Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco11 Structured version   Visualization version   GIF version

Theorem fuco11 48981
Description: The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fuco11.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco11.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fuco11.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fuco11.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
Assertion
Ref Expression
fuco11 (𝜑 → (𝑂𝑈) = (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))

Proof of Theorem fuco11
StepHypRef Expression
1 fuco11.f . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
21funcrcl2 48865 . . . 4 (𝜑𝐶 ∈ Cat)
3 fuco11.k . . . . 5 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
43funcrcl2 48865 . . . 4 (𝜑𝐷 ∈ Cat)
53funcrcl3 48866 . . . 4 (𝜑𝐸 ∈ Cat)
6 fuco11.o . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7 eqidd 2735 . . . 4 (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
82, 4, 5, 6, 7fuco1 48976 . . 3 (𝜑𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
98fveq1d 6889 . 2 (𝜑 → (𝑂𝑈) = (( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))‘𝑈))
10 fuco11.u . . . 4 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
117, 10, 3, 1fuco2eld 48968 . . 3 (𝜑𝑈 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
1211fvresd 6907 . 2 (𝜑 → (( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))‘𝑈) = ( ∘func𝑈))
1310fveq2d 6891 . . 3 (𝜑 → ( ∘func𝑈) = ( ∘func ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩))
14 df-ov 7417 . . 3 (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) = ( ∘func ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
1513, 14eqtr4di 2787 . 2 (𝜑 → ( ∘func𝑈) = (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))
169, 12, 153eqtrd 2773 1 (𝜑 → (𝑂𝑈) = (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cop 4614   class class class wbr 5125   × cxp 5665  cres 5669  cfv 6542  (class class class)co 7414  Catccat 17679   Func cfunc 17871  func ccofu 17873  F cfuco 48971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-func 17875  df-cofu 17877  df-fuco 48972
This theorem is referenced by:  fuco11a  48983  fuco11bALT  48993  precofvalALT  49023
  Copyright terms: Public domain W3C validator