| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfld | Structured version Visualization version GIF version | ||
| Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isfld | ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-field 20648 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
| 2 | 1 | elin2 4169 | 1 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 CRingccrg 20150 DivRingcdr 20645 Fieldcfield 20646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-field 20648 |
| This theorem is referenced by: flddrngd 20657 fldcrngd 20658 fldpropd 20686 fldidom 20687 fiidomfld 20690 rng1nfld 20695 fldcat 20699 fldsdrgfld 20714 primefld 20721 refld 21535 frlmphllem 21696 frlmphl 21697 recvs 25053 rrxcph 25299 rrx0 25304 ply1pid 26095 lgseisenlem3 27295 lgseisenlem4 27296 qfld 33254 fracfld 33265 fldgenfld 33277 ofldlt1 33298 ofldchr 33299 subofld 33301 isarchiofld 33302 cnfldfld 33321 reofld 33322 rearchi 33324 qsfld 33476 srafldlvec 33589 rgmoddimOLD 33613 assafld 33640 ccfldextrr 33649 fldextsralvec 33658 extdgcl 33659 extdggt0 33660 fldextid 33662 extdgid 33663 extdgmul 33666 extdg1id 33668 ccfldsrarelvec 33673 2sqr3minply 33777 qqhrhm 33986 matunitlindflem1 37617 matunitlindflem2 37618 matunitlindf 37619 fldhmf1 42085 aks6d1c1p2 42104 aks6d1c2lem4 42122 aks6d1c5lem3 42132 aks6d1c5lem2 42133 aks6d1c6lem1 42165 ricfld 42525 fldcatALTV 48323 |
| Copyright terms: Public domain | W3C validator |