Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fldssdrng Structured version   Visualization version   GIF version

Theorem bj-fldssdrng 36659
Description: Fields are division rings. (Contributed by BJ, 6-Jan-2024.)
Assertion
Ref Expression
bj-fldssdrng Field ⊆ DivRing

Proof of Theorem bj-fldssdrng
StepHypRef Expression
1 df-field 20580 . 2 Field = (DivRing ∩ CRing)
2 inss1 4220 . 2 (DivRing ∩ CRing) ⊆ DivRing
31, 2eqsstri 4008 1 Field ⊆ DivRing
Colors of variables: wff setvar class
Syntax hints:  cin 3939  wss 3940  CRingccrg 20129  DivRingcdr 20577  Fieldcfield 20578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-in 3947  df-ss 3957  df-field 20580
This theorem is referenced by:  bj-flddrng  36660  bj-rrdrg  36661
  Copyright terms: Public domain W3C validator