| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco22 | Structured version Visualization version GIF version | ||
| Description: The morphism part of the functor composition bifunctor. See also fuco22a 49005. (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| fuco22.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fuco22.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| fuco22.v | ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
| fuco22.a | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
| fuco22.b | ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
| Ref | Expression |
|---|---|
| fuco22 | ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco22.o | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 2 | eqid 2734 | . . . 4 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
| 3 | fuco22.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) | |
| 4 | 2, 3 | natrcl2 48905 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 5 | eqid 2734 | . . . 4 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
| 6 | fuco22.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) | |
| 7 | 5, 6 | natrcl2 48905 | . . 3 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| 8 | fuco22.u | . . 3 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
| 9 | 2, 3 | natrcl3 48906 | . . 3 ⊢ (𝜑 → 𝑀(𝐶 Func 𝐷)𝑁) |
| 10 | 5, 6 | natrcl3 48906 | . . 3 ⊢ (𝜑 → 𝑅(𝐷 Func 𝐸)𝑆) |
| 11 | fuco22.v | . . 3 ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) | |
| 12 | 1, 4, 7, 8, 9, 10, 11 | fuco21 48991 | . 2 ⊢ (𝜑 → (𝑈𝑃𝑉) = (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))))) |
| 13 | simplrl 776 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑏 = 𝐵) | |
| 14 | 13 | fveq1d 6889 | . . . 4 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑏‘(𝑀‘𝑥)) = (𝐵‘(𝑀‘𝑥))) |
| 15 | simplrr 777 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑎 = 𝐴) | |
| 16 | 15 | fveq1d 6889 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑎‘𝑥) = (𝐴‘𝑥)) |
| 17 | 16 | fveq2d 6891 | . . . 4 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)) = (((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))) |
| 18 | 14, 17 | oveq12d 7432 | . . 3 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥))) = ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥)))) |
| 19 | 18 | mpteq2dva 5224 | . 2 ⊢ ((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) |
| 20 | fvexd 6902 | . . 3 ⊢ (𝜑 → (Base‘𝐶) ∈ V) | |
| 21 | 20 | mptexd 7227 | . 2 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥)))) ∈ V) |
| 22 | 12, 19, 6, 3, 21 | ovmpod 7568 | 1 ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 〈cop 4614 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 compcco 17286 Nat cnat 17961 ∘F cfuco 48971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-ixp 8921 df-func 17875 df-cofu 17877 df-nat 17963 df-fuco 48972 |
| This theorem is referenced by: fucofn22 48995 fuco23 48996 fucof21 49002 fucoid 49003 fuco22a 49005 |
| Copyright terms: Public domain | W3C validator |