| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco22 | Structured version Visualization version GIF version | ||
| Description: The morphism part of the functor composition bifunctor. See also fuco22a 49381. (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| fuco22.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fuco22.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| fuco22.v | ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
| fuco22.a | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
| fuco22.b | ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
| Ref | Expression |
|---|---|
| fuco22 | ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco22.o | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 2 | eqid 2731 | . . . 4 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
| 3 | fuco22.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) | |
| 4 | 2, 3 | natrcl2 49255 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 5 | eqid 2731 | . . . 4 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
| 6 | fuco22.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) | |
| 7 | 5, 6 | natrcl2 49255 | . . 3 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| 8 | fuco22.u | . . 3 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
| 9 | 2, 3 | natrcl3 49256 | . . 3 ⊢ (𝜑 → 𝑀(𝐶 Func 𝐷)𝑁) |
| 10 | 5, 6 | natrcl3 49256 | . . 3 ⊢ (𝜑 → 𝑅(𝐷 Func 𝐸)𝑆) |
| 11 | fuco22.v | . . 3 ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) | |
| 12 | 1, 4, 7, 8, 9, 10, 11 | fuco21 49367 | . 2 ⊢ (𝜑 → (𝑈𝑃𝑉) = (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))))) |
| 13 | simplrl 776 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑏 = 𝐵) | |
| 14 | 13 | fveq1d 6824 | . . . 4 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑏‘(𝑀‘𝑥)) = (𝐵‘(𝑀‘𝑥))) |
| 15 | simplrr 777 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑎 = 𝐴) | |
| 16 | 15 | fveq1d 6824 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑎‘𝑥) = (𝐴‘𝑥)) |
| 17 | 16 | fveq2d 6826 | . . . 4 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)) = (((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))) |
| 18 | 14, 17 | oveq12d 7364 | . . 3 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥))) = ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥)))) |
| 19 | 18 | mpteq2dva 5184 | . 2 ⊢ ((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) |
| 20 | fvexd 6837 | . . 3 ⊢ (𝜑 → (Base‘𝐶) ∈ V) | |
| 21 | 20 | mptexd 7158 | . 2 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥)))) ∈ V) |
| 22 | 12, 19, 6, 3, 21 | ovmpod 7498 | 1 ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 compcco 17170 Nat cnat 17848 ∘F cfuco 49347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-ixp 8822 df-func 17762 df-cofu 17764 df-nat 17850 df-fuco 49348 |
| This theorem is referenced by: fucofn22 49371 fuco23 49372 fucof21 49378 fucoid 49379 fuco22a 49381 |
| Copyright terms: Public domain | W3C validator |