Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco11b Structured version   Visualization version   GIF version

Theorem fuco11b 49082
Description: The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 11-Oct-2025.)
Hypotheses
Ref Expression
fuco11b.o (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑂)
fuco11b.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuco11b.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
fuco11b (𝜑 → (𝐺𝑂𝐹) = (𝐺func 𝐹))

Proof of Theorem fuco11b
StepHypRef Expression
1 fuco11b.o . . . 4 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑂)
2 relfunc 17879 . . . . . . 7 Rel (𝐶 Func 𝐷)
3 fuco11b.f . . . . . . 7 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
4 1st2ndbr 8049 . . . . . . 7 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
52, 3, 4sylancr 587 . . . . . 6 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
65funcrcl2 48937 . . . . 5 (𝜑𝐶 ∈ Cat)
7 relfunc 17879 . . . . . . 7 Rel (𝐷 Func 𝐸)
8 fuco11b.g . . . . . . 7 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
9 1st2ndbr 8049 . . . . . . 7 ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
107, 8, 9sylancr 587 . . . . . 6 (𝜑 → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
1110funcrcl2 48937 . . . . 5 (𝜑𝐷 ∈ Cat)
1210funcrcl3 48938 . . . . 5 (𝜑𝐸 ∈ Cat)
13 eqidd 2735 . . . . . . 7 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = (⟨𝐶, 𝐷⟩ ∘F 𝐸))
146, 11, 12, 13fucoelvv 49065 . . . . . 6 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (V × V))
15 1st2nd2 8035 . . . . . 6 ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (V × V) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
1614, 15syl 17 . . . . 5 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
17 eqidd 2735 . . . . 5 (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
186, 11, 12, 16, 17fuco1 49066 . . . 4 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
191, 18eqtr3d 2771 . . 3 (𝜑𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
2019oveqd 7430 . 2 (𝜑 → (𝐺𝑂𝐹) = (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹))
21 ovres 7581 . . 3 ((𝐺 ∈ (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹) = (𝐺func 𝐹))
228, 3, 21syl2anc 584 . 2 (𝜑 → (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹) = (𝐺func 𝐹))
2320, 22eqtrd 2769 1 (𝜑 → (𝐺𝑂𝐹) = (𝐺func 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  cop 4612   class class class wbr 5123   × cxp 5663  cres 5667  Rel wrel 5670  cfv 6541  (class class class)co 7413  1st c1st 7994  2nd c2nd 7995  Catccat 17679   Func cfunc 17871  func ccofu 17873  F cfuco 49061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-func 17875  df-cofu 17877  df-fuco 49062
This theorem is referenced by:  postcofval  49109  precofval  49112
  Copyright terms: Public domain W3C validator