Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22nat Structured version   Visualization version   GIF version

Theorem fuco22nat 49241
Description: The composed natural transformation is a natural transformation. (Contributed by Zhi Wang, 2-Oct-2025.)
Hypotheses
Ref Expression
fuco22nat.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22nat.a (𝜑𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀))
fuco22nat.b (𝜑𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅))
fuco22nat.u (𝜑𝑈 = ⟨𝐾, 𝐹⟩)
fuco22nat.v (𝜑𝑉 = ⟨𝑅, 𝑀⟩)
Assertion
Ref Expression
fuco22nat (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))

Proof of Theorem fuco22nat
StepHypRef Expression
1 fuco22nat.o . 2 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 eqid 2730 . . 3 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
3 fuco22nat.a . . 3 (𝜑𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀))
42, 3nat1st2nd 17922 . 2 (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩(𝐶 Nat 𝐷)⟨(1st𝑀), (2nd𝑀)⟩))
5 eqid 2730 . . 3 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
6 fuco22nat.b . . 3 (𝜑𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅))
75, 6nat1st2nd 17922 . 2 (𝜑𝐵 ∈ (⟨(1st𝐾), (2nd𝐾)⟩(𝐷 Nat 𝐸)⟨(1st𝑅), (2nd𝑅)⟩))
8 fuco22nat.u . . 3 (𝜑𝑈 = ⟨𝐾, 𝐹⟩)
9 relfunc 17830 . . . . 5 Rel (𝐷 Func 𝐸)
105natrcl 17921 . . . . . . 7 (𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸)))
116, 10syl 17 . . . . . 6 (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸)))
1211simpld 494 . . . . 5 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
13 1st2nd 8027 . . . . 5 ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
149, 12, 13sylancr 587 . . . 4 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
15 relfunc 17830 . . . . 5 Rel (𝐶 Func 𝐷)
162natrcl 17921 . . . . . . 7 (𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷)))
173, 16syl 17 . . . . . 6 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷)))
1817simpld 494 . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
19 1st2nd 8027 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
2015, 18, 19sylancr 587 . . . 4 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
2114, 20opeq12d 4853 . . 3 (𝜑 → ⟨𝐾, 𝐹⟩ = ⟨⟨(1st𝐾), (2nd𝐾)⟩, ⟨(1st𝐹), (2nd𝐹)⟩⟩)
228, 21eqtrd 2765 . 2 (𝜑𝑈 = ⟨⟨(1st𝐾), (2nd𝐾)⟩, ⟨(1st𝐹), (2nd𝐹)⟩⟩)
23 fuco22nat.v . . 3 (𝜑𝑉 = ⟨𝑅, 𝑀⟩)
2411simprd 495 . . . . 5 (𝜑𝑅 ∈ (𝐷 Func 𝐸))
25 1st2nd 8027 . . . . 5 ((Rel (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸)) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
269, 24, 25sylancr 587 . . . 4 (𝜑𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
2717simprd 495 . . . . 5 (𝜑𝑀 ∈ (𝐶 Func 𝐷))
28 1st2nd 8027 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷)) → 𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
2915, 27, 28sylancr 587 . . . 4 (𝜑𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
3026, 29opeq12d 4853 . . 3 (𝜑 → ⟨𝑅, 𝑀⟩ = ⟨⟨(1st𝑅), (2nd𝑅)⟩, ⟨(1st𝑀), (2nd𝑀)⟩⟩)
3123, 30eqtrd 2765 . 2 (𝜑𝑉 = ⟨⟨(1st𝑅), (2nd𝑅)⟩, ⟨(1st𝑀), (2nd𝑀)⟩⟩)
321, 4, 7, 22, 31fuco22natlem 49240 1 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4603  Rel wrel 5651  cfv 6519  (class class class)co 7394  1st c1st 7975  2nd c2nd 7976   Func cfunc 17822   Nat cnat 17912  F cfuco 49211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-ixp 8875  df-cat 17635  df-cid 17636  df-func 17826  df-cofu 17828  df-nat 17914  df-fuco 49212
This theorem is referenced by:  fucof21  49242  fucocolem4  49251
  Copyright terms: Public domain W3C validator