Detailed syntax breakdown of Definition df-fuco
Step | Hyp | Ref
| Expression |
1 | | cfuco 48885 |
. 2
class
∘F |
2 | | vp |
. . 3
setvar 𝑝 |
3 | | ve |
. . 3
setvar 𝑒 |
4 | | cvv 3481 |
. . 3
class
V |
5 | | vc |
. . . 4
setvar 𝑐 |
6 | 2 | cv 1538 |
. . . . 5
class 𝑝 |
7 | | c1st 8020 |
. . . . 5
class
1st |
8 | 6, 7 | cfv 6569 |
. . . 4
class
(1st ‘𝑝) |
9 | | vd |
. . . . 5
setvar 𝑑 |
10 | | c2nd 8021 |
. . . . . 6
class
2nd |
11 | 6, 10 | cfv 6569 |
. . . . 5
class
(2nd ‘𝑝) |
12 | | vw |
. . . . . 6
setvar 𝑤 |
13 | 9 | cv 1538 |
. . . . . . . 8
class 𝑑 |
14 | 3 | cv 1538 |
. . . . . . . 8
class 𝑒 |
15 | | cfunc 17914 |
. . . . . . . 8
class
Func |
16 | 13, 14, 15 | co 7438 |
. . . . . . 7
class (𝑑 Func 𝑒) |
17 | 5 | cv 1538 |
. . . . . . . 8
class 𝑐 |
18 | 17, 13, 15 | co 7438 |
. . . . . . 7
class (𝑐 Func 𝑑) |
19 | 16, 18 | cxp 5691 |
. . . . . 6
class ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) |
20 | | ccofu 17916 |
. . . . . . . 8
class
∘func |
21 | 12 | cv 1538 |
. . . . . . . 8
class 𝑤 |
22 | 20, 21 | cres 5695 |
. . . . . . 7
class (
∘func ↾ 𝑤) |
23 | | vu |
. . . . . . . 8
setvar 𝑢 |
24 | | vv |
. . . . . . . 8
setvar 𝑣 |
25 | | vf |
. . . . . . . . 9
setvar 𝑓 |
26 | 23 | cv 1538 |
. . . . . . . . . . 11
class 𝑢 |
27 | 26, 10 | cfv 6569 |
. . . . . . . . . 10
class
(2nd ‘𝑢) |
28 | 27, 7 | cfv 6569 |
. . . . . . . . 9
class
(1st ‘(2nd ‘𝑢)) |
29 | | vk |
. . . . . . . . . 10
setvar 𝑘 |
30 | 26, 7 | cfv 6569 |
. . . . . . . . . . 11
class
(1st ‘𝑢) |
31 | 30, 7 | cfv 6569 |
. . . . . . . . . 10
class
(1st ‘(1st ‘𝑢)) |
32 | | vl |
. . . . . . . . . . 11
setvar 𝑙 |
33 | 30, 10 | cfv 6569 |
. . . . . . . . . . 11
class
(2nd ‘(1st ‘𝑢)) |
34 | | vm |
. . . . . . . . . . . 12
setvar 𝑚 |
35 | 24 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑣 |
36 | 35, 10 | cfv 6569 |
. . . . . . . . . . . . 13
class
(2nd ‘𝑣) |
37 | 36, 7 | cfv 6569 |
. . . . . . . . . . . 12
class
(1st ‘(2nd ‘𝑣)) |
38 | | vr |
. . . . . . . . . . . . 13
setvar 𝑟 |
39 | 35, 7 | cfv 6569 |
. . . . . . . . . . . . . 14
class
(1st ‘𝑣) |
40 | 39, 7 | cfv 6569 |
. . . . . . . . . . . . 13
class
(1st ‘(1st ‘𝑣)) |
41 | | vb |
. . . . . . . . . . . . . 14
setvar 𝑏 |
42 | | va |
. . . . . . . . . . . . . 14
setvar 𝑎 |
43 | | cnat 18005 |
. . . . . . . . . . . . . . . 16
class
Nat |
44 | 13, 14, 43 | co 7438 |
. . . . . . . . . . . . . . 15
class (𝑑 Nat 𝑒) |
45 | 30, 39, 44 | co 7438 |
. . . . . . . . . . . . . 14
class
((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)) |
46 | 17, 13, 43 | co 7438 |
. . . . . . . . . . . . . . 15
class (𝑐 Nat 𝑑) |
47 | 27, 36, 46 | co 7438 |
. . . . . . . . . . . . . 14
class
((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) |
48 | | vx |
. . . . . . . . . . . . . . 15
setvar 𝑥 |
49 | | cbs 17254 |
. . . . . . . . . . . . . . . 16
class
Base |
50 | 17, 49 | cfv 6569 |
. . . . . . . . . . . . . . 15
class
(Base‘𝑐) |
51 | 48 | cv 1538 |
. . . . . . . . . . . . . . . . . 18
class 𝑥 |
52 | 34 | cv 1538 |
. . . . . . . . . . . . . . . . . 18
class 𝑚 |
53 | 51, 52 | cfv 6569 |
. . . . . . . . . . . . . . . . 17
class (𝑚‘𝑥) |
54 | 41 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑏 |
55 | 53, 54 | cfv 6569 |
. . . . . . . . . . . . . . . 16
class (𝑏‘(𝑚‘𝑥)) |
56 | 42 | cv 1538 |
. . . . . . . . . . . . . . . . . 18
class 𝑎 |
57 | 51, 56 | cfv 6569 |
. . . . . . . . . . . . . . . . 17
class (𝑎‘𝑥) |
58 | 25 | cv 1538 |
. . . . . . . . . . . . . . . . . . 19
