Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fuco Structured version   Visualization version   GIF version

Definition df-fuco 49303
Description: Definition of functor composition bifunctors. Given three categories 𝐶, 𝐷, and 𝐸, (⟨𝐶, 𝐷⟩ ∘F 𝐸) is a functor from the product category of two categories of functors to a category of functors (fucofunc 49345). The object part maps two functors to their composition (fuco11 49312 and fuco11b 49323). The morphism part defines the "composition" of two natural transformations (fuco22 49325) into another natural transformation (fuco22nat 49332) such that a "cube-like" diagram commutes. The naturality property also gives an alternate definition (fuco23a 49338). Note that such "composition" is different from fucco 17890 because they "compose" along different "axes". (Contributed by Zhi Wang, 29-Sep-2025.)
Assertion
Ref Expression
df-fuco F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑘,𝑙,𝑚,𝑝,𝑟,𝑢,𝑣,𝑤,𝑥

Detailed syntax breakdown of Definition df-fuco
StepHypRef Expression
1 cfuco 49302 . 2 class F
2 vp . . 3 setvar 𝑝
3 ve . . 3 setvar 𝑒
4 cvv 3438 . . 3 class V
5 vc . . . 4 setvar 𝑐
62cv 1539 . . . . 5 class 𝑝
7 c1st 7929 . . . . 5 class 1st
86, 7cfv 6486 . . . 4 class (1st𝑝)
9 vd . . . . 5 setvar 𝑑
10 c2nd 7930 . . . . . 6 class 2nd
116, 10cfv 6486 . . . . 5 class (2nd𝑝)
12 vw . . . . . 6 setvar 𝑤
139cv 1539 . . . . . . . 8 class 𝑑
143cv 1539 . . . . . . . 8 class 𝑒
15 cfunc 17779 . . . . . . . 8 class Func
1613, 14, 15co 7353 . . . . . . 7 class (𝑑 Func 𝑒)
175cv 1539 . . . . . . . 8 class 𝑐
1817, 13, 15co 7353 . . . . . . 7 class (𝑐 Func 𝑑)
1916, 18cxp 5621 . . . . . 6 class ((𝑑 Func 𝑒) × (𝑐 Func 𝑑))
20 ccofu 17781 . . . . . . . 8 class func
2112cv 1539 . . . . . . . 8 class 𝑤
2220, 21cres 5625 . . . . . . 7 class ( ∘func𝑤)
23 vu . . . . . . . 8 setvar 𝑢
24 vv . . . . . . . 8 setvar 𝑣
25 vf . . . . . . . . 9 setvar 𝑓
2623cv 1539 . . . . . . . . . . 11 class 𝑢
2726, 10cfv 6486 . . . . . . . . . 10 class (2nd𝑢)
2827, 7cfv 6486 . . . . . . . . 9 class (1st ‘(2nd𝑢))
29 vk . . . . . . . . . 10 setvar 𝑘
3026, 7cfv 6486 . . . . . . . . . . 11 class (1st𝑢)
3130, 7cfv 6486 . . . . . . . . . 10 class (1st ‘(1st𝑢))
32 vl . . . . . . . . . . 11 setvar 𝑙
3330, 10cfv 6486 . . . . . . . . . . 11 class (2nd ‘(1st𝑢))
34 vm . . . . . . . . . . . 12 setvar 𝑚
3524cv 1539 . . . . . . . . . . . . . 14 class 𝑣
3635, 10cfv 6486 . . . . . . . . . . . . 13 class (2nd𝑣)
3736, 7cfv 6486 . . . . . . . . . . . 12 class (1st ‘(2nd𝑣))
38 vr . . . . . . . . . . . . 13 setvar 𝑟
3935, 7cfv 6486 . . . . . . . . . . . . . 14 class (1st𝑣)
4039, 7cfv 6486 . . . . . . . . . . . . 13 class (1st ‘(1st𝑣))
41 vb . . . . . . . . . . . . . 14 setvar 𝑏
42 va . . . . . . . . . . . . . 14 setvar 𝑎
43 cnat 17869 . . . . . . . . . . . . . . . 16 class Nat
4413, 14, 43co 7353 . . . . . . . . . . . . . . 15 class (𝑑 Nat 𝑒)
4530, 39, 44co 7353 . . . . . . . . . . . . . 14 class ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣))
4617, 13, 43co 7353 . . . . . . . . . . . . . . 15 class (𝑐 Nat 𝑑)
4727, 36, 46co 7353 . . . . . . . . . . . . . 14 class ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣))
48 vx . . . . . . . . . . . . . . 15 setvar 𝑥
