| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldcALTV | Structured version Visualization version GIF version | ||
| Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| drhmsubcALTV.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
| drhmsubcALTV.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
| fldhmsubcALTV.d | ⊢ 𝐷 = (𝑈 ∩ Field) |
| fldhmsubcALTV.f | ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) |
| Ref | Expression |
|---|---|
| fldcALTV | ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6832 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (RingCatALTV‘𝑈) ∈ V) | |
| 2 | drhmsubcALTV.j | . . . . 5 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
| 3 | ovex 7374 | . . . . 5 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
| 4 | 2, 3 | fnmpoi 7997 | . . . 4 ⊢ 𝐽 Fn (𝐶 × 𝐶) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐽 Fn (𝐶 × 𝐶)) |
| 6 | fldhmsubcALTV.f | . . . . 5 ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) | |
| 7 | 6, 3 | fnmpoi 7997 | . . . 4 ⊢ 𝐹 Fn (𝐷 × 𝐷) |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐹 Fn (𝐷 × 𝐷)) |
| 9 | drhmsubcALTV.c | . . . 4 ⊢ 𝐶 = (𝑈 ∩ DivRing) | |
| 10 | inex1g 5252 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ DivRing) ∈ V) | |
| 11 | 9, 10 | eqeltrid 2835 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
| 12 | df-field 20642 | . . . . . 6 ⊢ Field = (DivRing ∩ CRing) | |
| 13 | inss1 4182 | . . . . . 6 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
| 14 | 12, 13 | eqsstri 3976 | . . . . 5 ⊢ Field ⊆ DivRing |
| 15 | sslin 4188 | . . . . 5 ⊢ (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) | |
| 16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)) |
| 17 | fldhmsubcALTV.d | . . . 4 ⊢ 𝐷 = (𝑈 ∩ Field) | |
| 18 | 16, 17, 9 | 3sstr4g 3983 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶) |
| 19 | 1, 5, 8, 11, 18 | rescabs 17735 | . 2 ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) = ((RingCatALTV‘𝑈) ↾cat 𝐹)) |
| 20 | 9, 2, 17, 6 | fldcatALTV 48362 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐹) ∈ Cat) |
| 21 | 19, 20 | eqeltrd 2831 | 1 ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 × cxp 5609 Fn wfn 6471 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 Catccat 17565 ↾cat cresc 17710 CRingccrg 20147 RingHom crh 20382 DivRingcdr 20639 Fieldcfield 20640 RingCatALTVcringcALTV 48318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-hom 17180 df-cco 17181 df-0g 17340 df-cat 17569 df-cid 17570 df-homf 17571 df-ssc 17712 df-resc 17713 df-subc 17714 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-grp 18844 df-ghm 19120 df-mgp 20054 df-ur 20095 df-ring 20148 df-cring 20149 df-rhm 20385 df-field 20642 df-ringcALTV 48319 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |