| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco11 | Structured version Visualization version GIF version | ||
| Description: The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 30-Sep-2025.) |
| Ref | Expression |
|---|---|
| fuco11.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fuco11.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| fuco11.k | ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| fuco11.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| Ref | Expression |
|---|---|
| fuco11 | ⊢ (𝜑 → (𝑂‘𝑈) = (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco11.f | . . . . 5 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 2 | 1 | funcrcl2 49110 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 3 | fuco11.k | . . . . 5 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) | |
| 4 | 3 | funcrcl2 49110 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 5 | 3 | funcrcl3 49111 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 6 | fuco11.o | . . . 4 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 7 | eqidd 2732 | . . . 4 ⊢ (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 8 | 2, 4, 5, 6, 7 | fuco1 49352 | . . 3 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
| 9 | 8 | fveq1d 6824 | . 2 ⊢ (𝜑 → (𝑂‘𝑈) = (( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))‘𝑈)) |
| 10 | fuco11.u | . . . 4 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
| 11 | 7, 10, 3, 1 | fuco2eld 49344 | . . 3 ⊢ (𝜑 → 𝑈 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 12 | 11 | fvresd 6842 | . 2 ⊢ (𝜑 → (( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))‘𝑈) = ( ∘func ‘𝑈)) |
| 13 | 10 | fveq2d 6826 | . . 3 ⊢ (𝜑 → ( ∘func ‘𝑈) = ( ∘func ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) |
| 14 | df-ov 7349 | . . 3 ⊢ (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = ( ∘func ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
| 15 | 13, 14 | eqtr4di 2784 | . 2 ⊢ (𝜑 → ( ∘func ‘𝑈) = (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉)) |
| 16 | 9, 12, 15 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝑂‘𝑈) = (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 〈cop 4582 class class class wbr 5091 × cxp 5614 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 Catccat 17567 Func cfunc 17758 ∘func ccofu 17760 ∘F cfuco 49347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-func 17762 df-cofu 17764 df-fuco 49348 |
| This theorem is referenced by: fuco11a 49359 fuco11bALT 49369 precofvalALT 49399 |
| Copyright terms: Public domain | W3C validator |