Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fldssdrng Structured version   Visualization version   GIF version

Theorem bj-fldssdrng 37270
Description: Fields are division rings. (Contributed by BJ, 6-Jan-2024.)
Assertion
Ref Expression
bj-fldssdrng Field ⊆ DivRing

Proof of Theorem bj-fldssdrng
StepHypRef Expression
1 df-field 20748 . 2 Field = (DivRing ∩ CRing)
2 inss1 4244 . 2 (DivRing ∩ CRing) ⊆ DivRing
31, 2eqsstri 4029 1 Field ⊆ DivRing
Colors of variables: wff setvar class
Syntax hints:  cin 3961  wss 3962  CRingccrg 20251  DivRingcdr 20745  Fieldcfield 20746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-v 3479  df-in 3969  df-ss 3979  df-field 20748
This theorem is referenced by:  bj-flddrng  37271  bj-rrdrg  37272
  Copyright terms: Public domain W3C validator