![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fldssdrng | Structured version Visualization version GIF version |
Description: Fields are division rings. (Contributed by BJ, 6-Jan-2024.) |
Ref | Expression |
---|---|
bj-fldssdrng | ⊢ Field ⊆ DivRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-field 20754 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
2 | inss1 4258 | . 2 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
3 | 1, 2 | eqsstri 4043 | 1 ⊢ Field ⊆ DivRing |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3975 ⊆ wss 3976 CRingccrg 20261 DivRingcdr 20751 Fieldcfield 20752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 df-field 20754 |
This theorem is referenced by: bj-flddrng 37255 bj-rrdrg 37256 |
Copyright terms: Public domain | W3C validator |