Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco23a Structured version   Visualization version   GIF version

Theorem fuco23a 49383
Description: The morphism part of the functor composition bifunctor. An alternate definition of F. See also fuco23 49372. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fuco23a.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco23a.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
fuco23a.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco23a.p (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco23a.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco23a.v (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
fuco23a.o (𝜑 = (⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
Assertion
Ref Expression
fuco23a (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋)) (𝐵‘(𝐹𝑋))))

Proof of Theorem fuco23a
StepHypRef Expression
1 fuco23a.a . . 3 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
2 fuco23a.b . . 3 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
3 fuco23a.x . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
4 eqid 2731 . . 3 (comp‘𝐸) = (comp‘𝐸)
51, 2, 3, 4fuco23alem 49382 . 2 (𝜑 → ((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋)))(𝐵‘(𝐹𝑋))))
6 fuco23a.p . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7 fuco23a.u . . 3 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
8 fuco23a.v . . 3 (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
9 eqidd 2732 . . 3 (𝜑 → (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))) = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
106, 7, 8, 1, 2, 3, 9fuco23 49372 . 2 (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
11 fuco23a.o . . 3 (𝜑 = (⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
1211oveqd 7363 . 2 (𝜑 → ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋)) (𝐵‘(𝐹𝑋))) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋)))(𝐵‘(𝐹𝑋))))
135, 10, 123eqtr4d 2776 1 (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋)) (𝐵‘(𝐹𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cop 4582  cfv 6481  (class class class)co 7346  Basecbs 17117  compcco 17170   Nat cnat 17848  F cfuco 49347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-func 17762  df-cofu 17764  df-nat 17850  df-fuco 49348
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator