![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldcALTV | Structured version Visualization version GIF version |
Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
drhmsubcALTV.c | β’ πΆ = (π β© DivRing) |
drhmsubcALTV.j | β’ π½ = (π β πΆ, π β πΆ β¦ (π RingHom π )) |
fldhmsubcALTV.d | β’ π· = (π β© Field) |
fldhmsubcALTV.f | β’ πΉ = (π β π·, π β π· β¦ (π RingHom π )) |
Ref | Expression |
---|---|
fldcALTV | β’ (π β π β (((RingCatALTVβπ) βΎcat π½) βΎcat πΉ) β Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6917 | . . 3 β’ (π β π β (RingCatALTVβπ) β V) | |
2 | drhmsubcALTV.j | . . . . 5 β’ π½ = (π β πΆ, π β πΆ β¦ (π RingHom π )) | |
3 | ovex 7459 | . . . . 5 β’ (π RingHom π ) β V | |
4 | 2, 3 | fnmpoi 8082 | . . . 4 β’ π½ Fn (πΆ Γ πΆ) |
5 | 4 | a1i 11 | . . 3 β’ (π β π β π½ Fn (πΆ Γ πΆ)) |
6 | fldhmsubcALTV.f | . . . . 5 β’ πΉ = (π β π·, π β π· β¦ (π RingHom π )) | |
7 | 6, 3 | fnmpoi 8082 | . . . 4 β’ πΉ Fn (π· Γ π·) |
8 | 7 | a1i 11 | . . 3 β’ (π β π β πΉ Fn (π· Γ π·)) |
9 | drhmsubcALTV.c | . . . 4 β’ πΆ = (π β© DivRing) | |
10 | inex1g 5323 | . . . 4 β’ (π β π β (π β© DivRing) β V) | |
11 | 9, 10 | eqeltrid 2833 | . . 3 β’ (π β π β πΆ β V) |
12 | df-field 20641 | . . . . . 6 β’ Field = (DivRing β© CRing) | |
13 | inss1 4231 | . . . . . 6 β’ (DivRing β© CRing) β DivRing | |
14 | 12, 13 | eqsstri 4016 | . . . . 5 β’ Field β DivRing |
15 | sslin 4237 | . . . . 5 β’ (Field β DivRing β (π β© Field) β (π β© DivRing)) | |
16 | 14, 15 | mp1i 13 | . . . 4 β’ (π β π β (π β© Field) β (π β© DivRing)) |
17 | fldhmsubcALTV.d | . . . 4 β’ π· = (π β© Field) | |
18 | 16, 17, 9 | 3sstr4g 4027 | . . 3 β’ (π β π β π· β πΆ) |
19 | 1, 5, 8, 11, 18 | rescabs 17827 | . 2 β’ (π β π β (((RingCatALTVβπ) βΎcat π½) βΎcat πΉ) = ((RingCatALTVβπ) βΎcat πΉ)) |
20 | 9, 2, 17, 6 | fldcatALTV 47489 | . 2 β’ (π β π β ((RingCatALTVβπ) βΎcat πΉ) β Cat) |
21 | 19, 20 | eqeltrd 2829 | 1 β’ (π β π β (((RingCatALTVβπ) βΎcat π½) βΎcat πΉ) β Cat) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3473 β© cin 3948 β wss 3949 Γ cxp 5680 Fn wfn 6548 βcfv 6553 (class class class)co 7426 β cmpo 7428 Catccat 17653 βΎcat cresc 17800 CRingccrg 20188 RingHom crh 20422 DivRingcdr 20638 Fieldcfield 20639 RingCatALTVcringcALTV 47445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-map 8855 df-pm 8856 df-ixp 8925 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-uz 12863 df-fz 13527 df-struct 17125 df-sets 17142 df-slot 17160 df-ndx 17172 df-base 17190 df-ress 17219 df-plusg 17255 df-hom 17266 df-cco 17267 df-0g 17432 df-cat 17657 df-cid 17658 df-homf 17659 df-ssc 17802 df-resc 17803 df-subc 17804 df-mgm 18609 df-sgrp 18688 df-mnd 18704 df-mhm 18749 df-grp 18907 df-ghm 19182 df-mgp 20089 df-ur 20136 df-ring 20189 df-cring 20190 df-rhm 20425 df-field 20641 df-ringcALTV 47446 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |