Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fuco Structured version   Visualization version   GIF version

Definition df-fuco 49442
Description: Definition of functor composition bifunctors. Given three categories 𝐶, 𝐷, and 𝐸, (⟨𝐶, 𝐷⟩ ∘F 𝐸) is a functor from the product category of two categories of functors to a category of functors (fucofunc 49484). The object part maps two functors to their composition (fuco11 49451 and fuco11b 49462). The morphism part defines the "composition" of two natural transformations (fuco22 49464) into another natural transformation (fuco22nat 49471) such that a "cube-like" diagram commutes. The naturality property also gives an alternate definition (fuco23a 49477). Note that such "composition" is different from fucco 17874 because they "compose" along different "axes". (Contributed by Zhi Wang, 29-Sep-2025.)
Assertion
Ref Expression
df-fuco F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑘,𝑙,𝑚,𝑝,𝑟,𝑢,𝑣,𝑤,𝑥

Detailed syntax breakdown of Definition df-fuco
StepHypRef Expression
1 cfuco 49441 . 2 class F
2 vp . . 3 setvar 𝑝
3 ve . . 3 setvar 𝑒
4 cvv 3437 . . 3 class V
5 vc . . . 4 setvar 𝑐
62cv 1540 . . . . 5 class 𝑝
7 c1st 7925 . . . . 5 class 1st
86, 7cfv 6486 . . . 4 class (1st𝑝)
9 vd . . . . 5 setvar 𝑑
10 c2nd 7926 . . . . . 6 class 2nd
116, 10cfv 6486 . . . . 5 class (2nd𝑝)
12 vw . . . . . 6 setvar 𝑤
139cv 1540 . . . . . . . 8 class 𝑑
143cv 1540 . . . . . . . 8 class 𝑒
15 cfunc 17763 . . . . . . . 8 class Func
1613, 14, 15co 7352 . . . . . . 7 class (𝑑 Func 𝑒)
175cv 1540 . . . . . . . 8 class 𝑐
1817, 13, 15co 7352 . . . . . . 7 class (𝑐 Func 𝑑)
1916, 18cxp 5617 . . . . . 6 class ((𝑑 Func 𝑒) × (𝑐 Func 𝑑))
20 ccofu 17765 . . . . . . . 8 class func
2112cv 1540 . . . . . . . 8 class 𝑤
2220, 21cres 5621 . . . . . . 7 class ( ∘func𝑤)
23 vu . . . . . . . 8 setvar 𝑢
24 vv . . . . . . . 8 setvar 𝑣
25 vf . . . . . . . . 9 setvar 𝑓
2623cv 1540 . . . . . . . . . . 11 class 𝑢
2726, 10cfv 6486 . . . . . . . . . 10 class (2nd𝑢)
2827, 7cfv 6486 . . . . . . . . 9 class (1st ‘(2nd𝑢))
29 vk . . . . . . . . . 10 setvar 𝑘
3026, 7cfv 6486 . . . . . . . . . . 11 class (1st𝑢)
3130, 7cfv 6486 . . . . . . . . . 10 class (1st ‘(1st𝑢))
32 vl . . . . . . . . . . 11 setvar 𝑙
3330, 10cfv 6486 . . . . . . . . . . 11 class (2nd ‘(1st𝑢))
34 vm . . . . . . . . . . . 12 setvar 𝑚
3524cv 1540 . . . . . . . . . . . . . 14 class 𝑣
3635, 10cfv 6486 . . . . . . . . . . . . 13 class (2nd𝑣)
3736, 7cfv 6486 . . . . . . . . . . . 12 class (1st ‘(2nd𝑣))
38 vr . . . . . . . . . . . . 13 setvar 𝑟
3935, 7cfv 6486 . . . . . . . . . . . . . 14 class (1st𝑣)
4039, 7cfv 6486 . . . . . . . . . . . . 13 class (1st ‘(1st𝑣))
41 vb . . . . . . . . . . . . . 14 setvar 𝑏
42 va . . . . . . . . . . . . . 14 setvar 𝑎
43 cnat 17853 . . . . . . . . . . . . . . . 16 class Nat
4413, 14, 43co 7352 . . . . . . . . . . . . . . 15 class (𝑑 Nat 𝑒)
4530, 39, 44co 7352 . . . . . . . . . . . . . 14 class ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣))
4617, 13, 43co 7352 . . . . . . . . . . . . . . 15 class (𝑐 Nat 𝑑)
4727, 36, 46co 7352 . . . . . . . . . . . . . 14 class ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣))
48 vx . . . . . . . . . . . . . . 15 setvar 𝑥
