| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfld | Structured version Visualization version GIF version | ||
| Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isfld | ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-field 20647 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
| 2 | 1 | elin2 4150 | 1 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 CRingccrg 20152 DivRingcdr 20644 Fieldcfield 20645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-field 20647 |
| This theorem is referenced by: flddrngd 20656 fldcrngd 20657 fldpropd 20685 fldidom 20686 fiidomfld 20689 rng1nfld 20694 fldcat 20698 fldsdrgfld 20713 primefld 20720 ofldlt1 20790 subofld 20792 ofldchr 21513 refld 21556 frlmphllem 21717 frlmphl 21718 recvs 25073 rrxcph 25319 rrx0 25324 ply1pid 26115 lgseisenlem3 27315 lgseisenlem4 27316 isarchiofld 33168 qfld 33263 fracfld 33274 fldgenfld 33286 cnfldfld 33307 reofld 33308 rearchi 33311 qsfld 33463 srafldlvec 33598 rgmoddimOLD 33623 assafld 33650 ccfldextrr 33659 fldextsralvec 33668 extdgcl 33669 extdggt0 33670 fldextid 33672 extdgid 33673 extdgmul 33676 extdg1id 33679 ccfldsrarelvec 33684 2sqr3minply 33793 qqhrhm 34002 matunitlindflem1 37666 matunitlindflem2 37667 matunitlindf 37668 fldhmf1 42193 aks6d1c1p2 42212 aks6d1c2lem4 42230 aks6d1c5lem3 42240 aks6d1c5lem2 42241 aks6d1c6lem1 42273 ricfld 42633 fldcatALTV 48441 |
| Copyright terms: Public domain | W3C validator |