![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fldssdrng | Structured version Visualization version GIF version |
Description: Fields are division rings. (Contributed by BJ, 6-Jan-2024.) |
Ref | Expression |
---|---|
bj-fldssdrng | ⊢ Field ⊆ DivRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-field 20706 | . 2 ⊢ Field = (DivRing ∩ CRing) | |
2 | inss1 4227 | . 2 ⊢ (DivRing ∩ CRing) ⊆ DivRing | |
3 | 1, 2 | eqsstri 4013 | 1 ⊢ Field ⊆ DivRing |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3945 ⊆ wss 3946 CRingccrg 20213 DivRingcdr 20703 Fieldcfield 20704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-in 3953 df-ss 3963 df-field 20706 |
This theorem is referenced by: bj-flddrng 37009 bj-rrdrg 37010 |
Copyright terms: Public domain | W3C validator |