| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfld | Structured version Visualization version GIF version | ||
| Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isfld | ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-field 20652 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
| 2 | 1 | elin2 4162 | 1 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 CRingccrg 20154 DivRingcdr 20649 Fieldcfield 20650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-field 20652 |
| This theorem is referenced by: flddrngd 20661 fldcrngd 20662 fldpropd 20690 fldidom 20691 fiidomfld 20694 rng1nfld 20699 fldcat 20703 fldsdrgfld 20718 primefld 20725 ofldlt1 20795 subofld 20797 ofldchr 21518 refld 21561 frlmphllem 21722 frlmphl 21723 recvs 25079 rrxcph 25325 rrx0 25330 ply1pid 26121 lgseisenlem3 27321 lgseisenlem4 27322 isarchiofld 33168 qfld 33263 fracfld 33274 fldgenfld 33286 cnfldfld 33307 reofld 33308 rearchi 33310 qsfld 33462 srafldlvec 33575 rgmoddimOLD 33599 assafld 33626 ccfldextrr 33635 fldextsralvec 33644 extdgcl 33645 extdggt0 33646 fldextid 33648 extdgid 33649 extdgmul 33652 extdg1id 33654 ccfldsrarelvec 33659 2sqr3minply 33763 qqhrhm 33972 matunitlindflem1 37603 matunitlindflem2 37604 matunitlindf 37605 fldhmf1 42071 aks6d1c1p2 42090 aks6d1c2lem4 42108 aks6d1c5lem3 42118 aks6d1c5lem2 42119 aks6d1c6lem1 42151 ricfld 42511 fldcatALTV 48312 |
| Copyright terms: Public domain | W3C validator |