Proof of Theorem fuco22nat
| Step | Hyp | Ref
| Expression |
| 1 | | fuco22nat.o |
. 2
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| 2 | | eqid 2734 |
. . 3
⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) |
| 3 | | fuco22nat.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀)) |
| 4 | 2, 3 | nat1st2nd 17971 |
. 2
⊢ (𝜑 → 𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐶 Nat 𝐷)〈(1st ‘𝑀), (2nd ‘𝑀)〉)) |
| 5 | | eqid 2734 |
. . 3
⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) |
| 6 | | fuco22nat.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅)) |
| 7 | 5, 6 | nat1st2nd 17971 |
. 2
⊢ (𝜑 → 𝐵 ∈ (〈(1st ‘𝐾), (2nd ‘𝐾)〉(𝐷 Nat 𝐸)〈(1st ‘𝑅), (2nd ‘𝑅)〉)) |
| 8 | | fuco22nat.u |
. . 3
⊢ (𝜑 → 𝑈 = 〈𝐾, 𝐹〉) |
| 9 | | relfunc 17879 |
. . . . 5
⊢ Rel
(𝐷 Func 𝐸) |
| 10 | 5 | natrcl 17970 |
. . . . . . 7
⊢ (𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸))) |
| 11 | 6, 10 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸))) |
| 12 | 11 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 13 | | 1st2nd 8047 |
. . . . 5
⊢ ((Rel
(𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
| 14 | 9, 12, 13 | sylancr 587 |
. . . 4
⊢ (𝜑 → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
| 15 | | relfunc 17879 |
. . . . 5
⊢ Rel
(𝐶 Func 𝐷) |
| 16 | 2 | natrcl 17970 |
. . . . . . 7
⊢ (𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷))) |
| 17 | 3, 16 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷))) |
| 18 | 17 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 19 | | 1st2nd 8047 |
. . . . 5
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 20 | 15, 18, 19 | sylancr 587 |
. . . 4
⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 21 | 14, 20 | opeq12d 4863 |
. . 3
⊢ (𝜑 → 〈𝐾, 𝐹〉 = 〈〈(1st
‘𝐾), (2nd
‘𝐾)〉,
〈(1st ‘𝐹), (2nd ‘𝐹)〉〉) |
| 22 | 8, 21 | eqtrd 2769 |
. 2
⊢ (𝜑 → 𝑈 = 〈〈(1st ‘𝐾), (2nd ‘𝐾)〉, 〈(1st
‘𝐹), (2nd
‘𝐹)〉〉) |
| 23 | | fuco22nat.v |
. . 3
⊢ (𝜑 → 𝑉 = 〈𝑅, 𝑀〉) |
| 24 | 11 | simprd 495 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ (𝐷 Func 𝐸)) |
| 25 | | 1st2nd 8047 |
. . . . 5
⊢ ((Rel
(𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸)) → 𝑅 = 〈(1st ‘𝑅), (2nd ‘𝑅)〉) |
| 26 | 9, 24, 25 | sylancr 587 |
. . . 4
⊢ (𝜑 → 𝑅 = 〈(1st ‘𝑅), (2nd ‘𝑅)〉) |
| 27 | 17 | simprd 495 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (𝐶 Func 𝐷)) |
| 28 | | 1st2nd 8047 |
. . . . 5
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷)) → 𝑀 = 〈(1st ‘𝑀), (2nd ‘𝑀)〉) |
| 29 | 15, 27, 28 | sylancr 587 |
. . . 4
⊢ (𝜑 → 𝑀 = 〈(1st ‘𝑀), (2nd ‘𝑀)〉) |
| 30 | 26, 29 | opeq12d 4863 |
. . 3
⊢ (𝜑 → 〈𝑅, 𝑀〉 = 〈〈(1st
‘𝑅), (2nd
‘𝑅)〉,
〈(1st ‘𝑀), (2nd ‘𝑀)〉〉) |
| 31 | 23, 30 | eqtrd 2769 |
. 2
⊢ (𝜑 → 𝑉 = 〈〈(1st ‘𝑅), (2nd ‘𝑅)〉, 〈(1st
‘𝑀), (2nd
‘𝑀)〉〉) |
| 32 | 1, 4, 7, 22, 31 | fuco22natlem 49000 |
1
⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂‘𝑈)(𝐶 Nat 𝐸)(𝑂‘𝑉))) |