Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22 Structured version   Visualization version   GIF version

Theorem fuco22 49370
Description: The morphism part of the functor composition bifunctor. See also fuco22a 49381. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fuco22.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco22.v (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
fuco22.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco22.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
Assertion
Ref Expression
fuco22 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐾   𝑥,𝐿   𝑥,𝑀   𝑥,𝑅   𝑥,𝑈   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝑆(𝑥)   𝐺(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem fuco22
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fuco22.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 eqid 2731 . . . 4 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
3 fuco22.a . . . 4 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
42, 3natrcl2 49255 . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
5 eqid 2731 . . . 4 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
6 fuco22.b . . . 4 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
75, 6natrcl2 49255 . . 3 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
8 fuco22.u . . 3 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
92, 3natrcl3 49256 . . 3 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
105, 6natrcl3 49256 . . 3 (𝜑𝑅(𝐷 Func 𝐸)𝑆)
11 fuco22.v . . 3 (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
121, 4, 7, 8, 9, 10, 11fuco21 49367 . 2 (𝜑 → (𝑈𝑃𝑉) = (𝑏 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩), 𝑎 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))))
13 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑏 = 𝐵)
1413fveq1d 6824 . . . 4 (((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑏‘(𝑀𝑥)) = (𝐵‘(𝑀𝑥)))
15 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑎 = 𝐴)
1615fveq1d 6824 . . . . 5 (((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑎𝑥) = (𝐴𝑥))
1716fveq2d 6826 . . . 4 (((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥)) = (((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))
1814, 17oveq12d 7364 . . 3 (((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))) = ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))))
1918mpteq2dva 5184 . 2 ((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))))
20 fvexd 6837 . . 3 (𝜑 → (Base‘𝐶) ∈ V)
2120mptexd 7158 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))) ∈ V)
2212, 19, 6, 3, 21ovmpod 7498 1 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4582  cmpt 5172  cfv 6481  (class class class)co 7346  Basecbs 17117  compcco 17170   Nat cnat 17848  F cfuco 49347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-ixp 8822  df-func 17762  df-cofu 17764  df-nat 17850  df-fuco 49348
This theorem is referenced by:  fucofn22  49371  fuco23  49372  fucof21  49378  fucoid  49379  fuco22a  49381
  Copyright terms: Public domain W3C validator