![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfld | Structured version Visualization version GIF version |
Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
Ref | Expression |
---|---|
isfld | ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-field 20754 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
2 | 1 | elin2 4226 | 1 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 CRingccrg 20261 DivRingcdr 20751 Fieldcfield 20752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-field 20754 |
This theorem is referenced by: flddrngd 20763 fldcrngd 20764 fldpropd 20792 fldidom 20793 fldidomOLD 20794 fiidomfld 20797 rng1nfld 20802 fldcat 20806 fldsdrgfld 20821 primefld 20828 refld 21660 frlmphllem 21823 frlmphl 21824 recvs 25198 rrxcph 25445 rrx0 25450 ply1pid 26242 lgseisenlem3 27439 lgseisenlem4 27440 fracfld 33275 fldgenfld 33287 ofldlt1 33308 ofldchr 33309 subofld 33311 isarchiofld 33312 cnfldfld 33336 reofld 33337 rearchi 33339 qsfld 33491 srafldlvec 33601 rgmoddimOLD 33623 assafld 33650 ccfldextrr 33661 fldextsralvec 33668 extdgcl 33669 extdggt0 33670 fldextid 33672 extdgid 33673 extdgmul 33674 extdg1id 33676 ccfldsrarelvec 33681 2sqr3minply 33738 qqhrhm 33935 matunitlindflem1 37576 matunitlindflem2 37577 matunitlindf 37578 fldhmf1 42047 aks6d1c1p2 42066 aks6d1c2lem4 42084 aks6d1c5lem3 42094 aks6d1c5lem2 42095 aks6d1c6lem1 42127 ricfld 42485 fldcatALTV 48054 |
Copyright terms: Public domain | W3C validator |