Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fuco Structured version   Visualization version   GIF version

Definition df-fuco 49306
Description: Definition of functor composition bifunctors. Given three categories 𝐶, 𝐷, and 𝐸, (⟨𝐶, 𝐷⟩ ∘F 𝐸) is a functor from the product category of two categories of functors to a category of functors (fucofunc 49348). The object part maps two functors to their composition (fuco11 49315 and fuco11b 49326). The morphism part defines the "composition" of two natural transformations (fuco22 49328) into another natural transformation (fuco22nat 49335) such that a "cube-like" diagram commutes. The naturality property also gives an alternate definition (fuco23a 49341). Note that such "composition" is different from fucco 17927 because they "compose" along different "axes". (Contributed by Zhi Wang, 29-Sep-2025.)
Assertion
Ref Expression
df-fuco F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑘,𝑙,𝑚,𝑝,𝑟,𝑢,𝑣,𝑤,𝑥

Detailed syntax breakdown of Definition df-fuco
StepHypRef Expression
1 cfuco 49305 . 2 class F
2 vp . . 3 setvar 𝑝
3 ve . . 3 setvar 𝑒
4 cvv 3447 . . 3 class V
5 vc . . . 4 setvar 𝑐
62cv 1539 . . . . 5 class 𝑝
7 c1st 7966 . . . . 5 class 1st
86, 7cfv 6511 . . . 4 class (1st𝑝)
9 vd . . . . 5 setvar 𝑑
10 c2nd 7967 . . . . . 6 class 2nd
116, 10cfv 6511 . . . . 5 class (2nd𝑝)
12 vw . . . . . 6 setvar 𝑤
139cv 1539 . . . . . . . 8 class 𝑑
143cv 1539 . . . . . . . 8 class 𝑒
15 cfunc 17816 . . . . . . . 8 class Func
1613, 14, 15co 7387 . . . . . . 7 class (𝑑 Func 𝑒)
175cv 1539 . . . . . . . 8 class 𝑐
1817, 13, 15co 7387 . . . . . . 7 class (𝑐 Func 𝑑)
1916, 18cxp 5636 . . . . . 6 class ((𝑑 Func 𝑒) × (𝑐 Func 𝑑))
20 ccofu 17818 . . . . . . . 8 class func
2112cv 1539 . . . . . . . 8 class 𝑤
2220, 21cres 5640 . . . . . . 7 class ( ∘func𝑤)
23 vu . . . . . . . 8 setvar 𝑢
24 vv . . . . . . . 8 setvar 𝑣
25 vf . . . . . . . . 9 setvar 𝑓
2623cv 1539 . . . . . . . . . . 11 class 𝑢
2726, 10cfv 6511 . . . . . . . . . 10 class (2nd𝑢)
2827, 7cfv 6511 . . . . . . . . 9 class (1st ‘(2nd𝑢))
29 vk . . . . . . . . . 10 setvar 𝑘
3026, 7cfv 6511 . . . . . . . . . . 11 class (1st𝑢)
3130, 7cfv 6511 . . . . . . . . . 10 class (1st ‘(1st𝑢))
32 vl . . . . . . . . . . 11 setvar 𝑙
3330, 10cfv 6511 . . . . . . . . . . 11 class (2nd ‘(1st𝑢))
34 vm . . . . . . . . . . . 12 setvar 𝑚
3524cv 1539 . . . . . . . . . . . . . 14 class 𝑣
3635, 10cfv 6511 . . . . . . . . . . . . 13 class (2nd𝑣)
3736, 7cfv 6511 . . . . . . . . . . . 12 class (1st ‘(2nd𝑣))
38 vr . . . . . . . . . . . . 13 setvar 𝑟
3935, 7cfv 6511 . . . . . . . . . . . . . 14 class (1st𝑣)
4039, 7cfv 6511 . . . . . . . . . . . . 13 class (1st ‘(1st𝑣))
41 vb . . . . . . . . . . . . . 14 setvar 𝑏
42 va . . . . . . . . . . . . . 14 setvar 𝑎
43 cnat 17906 . . . . . . . . . . . . . . . 16 class Nat
4413, 14, 43co 7387 . . . . . . . . . . . . . . 15 class (𝑑 Nat 𝑒)
4530, 39, 44co 7387 . . . . . . . . . . . . . 14 class ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣))
4617, 13, 43co 7387 . . . . . . . . . . . . . . 15 class (𝑐 Nat 𝑑)
4727, 36, 46co 7387 . . . . . . . . . . . . . 14 class ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣))
48 vx . . . . . . . . . . . . . . 15 setvar 𝑥
