MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucco Structured version   Visualization version   GIF version

Theorem fucco 17596
Description: Value of the composition of natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucco.q 𝑄 = (𝐶 FuncCat 𝐷)
fucco.n 𝑁 = (𝐶 Nat 𝐷)
fucco.a 𝐴 = (Base‘𝐶)
fucco.o · = (comp‘𝐷)
fucco.x = (comp‘𝑄)
fucco.f (𝜑𝑅 ∈ (𝐹𝑁𝐺))
fucco.g (𝜑𝑆 ∈ (𝐺𝑁𝐻))
Assertion
Ref Expression
fucco (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) = (𝑥𝐴 ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑅𝑥))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑥,𝐶   𝑥,𝐷   𝑥, ·   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻
Allowed substitution hints:   𝑄(𝑥)   (𝑥)   𝑁(𝑥)

Proof of Theorem fucco
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucco.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
2 eqid 2738 . . . 4 (𝐶 Func 𝐷) = (𝐶 Func 𝐷)
3 fucco.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
4 fucco.a . . . 4 𝐴 = (Base‘𝐶)
5 fucco.o . . . 4 · = (comp‘𝐷)
6 fucco.f . . . . . . . 8 (𝜑𝑅 ∈ (𝐹𝑁𝐺))
73natrcl 17582 . . . . . . . 8 (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
86, 7syl 17 . . . . . . 7 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
98simpld 494 . . . . . 6 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
10 funcrcl 17494 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
119, 10syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1211simpld 494 . . . 4 (𝜑𝐶 ∈ Cat)
1311simprd 495 . . . 4 (𝜑𝐷 ∈ Cat)
14 fucco.x . . . 4 = (comp‘𝑄)
151, 2, 3, 4, 5, 12, 13, 14fuccofval 17592 . . 3 (𝜑 = (𝑣 ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)), ∈ (𝐶 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))))
16 fvexd 6771 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) → (1st𝑣) ∈ V)
17 simprl 767 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) → 𝑣 = ⟨𝐹, 𝐺⟩)
1817fveq2d 6760 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) → (1st𝑣) = (1st ‘⟨𝐹, 𝐺⟩))
19 op1stg 7816 . . . . . . 7 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
208, 19syl 17 . . . . . 6 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
2120adantr 480 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
2218, 21eqtrd 2778 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) → (1st𝑣) = 𝐹)
23 fvexd 6771 . . . . 5 (((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) → (2nd𝑣) ∈ V)
2417adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) → 𝑣 = ⟨𝐹, 𝐺⟩)
2524fveq2d 6760 . . . . . 6 (((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) → (2nd𝑣) = (2nd ‘⟨𝐹, 𝐺⟩))
26 op2ndg 7817 . . . . . . . 8 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
278, 26syl 17 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2827ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2925, 28eqtrd 2778 . . . . 5 (((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) → (2nd𝑣) = 𝐺)
30 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺)
31 simprr 769 . . . . . . . 8 ((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) → = 𝐻)
3231ad2antrr 722 . . . . . . 7 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → = 𝐻)
3330, 32oveq12d 7273 . . . . . 6 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑔𝑁) = (𝐺𝑁𝐻))
34 simplr 765 . . . . . . 7 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹)
3534, 30oveq12d 7273 . . . . . 6 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓𝑁𝑔) = (𝐹𝑁𝐺))
3634fveq2d 6760 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (1st𝑓) = (1st𝐹))
3736fveq1d 6758 . . . . . . . . . 10 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
3830fveq2d 6760 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (1st𝑔) = (1st𝐺))
3938fveq1d 6758 . . . . . . . . . 10 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((1st𝑔)‘𝑥) = ((1st𝐺)‘𝑥))
4037, 39opeq12d 4809 . . . . . . . . 9 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
4132fveq2d 6760 . . . . . . . . . 10 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (1st) = (1st𝐻))
4241fveq1d 6758 . . . . . . . . 9 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((1st)‘𝑥) = ((1st𝐻)‘𝑥))
4340, 42oveq12d 7273 . . . . . . . 8 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥)) = (⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥)))
4443oveqd 7272 . . . . . . 7 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)) = ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)))
4544mpteq2dv 5172 . . . . . 6 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))) = (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥))))
4633, 35, 45mpoeq123dv 7328 . . . . 5 ((((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)))))
4723, 29, 46csbied2 3868 . . . 4 (((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) ∧ 𝑓 = 𝐹) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)))))
4816, 22, 47csbied2 3868 . . 3 ((𝜑 ∧ (𝑣 = ⟨𝐹, 𝐺⟩ ∧ = 𝐻)) → (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)))))
49 opelxpi 5617 . . . 4 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → ⟨𝐹, 𝐺⟩ ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)))
508, 49syl 17 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)))
51 fucco.g . . . . 5 (𝜑𝑆 ∈ (𝐺𝑁𝐻))
523natrcl 17582 . . . . 5 (𝑆 ∈ (𝐺𝑁𝐻) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)))
5351, 52syl 17 . . . 4 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)))
5453simprd 495 . . 3 (𝜑𝐻 ∈ (𝐶 Func 𝐷))
55 ovex 7288 . . . . 5 (𝐺𝑁𝐻) ∈ V
56 ovex 7288 . . . . 5 (𝐹𝑁𝐺) ∈ V
5755, 56mpoex 7893 . . . 4 (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)))) ∈ V
5857a1i 11 . . 3 (𝜑 → (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)))) ∈ V)
5915, 48, 50, 54, 58ovmpod 7403 . 2 (𝜑 → (⟨𝐹, 𝐺 𝐻) = (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)))))
60 simprl 767 . . . . 5 ((𝜑 ∧ (𝑏 = 𝑆𝑎 = 𝑅)) → 𝑏 = 𝑆)
6160fveq1d 6758 . . . 4 ((𝜑 ∧ (𝑏 = 𝑆𝑎 = 𝑅)) → (𝑏𝑥) = (𝑆𝑥))
62 simprr 769 . . . . 5 ((𝜑 ∧ (𝑏 = 𝑆𝑎 = 𝑅)) → 𝑎 = 𝑅)
6362fveq1d 6758 . . . 4 ((𝜑 ∧ (𝑏 = 𝑆𝑎 = 𝑅)) → (𝑎𝑥) = (𝑅𝑥))
6461, 63oveq12d 7273 . . 3 ((𝜑 ∧ (𝑏 = 𝑆𝑎 = 𝑅)) → ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥)) = ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑅𝑥)))
6564mpteq2dv 5172 . 2 ((𝜑 ∧ (𝑏 = 𝑆𝑎 = 𝑅)) → (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑎𝑥))) = (𝑥𝐴 ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑅𝑥))))
664fvexi 6770 . . . 4 𝐴 ∈ V
6766mptex 7081 . . 3 (𝑥𝐴 ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑅𝑥))) ∈ V
6867a1i 11 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑅𝑥))) ∈ V)
6959, 65, 51, 6, 68ovmpod 7403 1 (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) = (𝑥𝐴 ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐻)‘𝑥))(𝑅𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  csb 3828  cop 4564  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  Basecbs 16840  compcco 16900  Catccat 17290   Func cfunc 17485   Nat cnat 17573   FuncCat cfuc 17574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-func 17489  df-nat 17575  df-fuc 17576
This theorem is referenced by:  fuccoval  17597  fuccocl  17598  fuclid  17600  fucrid  17601  fucass  17602  fucsect  17606  curfcl  17866
  Copyright terms: Public domain W3C validator