Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfld | Structured version Visualization version GIF version |
Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
Ref | Expression |
---|---|
isfld | ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-field 19975 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
2 | 1 | elin2 4135 | 1 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2109 CRingccrg 19765 DivRingcdr 19972 Fieldcfield 19973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-field 19975 |
This theorem is referenced by: fldpropd 20000 primefld 20054 rng1nfld 20530 fldidom 20557 fldidomOLD 20558 fiidomfld 20561 refld 20805 recrng 20807 frlmphllem 20968 frlmphl 20969 recvs 24290 rrxcph 24537 rrx0 24542 ply1pid 25325 lgseisenlem3 26506 lgseisenlem4 26507 ofldlt1 31491 ofldchr 31492 subofld 31494 isarchiofld 31495 reofld 31523 rearchi 31525 srafldlvec 31655 rgmoddim 31672 ccfldextrr 31702 fldextsralvec 31709 extdgcl 31710 extdggt0 31711 fldextid 31713 extdgmul 31715 extdg1id 31717 ccfldsrarelvec 31720 qqhrhm 31918 matunitlindflem1 35752 matunitlindflem2 35753 matunitlindf 35754 fldcrngd 40235 prjcrv0 40450 fldcat 45592 fldcatALTV 45610 |
Copyright terms: Public domain | W3C validator |