| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfld | Structured version Visualization version GIF version | ||
| Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isfld | ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-field 20692 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
| 2 | 1 | elin2 4178 | 1 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 CRingccrg 20194 DivRingcdr 20689 Fieldcfield 20690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-field 20692 |
| This theorem is referenced by: flddrngd 20701 fldcrngd 20702 fldpropd 20730 fldidom 20731 fiidomfld 20734 rng1nfld 20739 fldcat 20743 fldsdrgfld 20758 primefld 20765 refld 21579 frlmphllem 21740 frlmphl 21741 recvs 25097 rrxcph 25344 rrx0 25349 ply1pid 26140 lgseisenlem3 27340 lgseisenlem4 27341 qfld 33291 fracfld 33302 fldgenfld 33314 ofldlt1 33335 ofldchr 33336 subofld 33338 isarchiofld 33339 cnfldfld 33358 reofld 33359 rearchi 33361 qsfld 33513 srafldlvec 33626 rgmoddimOLD 33650 assafld 33677 ccfldextrr 33688 fldextsralvec 33697 extdgcl 33698 extdggt0 33699 fldextid 33701 extdgid 33702 extdgmul 33705 extdg1id 33707 ccfldsrarelvec 33712 2sqr3minply 33814 qqhrhm 34020 matunitlindflem1 37640 matunitlindflem2 37641 matunitlindf 37642 fldhmf1 42103 aks6d1c1p2 42122 aks6d1c2lem4 42140 aks6d1c5lem3 42150 aks6d1c5lem2 42151 aks6d1c6lem1 42183 ricfld 42553 fldcatALTV 48306 |
| Copyright terms: Public domain | W3C validator |