Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22nat Structured version   Visualization version   GIF version

Theorem fuco22nat 48913
Description: The composed natural transformation is a natural transformation. (Contributed by Zhi Wang, 2-Oct-2025.)
Hypotheses
Ref Expression
fuco22nat.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22nat.a (𝜑𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀))
fuco22nat.b (𝜑𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅))
fuco22nat.u (𝜑𝑈 = ⟨𝐾, 𝐹⟩)
fuco22nat.v (𝜑𝑉 = ⟨𝑅, 𝑀⟩)
Assertion
Ref Expression
fuco22nat (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))

Proof of Theorem fuco22nat
StepHypRef Expression
1 fuco22nat.o . 2 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 eqid 2737 . . 3 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
3 fuco22nat.a . . 3 (𝜑𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀))
42, 3nat1st2nd 18015 . 2 (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩(𝐶 Nat 𝐷)⟨(1st𝑀), (2nd𝑀)⟩))
5 eqid 2737 . . 3 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
6 fuco22nat.b . . 3 (𝜑𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅))
75, 6nat1st2nd 18015 . 2 (𝜑𝐵 ∈ (⟨(1st𝐾), (2nd𝐾)⟩(𝐷 Nat 𝐸)⟨(1st𝑅), (2nd𝑅)⟩))
8 fuco22nat.u . . 3 (𝜑𝑈 = ⟨𝐾, 𝐹⟩)
9 relfunc 17922 . . . . 5 Rel (𝐷 Func 𝐸)
105natrcl 18014 . . . . . . 7 (𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸)))
116, 10syl 17 . . . . . 6 (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸)))
1211simpld 494 . . . . 5 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
13 1st2nd 8072 . . . . 5 ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
149, 12, 13sylancr 587 . . . 4 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
15 relfunc 17922 . . . . 5 Rel (𝐶 Func 𝐷)
162natrcl 18014 . . . . . . 7 (𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷)))
173, 16syl 17 . . . . . 6 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷)))
1817simpld 494 . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
19 1st2nd 8072 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
2015, 18, 19sylancr 587 . . . 4 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
2114, 20opeq12d 4889 . . 3 (𝜑 → ⟨𝐾, 𝐹⟩ = ⟨⟨(1st𝐾), (2nd𝐾)⟩, ⟨(1st𝐹), (2nd𝐹)⟩⟩)
228, 21eqtrd 2777 . 2 (𝜑𝑈 = ⟨⟨(1st𝐾), (2nd𝐾)⟩, ⟨(1st𝐹), (2nd𝐹)⟩⟩)
23 fuco22nat.v . . 3 (𝜑𝑉 = ⟨𝑅, 𝑀⟩)
2411simprd 495 . . . . 5 (𝜑𝑅 ∈ (𝐷 Func 𝐸))
25 1st2nd 8072 . . . . 5 ((Rel (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸)) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
269, 24, 25sylancr 587 . . . 4 (𝜑𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
2717simprd 495 . . . . 5 (𝜑𝑀 ∈ (𝐶 Func 𝐷))
28 1st2nd 8072 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷)) → 𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
2915, 27, 28sylancr 587 . . . 4 (𝜑𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
3026, 29opeq12d 4889 . . 3 (𝜑 → ⟨𝑅, 𝑀⟩ = ⟨⟨(1st𝑅), (2nd𝑅)⟩, ⟨(1st𝑀), (2nd𝑀)⟩⟩)
3123, 30eqtrd 2777 . 2 (𝜑𝑉 = ⟨⟨(1st𝑅), (2nd𝑅)⟩, ⟨(1st𝑀), (2nd𝑀)⟩⟩)
321, 4, 7, 22, 31fuco22natlem 48912 1 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4640  Rel wrel 5698  cfv 6569  (class class class)co 7438  1st c1st 8020  2nd c2nd 8021   Func cfunc 17914   Nat cnat 18005  F cfuco 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-map 8876  df-ixp 8946  df-cat 17722  df-cid 17723  df-func 17918  df-cofu 17920  df-nat 18007  df-fuco 48886
This theorem is referenced by:  fucof21  48914  fucocolem4  48923
  Copyright terms: Public domain W3C validator