Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucofvalg Structured version   Visualization version   GIF version

Theorem fucofvalg 49304
Description: Value of the function giving the functor composition bifunctor. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
fucofvalg.p (𝜑𝑃𝑈)
fucofvalg.c (𝜑 → (1st𝑃) = 𝐶)
fucofvalg.d (𝜑 → (2nd𝑃) = 𝐷)
fucofvalg.e (𝜑𝐸𝑉)
fucofvalg.o (𝜑 → (𝑃F 𝐸) = )
fucofvalg.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
Assertion
Ref Expression
fucofvalg (𝜑 = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Distinct variable groups:   𝐶,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝐷,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝐸,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝑊,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝜑,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝑃,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥
Allowed substitution hints:   𝑈(𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)   𝑉(𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)   (𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)

Proof of Theorem fucofvalg
Dummy variables 𝑐 𝑑 𝑒 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucofvalg.o . 2 (𝜑 → (𝑃F 𝐸) = )
2 df-fuco 49303 . . . 4 F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
32a1i 11 . . 3 (𝜑 → ∘F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩))
4 fvexd 6841 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑝) ∈ V)
5 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → 𝑝 = 𝑃)
65fveq2d 6830 . . . . 5 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑝) = (1st𝑃))
7 fucofvalg.c . . . . . 6 (𝜑 → (1st𝑃) = 𝐶)
87adantr 480 . . . . 5 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑃) = 𝐶)
96, 8eqtrd 2764 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑝) = 𝐶)
10 fvexd 6841 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) ∈ V)
11 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → 𝑝 = 𝑃)
1211fveq2d 6830 . . . . . 6 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) = (2nd𝑃))
13 fucofvalg.d . . . . . . 7 (𝜑 → (2nd𝑃) = 𝐷)
1413ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑃) = 𝐷)
1512, 14eqtrd 2764 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) = 𝐷)
16 simpr 484 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
17 simpllr 775 . . . . . . . . . 10 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑝 = 𝑃𝑒 = 𝐸))
1817simprd 495 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑒 = 𝐸)
1916, 18oveq12d 7371 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑑 Func 𝑒) = (𝐷 Func 𝐸))
20 simplr 768 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶)
2120, 16oveq12d 7371 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑐 Func 𝑑) = (𝐶 Func 𝐷))
2219, 21xpeq12d 5654 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
23 ovexd 7388 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝐷 Func 𝐸) ∈ V)
24 ovexd 7388 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝐶 Func 𝐷) ∈ V)
2523, 24xpexd 7691 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∈ V)
2622, 25eqeltrd 2828 . . . . . 6 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) ∈ V)
27 fucofvalg.w . . . . . . . 8 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
2827ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
2922, 28eqtr4d 2767 . . . . . 6 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) = 𝑊)
30 simpr 484 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → 𝑤 = 𝑊)
3130reseq2d 5934 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ( ∘func𝑤) = ( ∘func𝑊))
32 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → 𝑑 = 𝐷)
3318adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → 𝑒 = 𝐸)
3432, 33oveq12d 7371 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑑 Nat 𝑒) = (𝐷 Nat 𝐸))
3534oveqd 7370 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)) = ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)))
36 simpllr 775 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → 𝑐 = 𝐶)
3736, 32oveq12d 7371 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑐 Nat 𝑑) = (𝐶 Nat 𝐷))
3837oveqd 7370 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) = ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)))
3936fveq2d 6830 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (Base‘𝑐) = (Base‘𝐶))
4033fveq2d 6830 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (comp‘𝑒) = (comp‘𝐸))
4140oveqd 7370 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥))) = (⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥))))
4241oveqd 7370 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))) = ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))
4339, 42mpteq12dv 5182 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
4435, 38, 43mpoeq123dv 7428 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4544csbeq2dv 3860 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4645csbeq2dv 3860 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4746csbeq2dv 3860 . . . . . . . . . 10 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4847csbeq2dv 3860 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4948csbeq2dv 3860 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
5030, 30, 49mpoeq123dv 7428 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))) = (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))))
5131, 50opeq12d 4835 . . . . . 6 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
5226, 29, 51csbied2 3890 . . . . 5 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
5310, 15, 52csbied2 3890 . . . 4 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
544, 9, 53csbied2 3890 . . 3 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
55 fucofvalg.p . . . 4 (𝜑𝑃𝑈)
5655elexd 3462 . . 3 (𝜑𝑃 ∈ V)
57 fucofvalg.e . . . 4 (𝜑𝐸𝑉)
5857elexd 3462 . . 3 (𝜑𝐸 ∈ V)
59 opex 5411 . . . 4 ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ∈ V
6059a1i 11 . . 3 (𝜑 → ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ∈ V)
613, 54, 56, 58, 60ovmpod 7505 . 2 (𝜑 → (𝑃F 𝐸) = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
621, 61eqtr3d 2766 1 (𝜑 = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  csb 3853  cop 4585  cmpt 5176   × cxp 5621  cres 5625  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  Basecbs 17138  compcco 17191   Func cfunc 17779  func ccofu 17781   Nat cnat 17869  F cfuco 49302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-res 5635  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-fuco 49303
This theorem is referenced by:  fucofval  49305  fucofvalne  49311
  Copyright terms: Public domain W3C validator