| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfld | Structured version Visualization version GIF version | ||
| Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isfld | ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-field 20617 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
| 2 | 1 | elin2 4154 | 1 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 CRingccrg 20119 DivRingcdr 20614 Fieldcfield 20615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-in 3910 df-field 20617 |
| This theorem is referenced by: flddrngd 20626 fldcrngd 20627 fldpropd 20655 fldidom 20656 fiidomfld 20659 rng1nfld 20664 fldcat 20668 fldsdrgfld 20683 primefld 20690 ofldlt1 20760 subofld 20762 ofldchr 21483 refld 21526 frlmphllem 21687 frlmphl 21688 recvs 25044 rrxcph 25290 rrx0 25295 ply1pid 26086 lgseisenlem3 27286 lgseisenlem4 27287 isarchiofld 33141 qfld 33236 fracfld 33247 fldgenfld 33259 cnfldfld 33280 reofld 33281 rearchi 33283 qsfld 33435 srafldlvec 33552 rgmoddimOLD 33577 assafld 33604 ccfldextrr 33613 fldextsralvec 33622 extdgcl 33623 extdggt0 33624 fldextid 33626 extdgid 33627 extdgmul 33630 extdg1id 33633 ccfldsrarelvec 33638 2sqr3minply 33747 qqhrhm 33956 matunitlindflem1 37600 matunitlindflem2 37601 matunitlindf 37602 fldhmf1 42067 aks6d1c1p2 42086 aks6d1c2lem4 42104 aks6d1c5lem3 42114 aks6d1c5lem2 42115 aks6d1c6lem1 42147 ricfld 42507 fldcatALTV 48319 |
| Copyright terms: Public domain | W3C validator |