| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco23a | Structured version Visualization version GIF version | ||
| Description: The morphism part of the functor composition bifunctor. An alternate definition of ∘F. See also fuco23 48996. (Contributed by Zhi Wang, 3-Oct-2025.) |
| Ref | Expression |
|---|---|
| fuco23a.a | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
| fuco23a.b | ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
| fuco23a.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| fuco23a.p | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fuco23a.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| fuco23a.v | ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
| fuco23a.o | ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) |
| Ref | Expression |
|---|---|
| fuco23a | ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋)) ∗ (𝐵‘(𝐹‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco23a.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) | |
| 2 | fuco23a.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) | |
| 3 | fuco23a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 4 | eqid 2734 | . . 3 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
| 5 | 1, 2, 3, 4 | fuco23alem 49006 | . 2 ⊢ (𝜑 → ((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))(𝐵‘(𝐹‘𝑋)))) |
| 6 | fuco23a.p | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 7 | fuco23a.u | . . 3 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
| 8 | fuco23a.v | . . 3 ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) | |
| 9 | eqidd 2735 | . . 3 ⊢ (𝜑 → (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋))) = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) | |
| 10 | 6, 7, 8, 1, 2, 3, 9 | fuco23 48996 | . 2 ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) |
| 11 | fuco23a.o | . . 3 ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) | |
| 12 | 11 | oveqd 7431 | . 2 ⊢ (𝜑 → ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋)) ∗ (𝐵‘(𝐹‘𝑋))) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))(𝐵‘(𝐹‘𝑋)))) |
| 13 | 5, 10, 12 | 3eqtr4d 2779 | 1 ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋)) ∗ (𝐵‘(𝐹‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4614 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 compcco 17286 Nat cnat 17961 ∘F cfuco 48971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-map 8851 df-ixp 8921 df-func 17875 df-cofu 17877 df-nat 17963 df-fuco 48972 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |