![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfld | Structured version Visualization version GIF version |
Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
Ref | Expression |
---|---|
isfld | ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-field 20748 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
2 | 1 | elin2 4212 | 1 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2105 CRingccrg 20251 DivRingcdr 20745 Fieldcfield 20746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-in 3969 df-field 20748 |
This theorem is referenced by: flddrngd 20757 fldcrngd 20758 fldpropd 20786 fldidom 20787 fldidomOLD 20788 fiidomfld 20791 rng1nfld 20796 fldcat 20800 fldsdrgfld 20815 primefld 20822 refld 21654 frlmphllem 21817 frlmphl 21818 recvs 25192 rrxcph 25439 rrx0 25444 ply1pid 26236 lgseisenlem3 27435 lgseisenlem4 27436 fracfld 33289 fldgenfld 33301 ofldlt1 33322 ofldchr 33323 subofld 33325 isarchiofld 33326 cnfldfld 33350 reofld 33351 rearchi 33353 qsfld 33505 srafldlvec 33615 rgmoddimOLD 33637 assafld 33664 ccfldextrr 33675 fldextsralvec 33682 extdgcl 33683 extdggt0 33684 fldextid 33686 extdgid 33687 extdgmul 33688 extdg1id 33690 ccfldsrarelvec 33695 2sqr3minply 33752 qqhrhm 33951 matunitlindflem1 37602 matunitlindflem2 37603 matunitlindf 37604 fldhmf1 42071 aks6d1c1p2 42090 aks6d1c2lem4 42108 aks6d1c5lem3 42118 aks6d1c5lem2 42119 aks6d1c6lem1 42151 ricfld 42516 fldcatALTV 48174 |
Copyright terms: Public domain | W3C validator |