Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fldssdrng Structured version   Visualization version   GIF version

Theorem bj-fldssdrng 37008
Description: Fields are division rings. (Contributed by BJ, 6-Jan-2024.)
Assertion
Ref Expression
bj-fldssdrng Field ⊆ DivRing

Proof of Theorem bj-fldssdrng
StepHypRef Expression
1 df-field 20706 . 2 Field = (DivRing ∩ CRing)
2 inss1 4227 . 2 (DivRing ∩ CRing) ⊆ DivRing
31, 2eqsstri 4013 1 Field ⊆ DivRing
Colors of variables: wff setvar class
Syntax hints:  cin 3945  wss 3946  CRingccrg 20213  DivRingcdr 20703  Fieldcfield 20704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3464  df-in 3953  df-ss 3963  df-field 20706
This theorem is referenced by:  bj-flddrng  37009  bj-rrdrg  37010
  Copyright terms: Public domain W3C validator