Step | Hyp | Ref
| Expression |
1 | | fucco.q |
. . . 4
⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
2 | | eqid 2738 |
. . . 4
⊢ (𝐶 Func 𝐷) = (𝐶 Func 𝐷) |
3 | | fucco.n |
. . . 4
⊢ 𝑁 = (𝐶 Nat 𝐷) |
4 | | fucco.a |
. . . 4
⊢ 𝐴 = (Base‘𝐶) |
5 | | fucco.o |
. . . 4
⊢ · =
(comp‘𝐷) |
6 | | fucco.f |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ (𝐹𝑁𝐺)) |
7 | 3 | natrcl 17582 |
. . . . . . . 8
⊢ (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
8 | 6, 7 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
9 | 8 | simpld 494 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
10 | | funcrcl 17494 |
. . . . . 6
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
11 | 9, 10 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
12 | 11 | simpld 494 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
13 | 11 | simprd 495 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
14 | | fucco.x |
. . . 4
⊢ ∙ =
(comp‘𝑄) |
15 | 1, 2, 3, 4, 5, 12,
13, 14 | fuccofval 17592 |
. . 3
⊢ (𝜑 → ∙ = (𝑣 ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)), ℎ ∈ (𝐶 Func 𝐷) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st
‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
16 | | fvexd 6771 |
. . . 4
⊢ ((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) → (1st ‘𝑣) ∈ V) |
17 | | simprl 767 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) → 𝑣 = 〈𝐹, 𝐺〉) |
18 | 17 | fveq2d 6760 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) → (1st ‘𝑣) = (1st
‘〈𝐹, 𝐺〉)) |
19 | | op1stg 7816 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
20 | 8, 19 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1st
‘〈𝐹, 𝐺〉) = 𝐹) |
21 | 20 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
22 | 18, 21 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) → (1st ‘𝑣) = 𝐹) |
23 | | fvexd 6771 |
. . . . 5
⊢ (((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) → (2nd ‘𝑣) ∈ V) |
24 | 17 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) → 𝑣 = 〈𝐹, 𝐺〉) |
25 | 24 | fveq2d 6760 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) → (2nd ‘𝑣) = (2nd
‘〈𝐹, 𝐺〉)) |
26 | | op2ndg 7817 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (2nd ‘〈𝐹, 𝐺〉) = 𝐺) |
27 | 8, 26 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (2nd
‘〈𝐹, 𝐺〉) = 𝐺) |
28 | 27 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) → (2nd ‘〈𝐹, 𝐺〉) = 𝐺) |
29 | 25, 28 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) → (2nd ‘𝑣) = 𝐺) |
30 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) |
31 | | simprr 769 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) → ℎ = 𝐻) |
32 | 31 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ℎ = 𝐻) |
33 | 30, 32 | oveq12d 7273 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑔𝑁ℎ) = (𝐺𝑁𝐻)) |
34 | | simplr 765 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹) |
35 | 34, 30 | oveq12d 7273 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓𝑁𝑔) = (𝐹𝑁𝐺)) |
36 | 34 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (1st ‘𝑓) = (1st ‘𝐹)) |
37 | 36 | fveq1d 6758 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((1st ‘𝑓)‘𝑥) = ((1st ‘𝐹)‘𝑥)) |
38 | 30 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (1st ‘𝑔) = (1st ‘𝐺)) |
39 | 38 | fveq1d 6758 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((1st ‘𝑔)‘𝑥) = ((1st ‘𝐺)‘𝑥)) |
40 | 37, 39 | opeq12d 4809 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 = 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) |
