Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fldssdrng Structured version   Visualization version   GIF version

Theorem bj-fldssdrng 35438
Description: Fields are division rings. (Contributed by BJ, 6-Jan-2024.)
Assertion
Ref Expression
bj-fldssdrng Field ⊆ DivRing

Proof of Theorem bj-fldssdrng
StepHypRef Expression
1 df-field 19975 . 2 Field = (DivRing ∩ CRing)
2 inss1 4167 . 2 (DivRing ∩ CRing) ⊆ DivRing
31, 2eqsstri 3959 1 Field ⊆ DivRing
Colors of variables: wff setvar class
Syntax hints:  cin 3890  wss 3891  CRingccrg 19765  DivRingcdr 19972  Fieldcfield 19973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-ss 3908  df-field 19975
This theorem is referenced by:  bj-flddrng  35439  bj-rrdrg  35440
  Copyright terms: Public domain W3C validator