![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco11b | Structured version Visualization version GIF version |
Description: The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 11-Oct-2025.) |
Ref | Expression |
---|---|
fuco11b.o | ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑂) |
fuco11b.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
fuco11b.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
Ref | Expression |
---|---|
fuco11b | ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fuco11b.o | . . . 4 ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑂) | |
2 | relfunc 17903 | . . . . . . 7 ⊢ Rel (𝐶 Func 𝐷) | |
3 | fuco11b.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
4 | 1st2ndbr 8063 | . . . . . . 7 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
5 | 2, 3, 4 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
6 | 5 | funcrcl2 48885 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | relfunc 17903 | . . . . . . 7 ⊢ Rel (𝐷 Func 𝐸) | |
8 | fuco11b.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
9 | 1st2ndbr 8063 | . . . . . . 7 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → (1st ‘𝐺)(𝐷 Func 𝐸)(2nd ‘𝐺)) | |
10 | 7, 8, 9 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐺)(𝐷 Func 𝐸)(2nd ‘𝐺)) |
11 | 10 | funcrcl2 48885 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) |
12 | 10 | funcrcl3 48886 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ Cat) |
13 | eqidd 2737 | . . . . . . 7 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = (〈𝐶, 𝐷〉 ∘F 𝐸)) | |
14 | 6, 11, 12, 13 | fucoelvv 48988 | . . . . . 6 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) ∈ (V × V)) |
15 | 1st2nd2 8049 | . . . . . 6 ⊢ ((〈𝐶, 𝐷〉 ∘F 𝐸) ∈ (V × V) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) |
17 | eqidd 2737 | . . . . 5 ⊢ (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
18 | 6, 11, 12, 16, 17 | fuco1 48989 | . . . 4 ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
19 | 1, 18 | eqtr3d 2778 | . . 3 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
20 | 19 | oveqd 7446 | . 2 ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹)) |
21 | ovres 7596 | . . 3 ⊢ ((𝐺 ∈ (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹) = (𝐺 ∘func 𝐹)) | |
22 | 8, 3, 21 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹) = (𝐺 ∘func 𝐹)) |
23 | 20, 22 | eqtrd 2776 | 1 ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3479 〈cop 4630 class class class wbr 5141 × cxp 5681 ↾ cres 5685 Rel wrel 5688 ‘cfv 6559 (class class class)co 7429 1st c1st 8008 2nd c2nd 8009 Catccat 17703 Func cfunc 17895 ∘func ccofu 17897 ∘F cfuco 48984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-func 17899 df-cofu 17901 df-fuco 48985 |
This theorem is referenced by: postcofval 49032 precofval 49035 |
Copyright terms: Public domain | W3C validator |