![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fldssdrng | Structured version Visualization version GIF version |
Description: Fields are division rings. (Contributed by BJ, 6-Jan-2024.) |
Ref | Expression |
---|---|
bj-fldssdrng | ⊢ Field ⊆ DivRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-field 20580 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
2 | inss1 4220 | . 2 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
3 | 1, 2 | eqsstri 4008 | 1 ⊢ Field ⊆ DivRing |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3939 ⊆ wss 3940 CRingccrg 20129 DivRingcdr 20577 Fieldcfield 20578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3947 df-ss 3957 df-field 20580 |
This theorem is referenced by: bj-flddrng 36660 bj-rrdrg 36661 |
Copyright terms: Public domain | W3C validator |