![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco22 | Structured version Visualization version GIF version |
Description: The morphism part of the functor composition bifunctor. See also fuco22a 48917. (Contributed by Zhi Wang, 29-Sep-2025.) |
Ref | Expression |
---|---|
fuco22.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
fuco22.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
fuco22.v | ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
fuco22.a | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
fuco22.b | ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
Ref | Expression |
---|---|
fuco22 | ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fuco22.o | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
2 | eqid 2737 | . . . 4 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
3 | fuco22.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) | |
4 | 2, 3 | natrcl2 48870 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
5 | eqid 2737 | . . . 4 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
6 | fuco22.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) | |
7 | 5, 6 | natrcl2 48870 | . . 3 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
8 | fuco22.u | . . 3 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
9 | 2, 3 | natrcl3 48871 | . . 3 ⊢ (𝜑 → 𝑀(𝐶 Func 𝐷)𝑁) |
10 | 5, 6 | natrcl3 48871 | . . 3 ⊢ (𝜑 → 𝑅(𝐷 Func 𝐸)𝑆) |
11 | fuco22.v | . . 3 ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) | |
12 | 1, 4, 7, 8, 9, 10, 11 | fuco21 48905 | . 2 ⊢ (𝜑 → (𝑈𝑃𝑉) = (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))))) |
13 | simplrl 777 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑏 = 𝐵) | |
14 | 13 | fveq1d 6916 | . . . 4 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑏‘(𝑀‘𝑥)) = (𝐵‘(𝑀‘𝑥))) |
15 | simplrr 778 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑎 = 𝐴) | |
16 | 15 | fveq1d 6916 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑎‘𝑥) = (𝐴‘𝑥)) |
17 | 16 | fveq2d 6918 | . . . 4 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)) = (((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))) |
18 | 14, 17 | oveq12d 7456 | . . 3 ⊢ (((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥))) = ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥)))) |
19 | 18 | mpteq2dva 5251 | . 2 ⊢ ((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) |
20 | fvexd 6929 | . . 3 ⊢ (𝜑 → (Base‘𝐶) ∈ V) | |
21 | 20 | mptexd 7251 | . 2 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥)))) ∈ V) |
22 | 12, 19, 6, 3, 21 | ovmpod 7592 | 1 ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 〈cop 4640 ↦ cmpt 5234 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 compcco 17319 Nat cnat 18005 ∘F cfuco 48885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-ixp 8946 df-func 17918 df-cofu 17920 df-nat 18007 df-fuco 48886 |
This theorem is referenced by: fucofn22 48907 fuco23 48908 fucof21 48914 fucoid 48915 fuco22a 48917 |
Copyright terms: Public domain | W3C validator |