Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fldssdrng Structured version   Visualization version   GIF version

Theorem bj-fldssdrng 37306
Description: Fields are division rings. (Contributed by BJ, 6-Jan-2024.)
Assertion
Ref Expression
bj-fldssdrng Field ⊆ DivRing

Proof of Theorem bj-fldssdrng
StepHypRef Expression
1 df-field 20692 . 2 Field = (DivRing ∩ CRing)
2 inss1 4212 . 2 (DivRing ∩ CRing) ⊆ DivRing
31, 2eqsstri 4005 1 Field ⊆ DivRing
Colors of variables: wff setvar class
Syntax hints:  cin 3925  wss 3926  CRingccrg 20194  DivRingcdr 20689  Fieldcfield 20690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-in 3933  df-ss 3943  df-field 20692
This theorem is referenced by:  bj-flddrng  37307  bj-rrdrg  37308
  Copyright terms: Public domain W3C validator