41 | 32 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (1st ‘ℎ) = (1st ‘𝐻)) |
42 | 41 | fveq1d 6758 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((1st ‘ℎ)‘𝑥) = ((1st ‘𝐻)‘𝑥)) |
43 | 40, 42 | oveq12d 7273 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (〈((1st
‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st
‘ℎ)‘𝑥)) = (〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))) |
44 | 43 | oveqd 7272 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st
‘ℎ)‘𝑥))(𝑎‘𝑥)) = ((𝑏‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑎‘𝑥))) |
45 | 44 | mpteq2dv 5172 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st
‘ℎ)‘𝑥))(𝑎‘𝑥))) = (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑎‘𝑥)))) |
46 | 33, 35, 45 | mpoeq123dv 7328 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st
‘ℎ)‘𝑥))(𝑎‘𝑥)))) = (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑎‘𝑥))))) |
47 | 23, 29, 46 | csbied2 3868 |
. . . 4
⊢ (((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) ∧ 𝑓 = 𝐹) → ⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st
‘ℎ)‘𝑥))(𝑎‘𝑥)))) = (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑎‘𝑥))))) |
48 | 16, 22, 47 | csbied2 3868 |
. . 3
⊢ ((𝜑 ∧ (𝑣 = 〈𝐹, 𝐺〉 ∧ ℎ = 𝐻)) → ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st
‘ℎ)‘𝑥))(𝑎‘𝑥)))) = (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑎‘𝑥))))) |
49 | | opelxpi 5617 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 〈𝐹, 𝐺〉 ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷))) |
50 | 8, 49 | syl 17 |
. . 3
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷))) |
51 | | fucco.g |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ (𝐺𝑁𝐻)) |
52 | 3 | natrcl 17582 |
. . . . 5
⊢ (𝑆 ∈ (𝐺𝑁𝐻) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷))) |
53 | 51, 52 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷))) |
54 | 53 | simprd 495 |
. . 3
⊢ (𝜑 → 𝐻 ∈ (𝐶 Func 𝐷)) |
55 | | ovex 7288 |
. . . . 5
⊢ (𝐺𝑁𝐻) ∈ V |
56 | | ovex 7288 |
. . . . 5
⊢ (𝐹𝑁𝐺) ∈ V |
57 | 55, 56 | mpoex 7893 |
. . . 4
⊢ (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑎‘𝑥)))) ∈ V |
58 | 57 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑎‘𝑥)))) ∈ V) |
59 | 15, 48, 50, 54, 58 | ovmpod 7403 |
. 2
⊢ (𝜑 → (〈𝐹, 𝐺〉 ∙ 𝐻) = (𝑏 ∈ (𝐺𝑁𝐻), 𝑎 ∈ (𝐹𝑁𝐺) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑎‘𝑥))))) |
60 | | simprl 767 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 = 𝑆 ∧ 𝑎 = 𝑅)) → 𝑏 = 𝑆) |
61 | 60 | fveq1d 6758 |
. . . 4
⊢ ((𝜑 ∧ (𝑏 = 𝑆 ∧ 𝑎 = 𝑅)) → (𝑏‘𝑥) = (𝑆‘𝑥)) |
62 | | simprr 769 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 = 𝑆 ∧ 𝑎 = 𝑅)) → 𝑎 = 𝑅) |
63 | 62 | fveq1d 6758 |
. . . 4
⊢ ((𝜑 ∧ (𝑏 = 𝑆 ∧ 𝑎 = 𝑅)) → (𝑎‘𝑥) = (𝑅‘𝑥)) |
64 | 61, 63 | oveq12d 7273 |
. . 3
⊢ ((𝜑 ∧ (𝑏 = 𝑆 ∧ 𝑎 = 𝑅)) → ((𝑏‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑎‘𝑥)) = ((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑅‘𝑥))) |
65 | 64 | mpteq2dv 5172 |
. 2
⊢ ((𝜑 ∧ (𝑏 = 𝑆 ∧ 𝑎 = 𝑅)) → (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑎‘𝑥))) = (𝑥 ∈ 𝐴 ↦ ((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑅‘𝑥)))) |
66 | 4 | fvexi 6770 |
. . . 4
⊢ 𝐴 ∈ V |
67 | 66 | mptex 7081 |
. . 3
⊢ (𝑥 ∈ 𝐴 ↦ ((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑅‘𝑥))) ∈ V |
68 | 67 | a1i 11 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑅‘𝑥))) ∈ V) |
69 | 59, 65, 51, 6, 68 | ovmpod 7403 |
1
⊢ (𝜑 → (𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅) = (𝑥 ∈ 𝐴 ↦ ((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st
‘𝐻)‘𝑥))(𝑅‘𝑥)))) |