| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco11 | Structured version Visualization version GIF version | ||
| Description: The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 30-Sep-2025.) |
| Ref | Expression |
|---|---|
| fuco11.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fuco11.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| fuco11.k | ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| fuco11.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| Ref | Expression |
|---|---|
| fuco11 | ⊢ (𝜑 → (𝑂‘𝑈) = (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco11.f | . . . . 5 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 2 | 1 | funcrcl2 49052 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 3 | fuco11.k | . . . . 5 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) | |
| 4 | 3 | funcrcl2 49052 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 5 | 3 | funcrcl3 49053 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 6 | fuco11.o | . . . 4 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 7 | eqidd 2730 | . . . 4 ⊢ (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 8 | 2, 4, 5, 6, 7 | fuco1 49294 | . . 3 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
| 9 | 8 | fveq1d 6828 | . 2 ⊢ (𝜑 → (𝑂‘𝑈) = (( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))‘𝑈)) |
| 10 | fuco11.u | . . . 4 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
| 11 | 7, 10, 3, 1 | fuco2eld 49286 | . . 3 ⊢ (𝜑 → 𝑈 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 12 | 11 | fvresd 6846 | . 2 ⊢ (𝜑 → (( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))‘𝑈) = ( ∘func ‘𝑈)) |
| 13 | 10 | fveq2d 6830 | . . 3 ⊢ (𝜑 → ( ∘func ‘𝑈) = ( ∘func ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) |
| 14 | df-ov 7356 | . . 3 ⊢ (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = ( ∘func ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
| 15 | 13, 14 | eqtr4di 2782 | . 2 ⊢ (𝜑 → ( ∘func ‘𝑈) = (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉)) |
| 16 | 9, 12, 15 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝑂‘𝑈) = (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4585 class class class wbr 5095 × cxp 5621 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 Catccat 17588 Func cfunc 17779 ∘func ccofu 17781 ∘F cfuco 49289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-func 17783 df-cofu 17785 df-fuco 49290 |
| This theorem is referenced by: fuco11a 49301 fuco11bALT 49311 precofvalALT 49341 |
| Copyright terms: Public domain | W3C validator |