49 cbs 17179 . . . . . . . . . . . . . . . 16 class Base
5017, 49cfv 6511 . . . . . . . . . . . . . . 15 class (Base‘𝑐)
5148cv 1539 . . . . . . . . . . . . . . . . . 18 class 𝑥
5234cv 1539 . . . . . . . . . . . . . . . . . 18 class 𝑚
5351, 52cfv 6511 . . . . . . . . . . . . . . . . 17 class (𝑚𝑥)
5441cv 1539 . . . . . . . . . . . . . . . . 17 class 𝑏
5553, 54cfv 6511 . . . . . . . . . . . . . . . 16 class (𝑏‘(𝑚𝑥))
5642cv 1539 . . . . . . . . . . . . . . . . . 18 class 𝑎
5751, 56cfv 6511 . . . . . . . . . . . . . . . . 17 class (𝑎𝑥)
5825cv 1539 . . . . . . . . . . . . . . . . . . 19 class 𝑓
5951, 58cfv 6511 . . . . . . . . . . . . . . . . . 18 class (𝑓𝑥)
6032cv 1539 . . . . . . . . . . . . . . . . . 18 class 𝑙
6159, 53, 60co 7387 . . . . . . . . . . . . . . . . 17 class ((𝑓𝑥)𝑙(𝑚𝑥))
6257, 61cfv 6511 . . . . . . . . . . . . . . . 16 class (((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))
6329cv 1539 . . . . . . . . . . . . . . . . . . 19 class 𝑘
6459, 63cfv 6511 . . . . . . . . . . . . . . . . . 18 class (𝑘‘(𝑓𝑥))
6553, 63cfv 6511 . . . . . . . . . . . . . . . . . 18 class (𝑘‘(𝑚𝑥))
6664, 65cop 4595 . . . . . . . . . . . . . . . . 17 class ⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩
6738cv 1539 . . . . . . . . . . . . . . . . . 18 class 𝑟
6853, 67cfv 6511 . . . . . . . . . . . . . . . . 17 class (𝑟‘(𝑚𝑥))
69 cco 17232 . . . . . . . . . . . . . . . . . 18 class comp
7014, 69cfv 6511 . . . . . . . . . . . . . . . . 17 class (comp‘𝑒)
7166, 68, 70co 7387 . . . . . . . . . . . . . . . 16 class (⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))
7255, 62, 71co 7387 . . . . . . . . . . . . . . 15 class ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))
7348, 50, 72cmpt 5188 . . . . . . . . . . . . . 14 class (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))
7441, 42, 45, 47, 73cmpo 7389 . . . . . . . . . . . . 13 class (𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7538, 40, 74csb 3862 . . . . . . . . . . . 12 class (1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7634, 37, 75csb 3862 . . . . . . . . . . 11 class (1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7732, 33, 76csb 3862 . . . . . . . . . 10 class (2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7829, 31, 77csb 3862 . . . . . . . . 9 class (1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
7925, 28, 78csb 3862 . . . . . . . 8 class (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
8023, 24, 21, 21, 79cmpo 7389 . . . . . . 7 class (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
8122, 80cop 4595 . . . . . 6 class ⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
8212, 19, 81csb 3862 . . . . 5 class ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
839, 11, 82csb 3862 . . . 4 class (2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
845, 8, 83csb 3862 . . 3 class (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩
852, 3, 4, 4, 84cmpo 7389 . 2 class (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
861, 85wceq 1540 1 wff F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Colors of variables: wff setvar class
This definition is referenced by:  fucofvalg  49307
  Copyright terms: Public domain W3C validator