Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco11 Structured version   Visualization version   GIF version

Theorem fuco11 49299
Description: The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fuco11.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco11.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fuco11.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fuco11.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
Assertion
Ref Expression
fuco11 (𝜑 → (𝑂𝑈) = (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))

Proof of Theorem fuco11
StepHypRef Expression
1 fuco11.f . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
21funcrcl2 49052 . . . 4 (𝜑𝐶 ∈ Cat)
3 fuco11.k . . . . 5 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
43funcrcl2 49052 . . . 4 (𝜑𝐷 ∈ Cat)
53funcrcl3 49053 . . . 4 (𝜑𝐸 ∈ Cat)
6 fuco11.o . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7 eqidd 2730 . . . 4 (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
82, 4, 5, 6, 7fuco1 49294 . . 3 (𝜑𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
98fveq1d 6828 . 2 (𝜑 → (𝑂𝑈) = (( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))‘𝑈))
10 fuco11.u . . . 4 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
117, 10, 3, 1fuco2eld 49286 . . 3 (𝜑𝑈 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
1211fvresd 6846 . 2 (𝜑 → (( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))‘𝑈) = ( ∘func𝑈))
1310fveq2d 6830 . . 3 (𝜑 → ( ∘func𝑈) = ( ∘func ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩))
14 df-ov 7356 . . 3 (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) = ( ∘func ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
1513, 14eqtr4di 2782 . 2 (𝜑 → ( ∘func𝑈) = (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))
169, 12, 153eqtrd 2768 1 (𝜑 → (𝑂𝑈) = (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cop 4585   class class class wbr 5095   × cxp 5621  cres 5625  cfv 6486  (class class class)co 7353  Catccat 17588   Func cfunc 17779  func ccofu 17781  F cfuco 49289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-func 17783  df-cofu 17785  df-fuco 49290
This theorem is referenced by:  fuco11a  49301  fuco11bALT  49311  precofvalALT  49341
  Copyright terms: Public domain W3C validator