Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fuco Structured version   Visualization version   GIF version

Definition df-fuco 49348
Description: Definition of functor composition bifunctors. Given three categories 𝐶, 𝐷, and 𝐸, (⟨𝐶, 𝐷⟩ ∘F 𝐸) is a functor from the product category of two categories of functors to a category of functors (fucofunc 49390). The object part maps two functors to their composition (fuco11 49357 and fuco11b 49368). The morphism part defines the "composition" of two natural transformations (fuco22 49370) into another natural transformation (fuco22nat 49377) such that a "cube-like" diagram commutes. The naturality property also gives an alternate definition (fuco23a 49383). Note that such "composition" is different from fucco 17869 because they "compose" along different "axes". (Contributed by Zhi Wang, 29-Sep-2025.)
Assertion
Ref Expression
df-fuco F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑘,𝑙,𝑚,𝑝,𝑟,𝑢,𝑣,𝑤,𝑥

Detailed syntax breakdown of Definition df-fuco
StepHypRef Expression
1 cfuco 49347 . 2 class F
2 vp . . 3 setvar 𝑝
3 ve . . 3 setvar 𝑒
4 cvv 3436 . . 3 class V
5 vc . . . 4 setvar 𝑐
62cv 1540 . . . . 5 class 𝑝
7 c1st 7919 . . . . 5 class 1st
86, 7cfv 6481 . . . 4 class (1st𝑝)
9 vd . . . . 5 setvar 𝑑
10 c2nd 7920 . . . . . 6 class 2nd
116, 10cfv 6481 . . . . 5 class (2nd𝑝)
12 vw . . . . . 6 setvar 𝑤
139cv 1540 . . . . . . . 8 class 𝑑
143cv 1540 . . . . . . . 8 class 𝑒
15 cfunc 17758 . . . . . . . 8 class Func
1613, 14, 15co 7346 . . . . . . 7 class (𝑑 Func 𝑒)
175cv 1540 . . . . . . . 8 class 𝑐
1817, 13, 15co 7346 . . . . . . 7 class (𝑐 Func 𝑑)
1916, 18cxp 5614 . . . . . 6 class ((𝑑 Func 𝑒) × (𝑐 Func 𝑑))
20 ccofu 17760 . . . . . . . 8 class func
2112cv 1540 . . . . . . . 8 class 𝑤
2220, 21cres 5618 . . . . . . 7 class ( ∘func𝑤)
23 vu . . . . . . . 8 setvar 𝑢
24 vv . . . . . . . 8 setvar 𝑣
25 vf . . . . . . . . 9 setvar 𝑓
2623cv 1540 . . . . . . . . . . 11 class 𝑢
2726, 10cfv 6481 . . . . . . . . . 10 class (2nd𝑢)
2827, 7cfv 6481 . . . . . . . . 9 class (1st ‘(2nd𝑢))
29 vk . . . . . . . . . 10 setvar 𝑘
3026, 7cfv 6481 . . . . . . . . . . 11 class (1st𝑢)
3130, 7cfv 6481 . . . . . . . . . 10 class (1st ‘(1st𝑢))
32 vl . . . . . . . . . . 11 setvar 𝑙
3330, 10cfv 6481 . . . . . . . . . . 11 class (2nd ‘(1st𝑢))
34 vm . . . . . . . . . . . 12 setvar 𝑚
3524cv 1540 . . . . . . . . . . . . . 14 class 𝑣
3635, 10cfv 6481 . . . . . . . . . . . . 13 class (2nd𝑣)
3736, 7cfv 6481 . . . . . . . . . . . 12 class (1st ‘(2nd𝑣))
38 vr . . . . . . . . . . . . 13 setvar 𝑟
3935, 7cfv 6481 . . . . . . . . . . . . . 14 class (1st𝑣)
4039, 7cfv 6481 . . . . . . . . . . . . 13 class (1st ‘(1st𝑣))
41 vb . . . . . . . . . . . . . 14 setvar 𝑏
42 va . . . . . . . . . . . . . 14 setvar 𝑎
43 cnat 17848 . . . . . . . . . . . . . . . 16 class Nat
4413, 14, 43co 7346 . . . . . . . . . . . . . . 15 class (𝑑 Nat 𝑒)
4530, 39, 44co 7346 . . . . . . . . . . . . . 14 class ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣))
4617, 13, 43co 7346 . . . . . . . . . . . . . . 15 class (𝑐 Nat 𝑑)
4727, 36, 46co 7346 . . . . . . . . . . . . . 14 class ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣))
48 vx . . . . . . . . . . . . . . 15 setvar 𝑥
