Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfld | Structured version Visualization version GIF version |
Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
Ref | Expression |
---|---|
isfld | ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-field 20065 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
2 | 1 | elin2 4141 | 1 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2105 CRingccrg 19851 DivRingcdr 20062 Fieldcfield 20063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-in 3903 df-field 20065 |
This theorem is referenced by: fldpropd 20090 primefld 20144 rng1nfld 20620 fldidom 20647 fldidomOLD 20648 fiidomfld 20651 refld 20895 recrng 20897 frlmphllem 21058 frlmphl 21059 recvs 24380 rrxcph 24627 rrx0 24632 ply1pid 25415 lgseisenlem3 26596 lgseisenlem4 26597 ofldlt1 31620 ofldchr 31621 subofld 31623 isarchiofld 31624 reofld 31648 rearchi 31650 srafldlvec 31782 rgmoddim 31799 ccfldextrr 31829 fldextsralvec 31836 extdgcl 31837 extdggt0 31838 fldextid 31840 extdgmul 31842 extdg1id 31844 ccfldsrarelvec 31847 qqhrhm 32045 matunitlindflem1 35833 matunitlindflem2 35834 matunitlindf 35835 fldhmf1 40310 fldcrngd 40465 prjcrv0 40680 fldcat 45899 fldcatALTV 45917 |
Copyright terms: Public domain | W3C validator |