Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucofvalg Structured version   Visualization version   GIF version

Theorem fucofvalg 48973
Description: Value of the function giving the functor composition bifunctor. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
fucofvalg.p (𝜑𝑃𝑈)
fucofvalg.c (𝜑 → (1st𝑃) = 𝐶)
fucofvalg.d (𝜑 → (2nd𝑃) = 𝐷)
fucofvalg.e (𝜑𝐸𝑉)
fucofvalg.o (𝜑 → (𝑃F 𝐸) = )
fucofvalg.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
Assertion
Ref Expression
fucofvalg (𝜑 = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Distinct variable groups:   𝐶,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝐷,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝐸,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝑊,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝜑,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝑃,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥
Allowed substitution hints:   𝑈(𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)   𝑉(𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)   (𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)

Proof of Theorem fucofvalg
Dummy variables 𝑐 𝑑 𝑒 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucofvalg.o . 2 (𝜑 → (𝑃F 𝐸) = )
2 df-fuco 48972 . . . 4 F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
32a1i 11 . . 3 (𝜑 → ∘F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩))
4 fvexd 6902 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑝) ∈ V)
5 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → 𝑝 = 𝑃)
65fveq2d 6891 . . . . 5 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑝) = (1st𝑃))
7 fucofvalg.c . . . . . 6 (𝜑 → (1st𝑃) = 𝐶)
87adantr 480 . . . . 5 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑃) = 𝐶)
96, 8eqtrd 2769 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑝) = 𝐶)
10 fvexd 6902 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) ∈ V)
11 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → 𝑝 = 𝑃)
1211fveq2d 6891 . . . . . 6 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) = (2nd𝑃))
13 fucofvalg.d . . . . . . 7 (𝜑 → (2nd𝑃) = 𝐷)
1413ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑃) = 𝐷)
1512, 14eqtrd 2769 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) = 𝐷)
16 simpr 484 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
17 simpllr 775 . . . . . . . . . 10 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑝 = 𝑃𝑒 = 𝐸))
1817simprd 495 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑒 = 𝐸)
1916, 18oveq12d 7432 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑑 Func 𝑒) = (𝐷 Func 𝐸))
20 simplr 768 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶)
2120, 16oveq12d 7432 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑐 Func 𝑑) = (𝐶 Func 𝐷))
2219, 21xpeq12d 5698 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
23 ovexd 7449 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝐷 Func 𝐸) ∈ V)
24 ovexd 7449 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝐶 Func 𝐷) ∈ V)
2523, 24xpexd 7754 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∈ V)
2622, 25eqeltrd 2833 . . . . . 6 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) ∈ V)
27 fucofvalg.w . . . . . . . 8 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
2827ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
2922, 28eqtr4d 2772 . . . . . 6 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) = 𝑊)
30 simpr 484 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → 𝑤 = 𝑊)
3130reseq2d 5979 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ( ∘func𝑤) = ( ∘func𝑊))
32 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → 𝑑 = 𝐷)
3318adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → 𝑒 = 𝐸)
3432, 33oveq12d 7432 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑑 Nat 𝑒) = (𝐷 Nat 𝐸))
3534oveqd 7431 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)) = ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)))
36 simpllr 775 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → 𝑐 = 𝐶)
3736, 32oveq12d 7432 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑐 Nat 𝑑) = (𝐶 Nat 𝐷))
3837oveqd 7431 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) = ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)))
3936fveq2d 6891 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (Base‘𝑐) = (Base‘𝐶))
4033fveq2d 6891 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (comp‘𝑒) = (comp‘𝐸))
4140oveqd 7431 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥))) = (⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥))))
4241oveqd 7431 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))) = ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))
4339, 42mpteq12dv 5215 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
4435, 38, 43mpoeq123dv 7491 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4544csbeq2dv 3888 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4645csbeq2dv 3888 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4746csbeq2dv 3888 . . . . . . . . . 10 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4847csbeq2dv 3888 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4948csbeq2dv 3888 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
5030, 30, 49mpoeq123dv 7491 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))) = (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))))
5131, 50opeq12d 4863 . . . . . 6 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
5226, 29, 51csbied2 3918 . . . . 5 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
5310, 15, 52csbied2 3918 . . . 4 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
544, 9, 53csbied2 3918 . . 3 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
55 fucofvalg.p . . . 4 (𝜑𝑃𝑈)
5655elexd 3488 . . 3 (𝜑𝑃 ∈ V)
57 fucofvalg.e . . . 4 (𝜑𝐸𝑉)
5857elexd 3488 . . 3 (𝜑𝐸 ∈ V)
59 opex 5451 . . . 4 ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ∈ V
6059a1i 11 . . 3 (𝜑 → ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ∈ V)
613, 54, 56, 58, 60ovmpod 7568 . 2 (𝜑 → (𝑃F 𝐸) = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
621, 61eqtr3d 2771 1 (𝜑 = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3464  csb 3881  cop 4614  cmpt 5207   × cxp 5665  cres 5669  cfv 6542  (class class class)co 7414  cmpo 7416  1st c1st 7995  2nd c2nd 7996  Basecbs 17230  compcco 17286   Func cfunc 17871  func ccofu 17873   Nat cnat 17961  F cfuco 48971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-res 5679  df-iota 6495  df-fun 6544  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-fuco 48972
This theorem is referenced by:  fucofval  48974  fucofvalne  48980
  Copyright terms: Public domain W3C validator