![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fldssdrng | Structured version Visualization version GIF version |
Description: Fields are division rings. (Contributed by BJ, 6-Jan-2024.) |
Ref | Expression |
---|---|
bj-fldssdrng | ⊢ Field ⊆ DivRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-field 20748 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
2 | inss1 4244 | . 2 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
3 | 1, 2 | eqsstri 4029 | 1 ⊢ Field ⊆ DivRing |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3961 ⊆ wss 3962 CRingccrg 20251 DivRingcdr 20745 Fieldcfield 20746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-in 3969 df-ss 3979 df-field 20748 |
This theorem is referenced by: bj-flddrng 37271 bj-rrdrg 37272 |
Copyright terms: Public domain | W3C validator |