Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fuco Structured version   Visualization version   GIF version

Definition df-fuco 48972
Description: Definition of functor composition bifunctors. Given three categories 𝐶, 𝐷, and 𝐸, (⟨𝐶, 𝐷⟩ ∘F 𝐸) is a functor from the product category of two categories of functors to a category of functors (fucofunc 49014). The object part maps two functors to their composition (fuco11 48981 and fuco11b 48992). The morphism part defines the "composition" of two natural transformations (fuco22 48994) into another natural transformation (fuco22nat 49001) such that a "cube-like" diagram commutes. The naturality property also gives an alternate definition (fuco23a 49007). Note that such "composition" is different from fucco 17982 because they "compose" along different "axes". (Contributed by Zhi Wang, 29-Sep-2025.)
Assertion
Ref Expression
df-fuco F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑘,𝑙,𝑚,𝑝,𝑟,𝑢,𝑣,𝑤,𝑥

Detailed syntax breakdown of Definition df-fuco
StepHypRef Expression
1 cfuco 48971 . 2 class F
2 vp . . 3 setvar 𝑝
3 ve . . 3 setvar 𝑒
4 cvv 3464 . . 3 class V
5 vc . . . 4 setvar 𝑐
62cv 1538 . . . . 5 class 𝑝
7 c1st 7995 . . . . 5 class 1st
86, 7cfv 6542 . . . 4 class (1st𝑝)
9 vd . . . . 5 setvar 𝑑
10 c2nd 7996 . . . . . 6 class 2nd
116, 10cfv 6542 . . . . 5 class (2nd𝑝)
12 vw . . . . . 6 setvar 𝑤
139cv 1538 . . . . . . . 8 class 𝑑
143cv 1538 . . . . . . . 8 class 𝑒
15 cfunc 17871 . . . . . . . 8 class Func
1613, 14, 15co 7414 . . . . . . 7 class (𝑑 Func 𝑒)
175cv 1538 . . . . . . . 8 class 𝑐
1817, 13, 15co 7414 . . . . . . 7 class (𝑐 Func 𝑑)
1916, 18cxp 5665 . . . . . 6 class ((𝑑 Func 𝑒) × (𝑐 Func 𝑑))
20 ccofu 17873 . . . . . . . 8 class func
2112cv 1538 . . . . . . . 8 class 𝑤
2220, 21cres 5669 . . . . . . 7 class ( ∘func𝑤)
23 vu . . . . . . . 8 setvar 𝑢
24 vv . . . . . . . 8 setvar 𝑣
25 vf . . . . . . . . 9 setvar 𝑓
2623cv 1538 . . . . . . . . . . 11 class 𝑢
2726, 10cfv 6542 . . . . . . . . . 10 class (2nd𝑢)
2827, 7cfv 6542 . . . . . . . . 9 class (1st ‘(2nd𝑢))
29 vk . . . . . . . . . 10 setvar 𝑘
3026, 7cfv 6542 . . . . . . . . . . 11 class (1st𝑢)
3130, 7cfv 6542 . . . . . . . . . 10 class (1st ‘(1st𝑢))
32 vl . . . . . . . . . . 11 setvar 𝑙
3330, 10cfv 6542 . . . . . . . . . . 11 class (2nd ‘(1st𝑢))
34 vm . . . . . . . . . . . 12 setvar 𝑚
3524cv 1538 . . . . . . . . . . . . . 14 class 𝑣
3635, 10cfv 6542 . . . . . . . . . . . . 13 class (2nd𝑣)
3736, 7cfv 6542 . . . . . . . . . . . 12 class (1st ‘(2nd𝑣))
38 vr . . . . . . . . . . . . 13 setvar 𝑟
3935, 7cfv 6542 . . . . . . . . . . . . . 14 class (1st𝑣)
4039, 7cfv 6542 . . . . . . . . . . . . 13 class (1st ‘(1st𝑣))
41 vb . . . . . . . . . . . . . 14 setvar 𝑏
42 va . . . . . . . . . . . . . 14 setvar 𝑎
43 cnat 17961 . . . . . . . . . . . . . . . 16 class Nat
4413, 14, 43co 7414 . . . . . . . . . . . . . . 15 class (𝑑 Nat 𝑒)
4530, 39, 44co 7414 . . . . . . . . . . . . . 14 class ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣))
4617, 13, 43co 7414 . . . . . . . . . . . . . . 15 class (𝑐 Nat 𝑑)
4727, 36, 46co 7414 . . . . . . . . . . . . . 14 class ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣))
48 vx . . . . . . . . . . . . . . 15 setvar 𝑥