49 cbs 17122 . . . . . . . . . . . . . . . 16 class Base
5017, 49cfv 6486 . . . . . . . . . . . . . . 15 class (Base‘𝑐)
5148cv 1540 . . . . . . . . . . . . . . . . . 18 class 𝑥
5234cv 1540 . . . . . . . . . . . . . . . . . 18 class 𝑚
5351, 52cfv 6486 . . . . . . . . . . . . . . . . 17 class (𝑚𝑥)
5441cv 1540 . . . . . . . . . . . . . . . . 17 class 𝑏
5553, 54cfv 6486 . . . . . . . . . . . . . . . 16 class (𝑏‘(𝑚𝑥))
5642cv 1540 . . . . . . . . . . . . . . . . . 18 class 𝑎
5751, 56cfv 6486 . . . . . . . . . . . . . . . . 17 class (𝑎𝑥)
5825cv 1540 . . . . . . . . . . . . . . . . . . 19 class 𝑓
5951, 58cfv 6486 . . . . . . . . . . . . . . . . . 18 class (𝑓𝑥)
6032cv 1540 . . . . . . . . . . . . . . . . . 18 class 𝑙
6159, 53, 60co 7352 . . . . . . . . . . . . . . . . 17 class ((𝑓𝑥)𝑙(𝑚𝑥))
6257, 61cfv 6486 . . . . . . . . . . . . . . . 16 class (((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))
6329cv 1540 . . . . . . . . . . . . . . . . . . 19 class 𝑘
6459, 63cfv 6486 . . . . . . . . . . . . . . . . . 18 class (𝑘‘(𝑓𝑥))
6553, 63cfv 6486 . . . . . . . . . . . . . . . . . 18 class (𝑘‘(𝑚𝑥))
6664, 65cop 4581 . . . . . . . . . . . . . . . . 17 class ⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩
6738cv 1540 . . . . . . . . . . . . . . . . . 18 class 𝑟
6853, 67cfv 6486 . . . . . . . . . . . . . . . . 17 class (𝑟‘(𝑚𝑥))
69 cco 17175 . . . . . . . . . . . . . . . . . 18 class comp
7014, 69cfv 6486 . . . . . . . . . . . . . . . . 17 class (comp‘𝑒)
7166, 68, 70co 7352 . . . . . . . . . . . . . . . 16 class (⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))
7255, 62, 71co 7352 . . . . . . . . . . . . . . 15 class ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))
7348, 50, 72cmpt 5174 . . . . . . . . . . . . . 14 class (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))
7441, 42, 45, 47, 73cmpo 7354 . . . . . . . . . . . . 13 class (𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7538, 40, 74csb 3846 . . . . . . . . . . . 12 class (1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7634, 37, 75csb 3846 . . . . . . . . . . 11 class (1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7732, 33, 76csb 3846 . . . . . . . . . 10 class (2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7829, 31, 77csb 3846 . . . . . . . . 9 class (1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7925, 28, 78csb 3846 . . . . . . . 8 class (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
8023, 24, 21, 21, 79cmpo 7354 . . . . . . 7 class (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
8122, 80cop 4581 . . . . . 6 class ⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
8212, 19, 81csb 3846 . . . . 5 class ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
839, 11, 82csb 3846 . . . 4 class (2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
845, 8, 83csb 3846 . . 3 class (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
852, 3, 4, 4, 84cmpo 7354 . 2 class (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
861, 85wceq 1541 1 wff F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Colors of variables: wff setvar class
This definition is referenced by:  fucofvalg  49443
  Copyright terms: Public domain W3C validator