Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22nat Structured version   Visualization version   GIF version

Theorem fuco22nat 49377
Description: The composed natural transformation is a natural transformation. (Contributed by Zhi Wang, 2-Oct-2025.)
Hypotheses
Ref Expression
fuco22nat.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22nat.a (𝜑𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀))
fuco22nat.b (𝜑𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅))
fuco22nat.u (𝜑𝑈 = ⟨𝐾, 𝐹⟩)
fuco22nat.v (𝜑𝑉 = ⟨𝑅, 𝑀⟩)
Assertion
Ref Expression
fuco22nat (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))

Proof of Theorem fuco22nat
StepHypRef Expression
1 fuco22nat.o . 2 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 eqid 2731 . . 3 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
3 fuco22nat.a . . 3 (𝜑𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀))
42, 3nat1st2nd 17858 . 2 (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩(𝐶 Nat 𝐷)⟨(1st𝑀), (2nd𝑀)⟩))
5 eqid 2731 . . 3 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
6 fuco22nat.b . . 3 (𝜑𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅))
75, 6nat1st2nd 17858 . 2 (𝜑𝐵 ∈ (⟨(1st𝐾), (2nd𝐾)⟩(𝐷 Nat 𝐸)⟨(1st𝑅), (2nd𝑅)⟩))
8 fuco22nat.u . . 3 (𝜑𝑈 = ⟨𝐾, 𝐹⟩)
9 relfunc 17766 . . . . 5 Rel (𝐷 Func 𝐸)
105natrcl 17857 . . . . . . 7 (𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸)))
116, 10syl 17 . . . . . 6 (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸)))
1211simpld 494 . . . . 5 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
13 1st2nd 7971 . . . . 5 ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
149, 12, 13sylancr 587 . . . 4 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
15 relfunc 17766 . . . . 5 Rel (𝐶 Func 𝐷)
162natrcl 17857 . . . . . . 7 (𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷)))
173, 16syl 17 . . . . . 6 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷)))
1817simpld 494 . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
19 1st2nd 7971 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
2015, 18, 19sylancr 587 . . . 4 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
2114, 20opeq12d 4833 . . 3 (𝜑 → ⟨𝐾, 𝐹⟩ = ⟨⟨(1st𝐾), (2nd𝐾)⟩, ⟨(1st𝐹), (2nd𝐹)⟩⟩)
228, 21eqtrd 2766 . 2 (𝜑𝑈 = ⟨⟨(1st𝐾), (2nd𝐾)⟩, ⟨(1st𝐹), (2nd𝐹)⟩⟩)
23 fuco22nat.v . . 3 (𝜑𝑉 = ⟨𝑅, 𝑀⟩)
2411simprd 495 . . . . 5 (𝜑𝑅 ∈ (𝐷 Func 𝐸))
25 1st2nd 7971 . . . . 5 ((Rel (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸)) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
269, 24, 25sylancr 587 . . . 4 (𝜑𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
2717simprd 495 . . . . 5 (𝜑𝑀 ∈ (𝐶 Func 𝐷))
28 1st2nd 7971 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷)) → 𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
2915, 27, 28sylancr 587 . . . 4 (𝜑𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
3026, 29opeq12d 4833 . . 3 (𝜑 → ⟨𝑅, 𝑀⟩ = ⟨⟨(1st𝑅), (2nd𝑅)⟩, ⟨(1st𝑀), (2nd𝑀)⟩⟩)
3123, 30eqtrd 2766 . 2 (𝜑𝑉 = ⟨⟨(1st𝑅), (2nd𝑅)⟩, ⟨(1st𝑀), (2nd𝑀)⟩⟩)
321, 4, 7, 22, 31fuco22natlem 49376 1 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4582  Rel wrel 5621  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920   Func cfunc 17758   Nat cnat 17848  F cfuco 49347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17571  df-cid 17572  df-func 17762  df-cofu 17764  df-nat 17850  df-fuco 49348
This theorem is referenced by:  fucof21  49378  fucocolem4  49387
  Copyright terms: Public domain W3C validator