Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldcALTV | Structured version Visualization version GIF version |
Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
drhmsubcALTV.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
drhmsubcALTV.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
fldhmsubcALTV.d | ⊢ 𝐷 = (𝑈 ∩ Field) |
fldhmsubcALTV.f | ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) |
Ref | Expression |
---|---|
fldcALTV | ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6674 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (RingCatALTV‘𝑈) ∈ V) | |
2 | drhmsubcALTV.j | . . . . 5 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
3 | ovex 7184 | . . . . 5 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
4 | 2, 3 | fnmpoi 7773 | . . . 4 ⊢ 𝐽 Fn (𝐶 × 𝐶) |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐽 Fn (𝐶 × 𝐶)) |
6 | fldhmsubcALTV.f | . . . . 5 ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) | |
7 | 6, 3 | fnmpoi 7773 | . . . 4 ⊢ 𝐹 Fn (𝐷 × 𝐷) |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐹 Fn (𝐷 × 𝐷)) |
9 | drhmsubcALTV.c | . . . 4 ⊢ 𝐶 = (𝑈 ∩ DivRing) | |
10 | inex1g 5190 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ DivRing) ∈ V) | |
11 | 9, 10 | eqeltrid 2857 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
12 | df-field 19566 | . . . . . 6 ⊢ Field = (DivRing ∩ CRing) | |
13 | inss1 4134 | . . . . . 6 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
14 | 12, 13 | eqsstri 3927 | . . . . 5 ⊢ Field ⊆ DivRing |
15 | sslin 4140 | . . . . 5 ⊢ (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) | |
16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
17 | fldhmsubcALTV.d | . . . 4 ⊢ 𝐷 = (𝑈 ∩ Field) | |
18 | 16, 17, 9 | 3sstr4g 3938 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶) |
19 | 1, 5, 8, 11, 18 | rescabs 17155 | . 2 ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) = ((RingCatALTV‘𝑈) ↾cat 𝐹)) |
20 | 9, 2, 17, 6 | fldcatALTV 45084 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐹) ∈ Cat) |
21 | 19, 20 | eqeltrd 2853 | 1 ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∩ cin 3858 ⊆ wss 3859 × cxp 5523 Fn wfn 6331 ‘cfv 6336 (class class class)co 7151 ∈ cmpo 7153 Catccat 16986 ↾cat cresc 17130 CRingccrg 19359 RingHom crh 19528 DivRingcdr 19563 Fieldcfield 19564 RingCatALTVcringcALTV 44988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-map 8419 df-pm 8420 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-9 11737 df-n0 11928 df-z 12014 df-dec 12131 df-uz 12276 df-fz 12933 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-hom 16640 df-cco 16641 df-0g 16766 df-cat 16990 df-cid 16991 df-homf 16992 df-ssc 17132 df-resc 17133 df-subc 17134 df-mgm 17911 df-sgrp 17960 df-mnd 17971 df-mhm 18015 df-grp 18165 df-ghm 18416 df-mgp 19301 df-ur 19313 df-ring 19360 df-cring 19361 df-rnghom 19531 df-field 19566 df-ringcALTV 44990 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |