Detailed syntax breakdown of Definition df-fuco
| Step | Hyp | Ref
| Expression |
| 1 | | cfuco 48971 |
. 2
class
∘F |
| 2 | | vp |
. . 3
setvar 𝑝 |
| 3 | | ve |
. . 3
setvar 𝑒 |
| 4 | | cvv 3464 |
. . 3
class
V |
| 5 | | vc |
. . . 4
setvar 𝑐 |
| 6 | 2 | cv 1538 |
. . . . 5
class 𝑝 |
| 7 | | c1st 7995 |
. . . . 5
class
1st |
| 8 | 6, 7 | cfv 6542 |
. . . 4
class
(1st ‘𝑝) |
| 9 | | vd |
. . . . 5
setvar 𝑑 |
| 10 | | c2nd 7996 |
. . . . . 6
class
2nd |
| 11 | 6, 10 | cfv 6542 |
. . . . 5
class
(2nd ‘𝑝) |
| 12 | | vw |
. . . . . 6
setvar 𝑤 |
| 13 | 9 | cv 1538 |
. . . . . . . 8
class 𝑑 |
| 14 | 3 | cv 1538 |
. . . . . . . 8
class 𝑒 |
| 15 | | cfunc 17871 |
. . . . . . . 8
class
Func |
| 16 | 13, 14, 15 | co 7414 |
. . . . . . 7
class (𝑑 Func 𝑒) |
| 17 | 5 | cv 1538 |
. . . . . . . 8
class 𝑐 |
| 18 | 17, 13, 15 | co 7414 |
. . . . . . 7
class (𝑐 Func 𝑑) |
| 19 | 16, 18 | cxp 5665 |
. . . . . 6
class ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) |
| 20 | | ccofu 17873 |
. . . . . . . 8
class
∘func |
| 21 | 12 | cv 1538 |
. . . . . . . 8
class 𝑤 |
| 22 | 20, 21 | cres 5669 |
. . . . . . 7
class (
∘func ↾ 𝑤) |
| 23 | | vu |
. . . . . . . 8
setvar 𝑢 |
| 24 | | vv |
. . . . . . . 8
setvar 𝑣 |
| 25 | | vf |
. . . . . . . . 9
setvar 𝑓 |
| 26 | 23 | cv 1538 |
. . . . . . . . . . 11
class 𝑢 |
| 27 | 26, 10 | cfv 6542 |
. . . . . . . . . 10
class
(2nd ‘𝑢) |
| 28 | 27, 7 | cfv 6542 |
. . . . . . . . 9
class
(1st ‘(2nd ‘𝑢)) |
| 29 | | vk |
. . . . . . . . . 10
setvar 𝑘 |
| 30 | 26, 7 | cfv 6542 |
. . . . . . . . . . 11
class
(1st ‘𝑢) |
| 31 | 30, 7 | cfv 6542 |
. . . . . . . . . 10
class
(1st ‘(1st ‘𝑢)) |
| 32 | | vl |
. . . . . . . . . . 11
setvar 𝑙 |
| 33 | 30, 10 | cfv 6542 |
. . . . . . . . . . 11
class
(2nd ‘(1st ‘𝑢)) |
| 34 | | vm |
. . . . . . . . . . . 12
setvar 𝑚 |
| 35 | 24 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑣 |
| 36 | 35, 10 | cfv 6542 |
. . . . . . . . . . . . 13
class
(2nd ‘𝑣) |
| 37 | 36, 7 | cfv 6542 |
. . . . . . . . . . . 12
class
(1st ‘(2nd ‘𝑣)) |
| 38 | | vr |
. . . . . . . . . . . . 13
setvar 𝑟 |
| 39 | 35, 7 | cfv 6542 |
. . . . . . . . . . . . . 14
class
(1st ‘𝑣) |
| 40 | 39, 7 | cfv 6542 |
. . . . . . . . . . . . 13
class
(1st ‘(1st ‘𝑣)) |
| 41 | | vb |
. . . . . . . . . . . . . 14
setvar 𝑏 |
| 42 | | va |
. . . . . . . . . . . . . 14
setvar 𝑎 |
| 43 | | cnat 17961 |
. . . . . . . . . . . . . . . 16
class
Nat |
| 44 | 13, 14, 43 | co 7414 |
. . . . . . . . . . . . . . 15
class (𝑑 Nat 𝑒) |
| 45 | 30, 39, 44 | co 7414 |
. . . . . . . . . . . . . 14
class
((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)) |
| 46 | 17, 13, 43 | co 7414 |
. . . . . . . . . . . . . . 15
class (𝑐 Nat 𝑑) |
| 47 | 27, 36, 46 | co 7414 |
. . . . . . . . . . . . . 14
class
((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) |
| 48 | | vx |
. . . . . . . . . . . . . . 15
setvar 𝑥 |
| 49 | | cbs 17230 |
. . . . . . . . . . . . . . . 16
class
Base |
| 50 | 17, 49 | cfv 6542 |
. . . . . . . . . . . . . . 15
class
(Base‘𝑐) |
| 51 | 48 | cv 1538 |
. . . . . . . . . . . . . . . . . 18
class 𝑥 |
| 52 | 34 | cv 1538 |
. . . . . . . . . . . . . . . . . 18
class 𝑚 |
| 53 | 51, 52 | cfv 6542 |
. . . . . . . . . . . . . . . . 17
class (𝑚‘𝑥) |
| 54 | 41 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑏 |
| 55 | 53, 54 | cfv 6542 |
. . . . . . . . . . . . . . . 16
class (𝑏‘(𝑚‘𝑥)) |
| 56 | 42 | cv 1538 |
. . . . . . . . . . . . . . . . . 18
class 𝑎 |
| 57 | 51, 56 | cfv 6542 |
. . . . . . . . . . . . . . . . 17
class (𝑎‘𝑥) |
| 58 | 25 | cv 1538 |
. . . . . . . . . . . . . . . . . . 19
class 𝑓 |
| 59 | 51, 58 | cfv 6542 |
. . . . . . . . . . . . . . . . . 18
class (𝑓‘𝑥) |
| 60 | 32 | cv 1538 |
. . . . . . . . . . . . . . . . . 18
class 𝑙 |
| 61 | 59, 53, 60 | co 7414 |
. . . . . . . . . . . . . . . . 17
class ((𝑓‘𝑥)𝑙(𝑚‘𝑥)) |
| 62 | 57, 61 | cfv 6542 |
. . . . . . . . . . . . . . . 16
class (((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥)) |
| 63 | 29 | cv 1538 |
. . . . . . . . . . . . . . . . . . 19
class 𝑘 |
| 64 | 59, 63 | cfv 6542 |
. . . . . . . . . . . . . . . . . 18
class (𝑘‘(𝑓‘𝑥)) |
| 65 | 53, 63 | cfv 6542 |
. . . . . . . . . . . . . . . . . 18
class (𝑘‘(𝑚‘𝑥)) |
| 66 | 64, 65 | cop 4614 |
. . . . . . . . . . . . . . . . 17
class
〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉 |
| 67 | 38 | cv 1538 |
. . . . . . . . . . . . . . . . . 18
class 𝑟 |
| 68 | 53, 67 | cfv 6542 |
. . . . . . . . . . . . . . . . 17
class (𝑟‘(𝑚‘𝑥)) |
| 69 | | cco 17286 |
. . . . . . . . . . . . . . . . . 18
class
comp |
| 70 | 14, 69 | cfv 6542 |
. . . . . . . . . . . . . . . . 17
class
(comp‘𝑒) |
| 71 | 66, 68, 70 | co 7414 |
. . . . . . . . . . . . . . . 16
class
(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥))) |
| 72 | 55, 62, 71 | co 7414 |
. . . . . . . . . . . . . . 15
class ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))) |
| 73 | 48, 50, 72 | cmpt 5207 |
. . . . . . . . . . . . . 14
class (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥)))) |
| 74 | 41, 42, 45, 47, 73 | cmpo 7416 |
. . . . . . . . . . . . 13
class (𝑏 ∈ ((1st
‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) |
| 75 | 38, 40, 74 | csb 3881 |
. . . . . . . . . . . 12
class
⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) |
| 76 | 34, 37, 75 | csb 3881 |
. . . . . . . . . . 11
class
⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) |
| 77 | 32, 33, 76 | csb 3881 |
. . . . . . . . . 10
class
⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) |
| 78 | 29, 31, 77 | csb 3881 |
. . . . . . . . 9
class
⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) |
| 79 | 25, 28, 78 | csb 3881 |
. . . . . . . 8
class
⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) |
| 80 | 23, 24, 21, 21, 79 | cmpo 7416 |
. . . . . . 7
class (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥)))))) |
| 81 | 22, 80 | cop 4614 |
. . . . . 6
class 〈(
∘func ↾ 𝑤), (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 |
| 82 | 12, 19, 81 | csb 3881 |
. . . . 5
class
⦋((𝑑
Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⦌〈(
∘func ↾ 𝑤), (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 |
| 83 | 9, 11, 82 | csb 3881 |
. . . 4
class
⦋(2nd ‘𝑝) / 𝑑⦌⦋((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⦌〈(
∘func ↾ 𝑤), (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 |
| 84 | 5, 8, 83 | csb 3881 |
. . 3
class
⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd
‘𝑝) / 𝑑⦌⦋((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⦌〈(
∘func ↾ 𝑤), (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 |
| 85 | 2, 3, 4, 4, 84 | cmpo 7416 |
. 2
class (𝑝 ∈ V, 𝑒 ∈ V ↦
⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd
‘𝑝) / 𝑑⦌⦋((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⦌〈(
∘func ↾ 𝑤), (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) |
| 86 | 1, 85 | wceq 1539 |
1
wff
∘F = (𝑝 ∈ V, 𝑒 ∈ V ↦
⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd
‘𝑝) / 𝑑⦌⦋((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⦌〈(
∘func ↾ 𝑤), (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) |