49 cbs 17117 . . . . . . . . . . . . . . . 16 class Base
5017, 49cfv 6481 . . . . . . . . . . . . . . 15 class (Base‘𝑐)
5148cv 1540 . . . . . . . . . . . . . . . . . 18 class 𝑥
5234cv 1540 . . . . . . . . . . . . . . . . . 18 class 𝑚
5351, 52cfv 6481 . . . . . . . . . . . . . . . . 17 class (𝑚𝑥)
5441cv 1540 . . . . . . . . . . . . . . . . 17 class 𝑏
5553, 54cfv 6481 . . . . . . . . . . . . . . . 16 class (𝑏‘(𝑚𝑥))
5642cv 1540 . . . . . . . . . . . . . . . . . 18 class 𝑎
5751, 56cfv 6481 . . . . . . . . . . . . . . . . 17 class (𝑎𝑥)
5825cv 1540 . . . . . . . . . . . . . . . . . . 19 class 𝑓
5951, 58cfv 6481 . . . . . . . . . . . . . . . . . 18 class (𝑓𝑥)
6032cv 1540 . . . . . . . . . . . . . . . . . 18 class 𝑙
6159, 53, 60co 7346 . . . . . . . . . . . . . . . . 17 class ((𝑓𝑥)𝑙(𝑚𝑥))
6257, 61cfv 6481 . . . . . . . . . . . . . . . 16 class (((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))
6329cv 1540 . . . . . . . . . . . . . . . . . . 19 class 𝑘
6459, 63cfv 6481 . . . . . . . . . . . . . . . . . 18 class (𝑘‘(𝑓𝑥))
6553, 63cfv 6481 . . . . . . . . . . . . . . . . . 18 class (𝑘‘(𝑚𝑥))
6664, 65cop 4582 . . . . . . . . . . . . . . . . 17 class ⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩
6738cv 1540 . . . . . . . . . . . . . . . . . 18 class 𝑟
6853, 67cfv 6481 . . . . . . . . . . . . . . . . 17 class (𝑟‘(𝑚𝑥))
69 cco 17170 . . . . . . . . . . . . . . . . . 18 class comp
7014, 69cfv 6481 . . . . . . . . . . . . . . . . 17 class (comp‘𝑒)
7166, 68, 70co 7346 . . . . . . . . . . . . . . . 16 class (⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))
7255, 62, 71co 7346 . . . . . . . . . . . . . . 15 class ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))
7348, 50, 72cmpt 5172 . . . . . . . . . . . . . 14 class (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))
7441, 42, 45, 47, 73cmpo 7348 . . . . . . . . . . . . 13 class (𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7538, 40, 74csb 3850 . . . . . . . . . . . 12 class (1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7634, 37, 75csb 3850 . . . . . . . . . . 11 class (1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7732, 33, 76csb 3850 . . . . . . . . . 10 class (2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7829, 31, 77csb 3850 . . . . . . . . 9 class (1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7925, 28, 78csb 3850 . . . . . . . 8 class (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
8023, 24, 21, 21, 79cmpo 7348 . . . . . . 7 class (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
8122, 80cop 4582 . . . . . 6 class ⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
8212, 19, 81csb 3850 . . . . 5 class ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
839, 11, 82csb 3850 . . . 4 class (2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
845, 8, 83csb 3850 . . 3 class (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
852, 3, 4, 4, 84cmpo 7348 . 2 class (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
861, 85wceq 1541 1 wff F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Colors of variables: wff setvar class
This definition is referenced by:  fucofvalg  49349
  Copyright terms: Public domain W3C validator