class 𝑓 |
59 | 51, 58 | cfv 6569 |
. . . . . . . . . . . . . . . . . 18
class (𝑓‘𝑥) |
60 | 32 | cv 1538 |
. . . . . . . . . . . . . . . . . 18
class 𝑙 |
61 | 59, 53, 60 | co 7438 |
. . . . . . . . . . . . . . . . 17
class ((𝑓‘𝑥)𝑙(𝑚‘𝑥)) |
62 | 57, 61 | cfv 6569 |
. . . . . . . . . . . . . . . 16
class (((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥)) |
63 | 29 | cv 1538 |
. . . . . . . . . . . . . . . . . . 19
class 𝑘 |
64 | 59, 63 | cfv 6569 |
. . . . . . . . . . . . . . . . . 18
class (𝑘‘(𝑓‘𝑥)) |
65 | 53, 63 | cfv 6569 |
. . . . . . . . . . . . . . . . . 18
class (𝑘‘(𝑚‘𝑥)) |
66 | 64, 65 | cop 4640 |
. . . . . . . . . . . . . . . . 17
class
〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉 |
67 | 38 | cv 1538 |
. . . . . . . . . . . . . . . . . 18
class 𝑟 |
68 | 53, 67 | cfv 6569 |
. . . . . . . . . . . . . . . . 17
class (𝑟‘(𝑚‘𝑥)) |
69 | | cco 17319 |
. . . . . . . . . . . . . . . . . 18
class
comp |
70 | 14, 69 | cfv 6569 |
. . . . . . . . . . . . . . . . 17
class
(comp‘𝑒) |
71 | 66, 68, 70 | co 7438 |
. . . . . . . . . . . . . . . 16
class
(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥))) |
72 | 55, 62, 71 | co 7438 |
. . . . . . . . . . . . . . 15
class ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))) |
73 | 48, 50, 72 | cmpt 5234 |
. . . . . . . . . . . . . 14
class (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥)))) |
74 | 41, 42, 45, 47, 73 | cmpo 7440 |
. . . . . . . . . . . . 13
class (𝑏 ∈ ((1st
‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) |
75 | 38, 40, 74 | csb 3911 |
. . . . . . . . . . . 12
class
⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) |
76 | 34, 37, 75 | csb 3911 |
. . . . . . . . . . 11
class
⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) |
77 | 32, 33, 76 | csb 3911 |
. . . . . . . . . 10
class
⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) |
78 | 29, 31, 77 | csb 3911 |
. . . . . . . . 9
class
⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) |
79 | 25, 28, 78 | csb 3911 |
. . . . . . . 8
class
⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) |
80 | 23, 24, 21, 21, 79 | cmpo 7440 |
. . . . . . 7
class (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥)))))) |
81 | 22, 80 | cop 4640 |
. . . . . 6
class 〈(
∘func ↾ 𝑤), (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 |
82 | 12, 19, 81 | csb 3911 |
. . . . 5
class
⦋((𝑑
Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⦌〈(
∘func ↾ 𝑤), (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 |
83 | 9, 11, 82 | csb 3911 |
. . . 4
class
⦋(2nd ‘𝑝) / 𝑑⦌⦋((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⦌〈(
∘func ↾ 𝑤), (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 |
84 | 5, 8, 83 | csb 3911 |
. . 3
class
⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd
‘𝑝) / 𝑑⦌⦋((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⦌〈(
∘func ↾ 𝑤), (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 |
85 | 2, 3, 4, 4, 84 | cmpo 7440 |
. 2
class (𝑝 ∈ V, 𝑒 ∈ V ↦
⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd
‘𝑝) / 𝑑⦌⦋((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⦌〈(
∘func ↾ 𝑤), (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) |
86 | 1, 85 | wceq 1539 |
1
wff
∘F = (𝑝 ∈ V, 𝑒 ∈ V ↦
⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd
‘𝑝) / 𝑑⦌⦋((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⦌〈(
∘func ↾ 𝑤), (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) |