MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucco Structured version   Visualization version   GIF version

Theorem fucco 18032
Description: Value of the composition of natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucco.q 𝑄 = (𝐶 FuncCat 𝐷)
fucco.n 𝑁 = (𝐶 Nat 𝐷)
fucco.a 𝐴 = (Base‘𝐶)
fucco.o · = (comp‘𝐷)
fucco.x = (comp‘𝑄)
fucco.f (𝜑𝑅 ∈ (𝐹𝑁𝐺))
fucco.g (𝜑𝑆 ∈ (𝐺𝑁𝐻))
Assertion
Ref Expression
fucco (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) = (𝑥𝐴 ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑅𝑥))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑥,𝐶   𝑥,𝐷   𝑥, ·   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻
Allowed substitution hints:   𝑄(𝑥)   (𝑥)   𝑁(𝑥)

Proof of Theorem fucco
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucco.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
2 eqid 2740 . . . 4 (𝐶 Func 𝐷) = (𝐶 Func 𝐷)
3 fucco.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
4 fucco.a . . . 4 𝐴 = (Base‘𝐶)
5 fucco.o . . . 4 · = (comp‘𝐷)
6 fucco.f . . . . . . . 8 (𝜑𝑅 ∈ (𝐹𝑁𝐺))
73natrcl 18018 . . . . . . . 8 (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
86, 7syl 17 . . . . . . 7 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
98simpld 494 . . . . . 6 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
10 funcrcl 17927 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
119, 10syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1211simpld 494 . . . 4 (𝜑𝐶 ∈ Cat)
1311simprd 495 . . . 4 (𝜑𝐷 ∈ Cat)
14 fucco.x . . . 4 = (comp‘𝑄)
151, 2, 3, 4, 5, 12, 13, 14fuccofval 18028 . . 3 (𝜑 = (𝑣 ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)), ∈ (𝐶 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))))
16 fvexd 6935 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) → (1st𝑣) ∈ V)
17 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) → 𝑣 = ⟨𝐹, 𝐺⟩)
1817fveq2d 6924 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) → (1st𝑣) = (1st ‘⟨𝐹, 𝐺⟩))
19 op1stg 8042 . . . . . . 7 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
208, 19syl 17 . . . . . 6 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
2120adantr 480 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
2218, 21eqtrd 2780 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) → (1st𝑣) = 𝐹)
23 fvexd 6935 . . . . 5 (((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) → (2nd𝑣) ∈ V)
2417adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) → 𝑣 = ⟨𝐹, 𝐺⟩)
2524fveq2d 6924 . . . . . 6 (((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) → (2nd𝑣) = (2nd ‘⟨𝐹, 𝐺⟩))
26 op2ndg 8043 . . . . . . . 8 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
278, 26syl 17 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2827ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2925, 28eqtrd 2780 . . . . 5 (((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) → (2nd𝑣) = 𝐺)
30 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺)
31 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) → = 𝐻)
3231ad2antrr 725 . . . . . . 7 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → = 𝐻)
3330, 32oveq12d 7466 . . . . . 6 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑔𝑁) = (𝐺𝑁𝐻))
34 simplr 768 . . . . . . 7 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹)
3534, 30oveq12d 7466 . . . . . 6 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓𝑁𝑔) = (𝐹𝑁𝐺))
3634fveq2d 6924 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (1st𝑓) = (1st𝐹))
3736fveq1d 6922 . . . . . . . . . 10 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
3830fveq2d 6924 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (1st𝑔) = (1st𝐺))
3938fveq1d 6922 . . . . . . . . . 10 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((1st𝑔)‘𝑥) = ((1st𝐺)‘𝑥))
4037, 39opeq12d 4905 . . . . . . . . 9 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
4132fveq2d 6924 . . . . . . . . . 10 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (1st) = (1st𝐻))
4241fveq1d 6922 . . . . . . . . 9 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((1st)‘𝑥) = ((1st𝐻)‘𝑥))
4340, 42oveq12d 7466 . . . . . . . 8 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥)) = (⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥)))
4443oveqd 7465 . . . . . . 7 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)) = ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)))
4544mpteq2dv 5268 . . . . . 6 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))) = (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥))))
4633, 35, 45mpoeq123dv 7525 . . . . 5 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)))))
4723, 29, 46csbied2 3961 . . . 4 (((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)))))
4816, 22, 47csbied2 3961 . . 3 ((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) → (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)))))
49 opelxpi 5737 . . . 4 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → ⟨𝐹, 𝐺⟩ ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)))
508, 49syl 17 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)))
51 fucco.g . . . . 5 (𝜑𝑆 ∈ (𝐺𝑁𝐻))
523natrcl 18018 . . . . 5 (𝑆 ∈ (𝐺𝑁𝐻) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)))
5351, 52syl 17 . . . 4 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)))
5453simprd 495 . . 3 (𝜑𝐻 ∈ (𝐶 Func 𝐷))
55 ovex 7481 . . . . 5 (𝐺𝑁𝐻) ∈ V
56 ovex 7481 . . . . 5 (𝐹𝑁𝐺) ∈ V
5755, 56mpoex 8120 . . . 4 (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)))) ∈ V
5857a1i 11 . . 3 (𝜑 → (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)))) ∈ V)
5915, 48, 50, 54, 58ovmpod 7602 . 2 (𝜑 → (⟨𝐹, 𝐺 𝐻) = (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)))))
60 simprl 770 . . . . 5 ((𝜑 ∧ (𝑏 = 𝑆𝑎 = 𝑅)) → 𝑏 = 𝑆)
6160fveq1d 6922 . . . 4 ((𝜑 ∧ (𝑏 = 𝑆𝑎 = 𝑅)) → (𝑏𝑥) = (𝑆𝑥))
62 simprr 772 . . . . 5 ((𝜑 ∧ (𝑏 = 𝑆𝑎 = 𝑅)) → 𝑎 = 𝑅)
6362fveq1d 6922 . . . 4 ((𝜑 ∧ (𝑏 = 𝑆𝑎 = 𝑅)) → (𝑎𝑥) = (𝑅𝑥))
6461, 63oveq12d 7466 . . 3 ((𝜑 ∧ (𝑏 = 𝑆𝑎 = 𝑅)) → ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)) = ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑅𝑥)))
6564mpteq2dv 5268 . 2 ((𝜑 ∧ (𝑏 = 𝑆𝑎 = 𝑅)) → (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥))) = (𝑥𝐴 ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑅𝑥))))
664fvexi 6934 . . . 4 𝐴 ∈ V
6766mptex 7260 . . 3 (𝑥𝐴 ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑅𝑥))) ∈ V
6867a1i 11 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑅𝑥))) ∈ V)
6959, 65, 51, 6, 68ovmpod 7602 1 (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) = (𝑥𝐴 ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑅𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  csb 3921  cop 4654  cmpt 5249   × cxp 5698  cfv 6573  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029  Basecbs 17258  compcco 17323  Catccat 17722   Func cfunc 17918   Nat cnat 18009   FuncCat cfuc 18010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-hom 17335  df-cco 17336  df-func 17922  df-nat 18011  df-fuc 18012
This theorem is referenced by:  fuccoval  18033  fuccocl  18034  fuclid  18036  fucrid  18037  fucass  18038  fucsect  18042  curfcl  18302
  Copyright terms: Public domain W3C validator