| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco11b | Structured version Visualization version GIF version | ||
| Description: The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| fuco11b.o | ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑂) |
| fuco11b.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| fuco11b.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
| Ref | Expression |
|---|---|
| fuco11b | ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco11b.o | . . . 4 ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑂) | |
| 2 | fuco11b.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | 2 | func1st2nd 49108 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 4 | 3 | funcrcl2 49111 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 5 | fuco11b.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
| 6 | 5 | func1st2nd 49108 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐺)(𝐷 Func 𝐸)(2nd ‘𝐺)) |
| 7 | 6 | funcrcl2 49111 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 8 | 6 | funcrcl3 49112 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 9 | eqidd 2732 | . . . . . . 7 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = (〈𝐶, 𝐷〉 ∘F 𝐸)) | |
| 10 | 4, 7, 8, 9 | fucoelvv 49352 | . . . . . 6 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) ∈ (V × V)) |
| 11 | 1st2nd2 7955 | . . . . . 6 ⊢ ((〈𝐶, 𝐷〉 ∘F 𝐸) ∈ (V × V) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) |
| 13 | eqidd 2732 | . . . . 5 ⊢ (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 14 | 4, 7, 8, 12, 13 | fuco1 49353 | . . . 4 ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
| 15 | 1, 14 | eqtr3d 2768 | . . 3 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
| 16 | 15 | oveqd 7358 | . 2 ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹)) |
| 17 | ovres 7507 | . . 3 ⊢ ((𝐺 ∈ (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹) = (𝐺 ∘func 𝐹)) | |
| 18 | 5, 2, 17 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹) = (𝐺 ∘func 𝐹)) |
| 19 | 16, 18 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4577 × cxp 5609 ↾ cres 5613 ‘cfv 6476 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 Catccat 17565 Func cfunc 17756 ∘func ccofu 17758 ∘F cfuco 49348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-func 17760 df-cofu 17762 df-fuco 49349 |
| This theorem is referenced by: postcofval 49396 precofval 49399 |
| Copyright terms: Public domain | W3C validator |