Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucofvalg Structured version   Visualization version   GIF version

Theorem fucofvalg 49443
Description: Value of the function giving the functor composition bifunctor. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
fucofvalg.p (𝜑𝑃𝑈)
fucofvalg.c (𝜑 → (1st𝑃) = 𝐶)
fucofvalg.d (𝜑 → (2nd𝑃) = 𝐷)
fucofvalg.e (𝜑𝐸𝑉)
fucofvalg.o (𝜑 → (𝑃F 𝐸) = )
fucofvalg.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
Assertion
Ref Expression
fucofvalg (𝜑 = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Distinct variable groups:   𝐶,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝐷,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝐸,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝑊,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝜑,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝑃,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥
Allowed substitution hints:   𝑈(𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)   𝑉(𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)   (𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)

Proof of Theorem fucofvalg
Dummy variables 𝑐 𝑑 𝑒 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucofvalg.o . 2 (𝜑 → (𝑃F 𝐸) = )
2 df-fuco 49442 . . . 4 F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
32a1i 11 . . 3 (𝜑 → ∘F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩))
4 fvexd 6843 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑝) ∈ V)
5 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → 𝑝 = 𝑃)
65fveq2d 6832 . . . . 5 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑝) = (1st𝑃))
7 fucofvalg.c . . . . . 6 (𝜑 → (1st𝑃) = 𝐶)
87adantr 480 . . . . 5 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑃) = 𝐶)
96, 8eqtrd 2768 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑝) = 𝐶)
10 fvexd 6843 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) ∈ V)
11 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → 𝑝 = 𝑃)
1211fveq2d 6832 . . . . . 6 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) = (2nd𝑃))
13 fucofvalg.d . . . . . . 7 (𝜑 → (2nd𝑃) = 𝐷)
1413ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑃) = 𝐷)
1512, 14eqtrd 2768 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) = 𝐷)
16 simpr 484 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
17 simpllr 775 . . . . . . . . . 10 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑝 = 𝑃𝑒 = 𝐸))
1817simprd 495 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑒 = 𝐸)
1916, 18oveq12d 7370 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑑 Func 𝑒) = (𝐷 Func 𝐸))
20 simplr 768 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶)
2120, 16oveq12d 7370 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑐 Func 𝑑) = (𝐶 Func 𝐷))
2219, 21xpeq12d 5650 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
23 ovexd 7387 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝐷 Func 𝐸) ∈ V)
24 ovexd 7387 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝐶 Func 𝐷) ∈ V)
2523, 24xpexd 7690 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∈ V)
2622, 25eqeltrd 2833 . . . . . 6 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) ∈ V)
27 fucofvalg.w . . . . . . . 8 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
2827ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
2922, 28eqtr4d 2771 . . . . . 6 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) = 𝑊)
30 simpr 484 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → 𝑤 = 𝑊)
3130reseq2d 5932 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ( ∘func𝑤) = ( ∘func𝑊))
32 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → 𝑑 = 𝐷)
3318adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → 𝑒 = 𝐸)
3432, 33oveq12d 7370 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑑 Nat 𝑒) = (𝐷 Nat 𝐸))
3534oveqd 7369 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)) = ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)))
36 simpllr 775 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → 𝑐 = 𝐶)
3736, 32oveq12d 7370 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑐 Nat 𝑑) = (𝐶 Nat 𝐷))
3837oveqd 7369 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) = ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)))
3936fveq2d 6832 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (Base‘𝑐) = (Base‘𝐶))
4033fveq2d 6832 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (comp‘𝑒) = (comp‘𝐸))
4140oveqd 7369 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥))) = (⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥))))
4241oveqd 7369 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))) = ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))
4339, 42mpteq12dv 5180 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))
4435, 38, 43mpoeq123dv 7427 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4544csbeq2dv 3853 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4645csbeq2dv 3853 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4746csbeq2dv 3853 . . . . . . . . . 10 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4847csbeq2dv 3853 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
4948csbeq2dv 3853 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))
5030, 30, 49mpoeq123dv 7427 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))) = (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))))
5131, 50opeq12d 4832 . . . . . 6 (((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) ∧ 𝑤 = 𝑊) → ⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
5226, 29, 51csbied2 3883 . . . . 5 ((((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
5310, 15, 52csbied2 3883 . . . 4 (((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
544, 9, 53csbied2 3883 . . 3 ((𝜑 ∧ (𝑝 = 𝑃𝑒 = 𝐸)) → (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
55 fucofvalg.p . . . 4 (𝜑𝑃𝑈)
5655elexd 3461 . . 3 (𝜑𝑃 ∈ V)
57 fucofvalg.e . . . 4 (𝜑𝐸𝑉)
5857elexd 3461 . . 3 (𝜑𝐸 ∈ V)
59 opex 5407 . . . 4 ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ∈ V
6059a1i 11 . . 3 (𝜑 → ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ∈ V)
613, 54, 56, 58, 60ovmpod 7504 . 2 (𝜑 → (𝑃F 𝐸) = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
621, 61eqtr3d 2770 1 (𝜑 = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  csb 3846  cop 4581  cmpt 5174   × cxp 5617  cres 5621  cfv 6486  (class class class)co 7352  cmpo 7354  1st c1st 7925  2nd c2nd 7926  Basecbs 17122  compcco 17175   Func cfunc 17763  func ccofu 17765   Nat cnat 17853  F cfuco 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-fuco 49442
This theorem is referenced by:  fucofval  49444  fucofvalne  49450
  Copyright terms: Public domain W3C validator