| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco11b | Structured version Visualization version GIF version | ||
| Description: The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| fuco11b.o | ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑂) |
| fuco11b.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| fuco11b.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
| Ref | Expression |
|---|---|
| fuco11b | ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco11b.o | . . . 4 ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑂) | |
| 2 | fuco11b.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | 2 | func1st2nd 49237 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 4 | 3 | funcrcl2 49240 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 5 | fuco11b.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
| 6 | 5 | func1st2nd 49237 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐺)(𝐷 Func 𝐸)(2nd ‘𝐺)) |
| 7 | 6 | funcrcl2 49240 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 8 | 6 | funcrcl3 49241 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 9 | eqidd 2734 | . . . . . . 7 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = (〈𝐶, 𝐷〉 ∘F 𝐸)) | |
| 10 | 4, 7, 8, 9 | fucoelvv 49481 | . . . . . 6 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) ∈ (V × V)) |
| 11 | 1st2nd2 7969 | . . . . . 6 ⊢ ((〈𝐶, 𝐷〉 ∘F 𝐸) ∈ (V × V) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) |
| 13 | eqidd 2734 | . . . . 5 ⊢ (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 14 | 4, 7, 8, 12, 13 | fuco1 49482 | . . . 4 ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
| 15 | 1, 14 | eqtr3d 2770 | . . 3 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
| 16 | 15 | oveqd 7372 | . 2 ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹)) |
| 17 | ovres 7521 | . . 3 ⊢ ((𝐺 ∈ (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹) = (𝐺 ∘func 𝐹)) | |
| 18 | 5, 2, 17 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹) = (𝐺 ∘func 𝐹)) |
| 19 | 16, 18 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4583 × cxp 5619 ↾ cres 5623 ‘cfv 6489 (class class class)co 7355 1st c1st 7928 2nd c2nd 7929 Catccat 17578 Func cfunc 17769 ∘func ccofu 17771 ∘F cfuco 49477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-func 17773 df-cofu 17775 df-fuco 49478 |
| This theorem is referenced by: postcofval 49525 precofval 49528 |
| Copyright terms: Public domain | W3C validator |