| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfld | Structured version Visualization version GIF version | ||
| Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isfld | ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-field 20641 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
| 2 | 1 | elin2 4166 | 1 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 CRingccrg 20143 DivRingcdr 20638 Fieldcfield 20639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-field 20641 |
| This theorem is referenced by: flddrngd 20650 fldcrngd 20651 fldpropd 20679 fldidom 20680 fiidomfld 20683 rng1nfld 20688 fldcat 20692 fldsdrgfld 20707 primefld 20714 refld 21528 frlmphllem 21689 frlmphl 21690 recvs 25046 rrxcph 25292 rrx0 25297 ply1pid 26088 lgseisenlem3 27288 lgseisenlem4 27289 qfld 33247 fracfld 33258 fldgenfld 33270 ofldlt1 33291 ofldchr 33292 subofld 33294 isarchiofld 33295 cnfldfld 33314 reofld 33315 rearchi 33317 qsfld 33469 srafldlvec 33582 rgmoddimOLD 33606 assafld 33633 ccfldextrr 33642 fldextsralvec 33651 extdgcl 33652 extdggt0 33653 fldextid 33655 extdgid 33656 extdgmul 33659 extdg1id 33661 ccfldsrarelvec 33666 2sqr3minply 33770 qqhrhm 33979 matunitlindflem1 37610 matunitlindflem2 37611 matunitlindf 37612 fldhmf1 42078 aks6d1c1p2 42097 aks6d1c2lem4 42115 aks6d1c5lem3 42125 aks6d1c5lem2 42126 aks6d1c6lem1 42158 ricfld 42518 fldcatALTV 48319 |
| Copyright terms: Public domain | W3C validator |