Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco11 Structured version   Visualization version   GIF version

Theorem fuco11 49221
Description: The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fuco11.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco11.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fuco11.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fuco11.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
Assertion
Ref Expression
fuco11 (𝜑 → (𝑂𝑈) = (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))

Proof of Theorem fuco11
StepHypRef Expression
1 fuco11.f . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
21funcrcl2 48996 . . . 4 (𝜑𝐶 ∈ Cat)
3 fuco11.k . . . . 5 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
43funcrcl2 48996 . . . 4 (𝜑𝐷 ∈ Cat)
53funcrcl3 48997 . . . 4 (𝜑𝐸 ∈ Cat)
6 fuco11.o . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7 eqidd 2731 . . . 4 (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
82, 4, 5, 6, 7fuco1 49216 . . 3 (𝜑𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
98fveq1d 6867 . 2 (𝜑 → (𝑂𝑈) = (( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))‘𝑈))
10 fuco11.u . . . 4 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
117, 10, 3, 1fuco2eld 49208 . . 3 (𝜑𝑈 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
1211fvresd 6885 . 2 (𝜑 → (( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))‘𝑈) = ( ∘func𝑈))
1310fveq2d 6869 . . 3 (𝜑 → ( ∘func𝑈) = ( ∘func ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩))
14 df-ov 7397 . . 3 (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) = ( ∘func ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
1513, 14eqtr4di 2783 . 2 (𝜑 → ( ∘func𝑈) = (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))
169, 12, 153eqtrd 2769 1 (𝜑 → (𝑂𝑈) = (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cop 4603   class class class wbr 5115   × cxp 5644  cres 5648  cfv 6519  (class class class)co 7394  Catccat 17631   Func cfunc 17822  func ccofu 17824  F cfuco 49211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-func 17826  df-cofu 17828  df-fuco 49212
This theorem is referenced by:  fuco11a  49223  fuco11bALT  49233  precofvalALT  49263
  Copyright terms: Public domain W3C validator