49 cbs 17138 . . . . . . . . . . . . . . . 16 class Base
5017, 49cfv 6486 . . . . . . . . . . . . . . 15 class (Base‘𝑐)
5148cv 1539 . . . . . . . . . . . . . . . . . 18 class 𝑥
5234cv 1539 . . . . . . . . . . . . . . . . . 18 class 𝑚
5351, 52cfv 6486 . . . . . . . . . . . . . . . . 17 class (𝑚𝑥)
5441cv 1539 . . . . . . . . . . . . . . . . 17 class 𝑏
5553, 54cfv 6486 . . . . . . . . . . . . . . . 16 class (𝑏‘(𝑚𝑥))
5642cv 1539 . . . . . . . . . . . . . . . . . 18 class 𝑎
5751, 56cfv 6486 . . . . . . . . . . . . . . . . 17 class (𝑎𝑥)
5825cv 1539 . . . . . . . . . . . . . . . . . . 19 class 𝑓
5951, 58cfv 6486 . . . . . . . . . . . . . . . . . 18 class (𝑓𝑥)
6032cv 1539 . . . . . . . . . . . . . . . . . 18 class 𝑙
6159, 53, 60co 7353 . . . . . . . . . . . . . . . . 17 class ((𝑓𝑥)𝑙(𝑚𝑥))
6257, 61cfv 6486 . . . . . . . . . . . . . . . 16 class (((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))
6329cv 1539 . . . . . . . . . . . . . . . . . . 19 class 𝑘
6459, 63cfv 6486 . . . . . . . . . . . . . . . . . 18 class (𝑘‘(𝑓𝑥))
6553, 63cfv 6486 . . . . . . . . . . . . . . . . . 18 class (𝑘‘(𝑚𝑥))
6664, 65cop 4585 . . . . . . . . . . . . . . . . 17 class ⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩
6738cv 1539 . . . . . . . . . . . . . . . . . 18 class 𝑟
6853, 67cfv 6486 . . . . . . . . . . . . . . . . 17 class (𝑟‘(𝑚𝑥))
69 cco 17191 . . . . . . . . . . . . . . . . . 18 class comp
7014, 69cfv 6486 . . . . . . . . . . . . . . . . 17 class (comp‘𝑒)
7166, 68, 70co 7353 . . . . . . . . . . . . . . . 16 class (⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))
7255, 62, 71co 7353 . . . . . . . . . . . . . . 15 class ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))
7348, 50, 72cmpt 5176 . . . . . . . . . . . . . 14 class (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))
7441, 42, 45, 47, 73cmpo 7355 . . . . . . . . . . . . 13 class (𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7538, 40, 74csb 3853 . . . . . . . . . . . 12 class (1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7634, 37, 75csb 3853 . . . . . . . . . . 11 class (1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7732, 33, 76csb 3853 . . . . . . . . . 10 class (2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7829, 31, 77csb 3853 . . . . . . . . 9 class (1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7925, 28, 78csb 3853 . . . . . . . 8 class (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
8023, 24, 21, 21, 79cmpo 7355 . . . . . . 7 class (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
8122, 80cop 4585 . . . . . 6 class ⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
8212, 19, 81csb 3853 . . . . 5 class ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
839, 11, 82csb 3853 . . . 4 class (2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
845, 8, 83csb 3853 . . 3 class (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
852, 3, 4, 4, 84cmpo 7355 . 2 class (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
861, 85wceq 1540 1 wff F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Colors of variables: wff setvar class
This definition is referenced by:  fucofvalg  49304
  Copyright terms: Public domain W3C validator