Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22 Structured version   Visualization version   GIF version

Theorem fuco22 49234
Description: The morphism part of the functor composition bifunctor. See also fuco22a 49245. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fuco22.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco22.v (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
fuco22.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco22.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
Assertion
Ref Expression
fuco22 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐾   𝑥,𝐿   𝑥,𝑀   𝑥,𝑅   𝑥,𝑈   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝑆(𝑥)   𝐺(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem fuco22
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fuco22.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 eqid 2730 . . . 4 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
3 fuco22.a . . . 4 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
42, 3natrcl2 49128 . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
5 eqid 2730 . . . 4 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
6 fuco22.b . . . 4 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
75, 6natrcl2 49128 . . 3 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
8 fuco22.u . . 3 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
92, 3natrcl3 49129 . . 3 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
105, 6natrcl3 49129 . . 3 (𝜑𝑅(𝐷 Func 𝐸)𝑆)
11 fuco22.v . . 3 (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
121, 4, 7, 8, 9, 10, 11fuco21 49231 . 2 (𝜑 → (𝑈𝑃𝑉) = (𝑏 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩), 𝑎 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))))
13 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑏 = 𝐵)
1413fveq1d 6867 . . . 4 (((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑏‘(𝑀𝑥)) = (𝐵‘(𝑀𝑥)))
15 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑎 = 𝐴)
1615fveq1d 6867 . . . . 5 (((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑎𝑥) = (𝐴𝑥))
1716fveq2d 6869 . . . 4 (((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥)) = (((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))
1814, 17oveq12d 7412 . . 3 (((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))) = ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))))
1918mpteq2dva 5208 . 2 ((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))))
20 fvexd 6880 . . 3 (𝜑 → (Base‘𝐶) ∈ V)
2120mptexd 7205 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))) ∈ V)
2212, 19, 6, 3, 21ovmpod 7548 1 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3455  cop 4603  cmpt 5196  cfv 6519  (class class class)co 7394  Basecbs 17185  compcco 17238   Nat cnat 17912  F cfuco 49211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-ixp 8875  df-func 17826  df-cofu 17828  df-nat 17914  df-fuco 49212
This theorem is referenced by:  fucofn22  49235  fuco23  49236  fucof21  49242  fucoid  49243  fuco22a  49245
  Copyright terms: Public domain W3C validator