49 cbs 17230 . . . . . . . . . . . . . . . 16 class Base
5017, 49cfv 6542 . . . . . . . . . . . . . . 15 class (Base‘𝑐)
5148cv 1538 . . . . . . . . . . . . . . . . . 18 class 𝑥
5234cv 1538 . . . . . . . . . . . . . . . . . 18 class 𝑚
5351, 52cfv 6542 . . . . . . . . . . . . . . . . 17 class (𝑚𝑥)
5441cv 1538 . . . . . . . . . . . . . . . . 17 class 𝑏
5553, 54cfv 6542 . . . . . . . . . . . . . . . 16 class (𝑏‘(𝑚𝑥))
5642cv 1538 . . . . . . . . . . . . . . . . . 18 class 𝑎
5751, 56cfv 6542 . . . . . . . . . . . . . . . . 17 class (𝑎𝑥)
5825cv 1538 . . . . . . . . . . . . . . . . . . 19 class 𝑓
5951, 58cfv 6542 . . . . . . . . . . . . . . . . . 18 class (𝑓𝑥)
6032cv 1538 . . . . . . . . . . . . . . . . . 18 class 𝑙
6159, 53, 60co 7414 . . . . . . . . . . . . . . . . 17 class ((𝑓𝑥)𝑙(𝑚𝑥))
6257, 61cfv 6542 . . . . . . . . . . . . . . . 16 class (((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))
6329cv 1538 . . . . . . . . . . . . . . . . . . 19 class 𝑘
6459, 63cfv 6542 . . . . . . . . . . . . . . . . . 18 class (𝑘‘(𝑓𝑥))
6553, 63cfv 6542 . . . . . . . . . . . . . . . . . 18 class (𝑘‘(𝑚𝑥))
6664, 65cop 4614 . . . . . . . . . . . . . . . . 17 class ⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩
6738cv 1538 . . . . . . . . . . . . . . . . . 18 class 𝑟
6853, 67cfv 6542 . . . . . . . . . . . . . . . . 17 class (𝑟‘(𝑚𝑥))
69 cco 17286 . . . . . . . . . . . . . . . . . 18 class comp
7014, 69cfv 6542 . . . . . . . . . . . . . . . . 17 class (comp‘𝑒)
7166, 68, 70co 7414 . . . . . . . . . . . . . . . 16 class (⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))
7255, 62, 71co 7414 . . . . . . . . . . . . . . 15 class ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))
7348, 50, 72cmpt 5207 . . . . . . . . . . . . . 14 class (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))
7441, 42, 45, 47, 73cmpo 7416 . . . . . . . . . . . . 13 class (𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7538, 40, 74csb 3881 . . . . . . . . . . . 12 class (1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7634, 37, 75csb 3881 . . . . . . . . . . 11 class (1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7732, 33, 76csb 3881 . . . . . . . . . 10 class (2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7829, 31, 77csb 3881 . . . . . . . . 9 class (1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7925, 28, 78csb 3881 . . . . . . . 8 class (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
8023, 24, 21, 21, 79cmpo 7416 . . . . . . 7 class (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
8122, 80cop 4614 . . . . . 6 class ⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
8212, 19, 81csb 3881 . . . . 5 class ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
839, 11, 82csb 3881 . . . 4 class (2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
845, 8, 83csb 3881 . . 3 class (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
852, 3, 4, 4, 84cmpo 7416 . 2 class (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
861, 85wceq 1539 1 wff F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Colors of variables: wff setvar class
This definition is referenced by:  fucofvalg  48973
  Copyright terms: Public domain W3C validator