Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fldssdrng Structured version   Visualization version   GIF version

Theorem bj-fldssdrng 35447
Description: Fields are division rings. (Contributed by BJ, 6-Jan-2024.)
Assertion
Ref Expression
bj-fldssdrng Field ⊆ DivRing

Proof of Theorem bj-fldssdrng
StepHypRef Expression
1 df-field 19984 . 2 Field = (DivRing ∩ CRing)
2 inss1 4168 . 2 (DivRing ∩ CRing) ⊆ DivRing
31, 2eqsstri 3960 1 Field ⊆ DivRing
Colors of variables: wff setvar class
Syntax hints:  cin 3891  wss 3892  CRingccrg 19774  DivRingcdr 19981  Fieldcfield 19982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-in 3899  df-ss 3909  df-field 19984
This theorem is referenced by:  bj-flddrng  35448  bj-rrdrg  35449
  Copyright terms: Public domain W3C validator