| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldcALTV | Structured version Visualization version GIF version | ||
| Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| drhmsubcALTV.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
| drhmsubcALTV.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
| fldhmsubcALTV.d | ⊢ 𝐷 = (𝑈 ∩ Field) |
| fldhmsubcALTV.f | ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) |
| Ref | Expression |
|---|---|
| fldcALTV | ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6837 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (RingCatALTV‘𝑈) ∈ V) | |
| 2 | drhmsubcALTV.j | . . . . 5 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
| 3 | ovex 7382 | . . . . 5 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
| 4 | 2, 3 | fnmpoi 8005 | . . . 4 ⊢ 𝐽 Fn (𝐶 × 𝐶) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐽 Fn (𝐶 × 𝐶)) |
| 6 | fldhmsubcALTV.f | . . . . 5 ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) | |
| 7 | 6, 3 | fnmpoi 8005 | . . . 4 ⊢ 𝐹 Fn (𝐷 × 𝐷) |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐹 Fn (𝐷 × 𝐷)) |
| 9 | drhmsubcALTV.c | . . . 4 ⊢ 𝐶 = (𝑈 ∩ DivRing) | |
| 10 | inex1g 5258 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ DivRing) ∈ V) | |
| 11 | 9, 10 | eqeltrid 2832 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
| 12 | df-field 20617 | . . . . . 6 ⊢ Field = (DivRing ∩ CRing) | |
| 13 | inss1 4188 | . . . . . 6 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
| 14 | 12, 13 | eqsstri 3982 | . . . . 5 ⊢ Field ⊆ DivRing |
| 15 | sslin 4194 | . . . . 5 ⊢ (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) | |
| 16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
| 17 | fldhmsubcALTV.d | . . . 4 ⊢ 𝐷 = (𝑈 ∩ Field) | |
| 18 | 16, 17, 9 | 3sstr4g 3989 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶) |
| 19 | 1, 5, 8, 11, 18 | rescabs 17740 | . 2 ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) = ((RingCatALTV‘𝑈) ↾cat 𝐹)) |
| 20 | 9, 2, 17, 6 | fldcatALTV 48315 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐹) ∈ Cat) |
| 21 | 19, 20 | eqeltrd 2828 | 1 ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 × cxp 5617 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 Catccat 17570 ↾cat cresc 17715 CRingccrg 20119 RingHom crh 20354 DivRingcdr 20614 Fieldcfield 20615 RingCatALTVcringcALTV 48271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-hom 17185 df-cco 17186 df-0g 17345 df-cat 17574 df-cid 17575 df-homf 17576 df-ssc 17717 df-resc 17718 df-subc 17719 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-ghm 19092 df-mgp 20026 df-ur 20067 df-ring 20120 df-cring 20121 df-rhm 20357 df-field 20617 df-ringcALTV 48272 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |