546 (class class class)co 7416 ∈ cmpo 7418 Catccat 17672 ↾cat cresc 17819 CRingccrg 20213 RingHom crh 20447 DivRingcdr 20703 Fieldcfield 20704 RingCatALTVcringcALTV 47700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-fz 13533 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-hom 17285 df-cco 17286 df-0g 17451 df-cat 17676 df-cid 17677 df-homf 17678 df-ssc 17821 df-resc 17822 df-subc 17823 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-mhm 18768 df-grp 18926 df-ghm 19203 df-mgp 20114 df-ur 20161 df-ring 20214 df-cring 20215 df-rhm 20450 df-field 20706 df-ringcALTV 47701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |