| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfld | Structured version Visualization version GIF version | ||
| Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isfld | ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-field 20617 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
| 2 | 1 | elin2 4162 | 1 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 CRingccrg 20119 DivRingcdr 20614 Fieldcfield 20615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-field 20617 |
| This theorem is referenced by: flddrngd 20626 fldcrngd 20627 fldpropd 20655 fldidom 20656 fiidomfld 20659 rng1nfld 20664 fldcat 20668 fldsdrgfld 20683 primefld 20690 refld 21504 frlmphllem 21665 frlmphl 21666 recvs 25022 rrxcph 25268 rrx0 25273 ply1pid 26064 lgseisenlem3 27264 lgseisenlem4 27265 qfld 33220 fracfld 33231 fldgenfld 33243 ofldlt1 33264 ofldchr 33265 subofld 33267 isarchiofld 33268 cnfldfld 33287 reofld 33288 rearchi 33290 qsfld 33442 srafldlvec 33555 rgmoddimOLD 33579 assafld 33606 ccfldextrr 33615 fldextsralvec 33624 extdgcl 33625 extdggt0 33626 fldextid 33628 extdgid 33629 extdgmul 33632 extdg1id 33634 ccfldsrarelvec 33639 2sqr3minply 33743 qqhrhm 33952 matunitlindflem1 37583 matunitlindflem2 37584 matunitlindf 37585 fldhmf1 42051 aks6d1c1p2 42070 aks6d1c2lem4 42088 aks6d1c5lem3 42098 aks6d1c5lem2 42099 aks6d1c6lem1 42131 ricfld 42491 fldcatALTV 48292 |
| Copyright terms: Public domain | W3C validator |