| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco11b | Structured version Visualization version GIF version | ||
| Description: The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| fuco11b.o | ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑂) |
| fuco11b.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| fuco11b.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
| Ref | Expression |
|---|---|
| fuco11b | ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco11b.o | . . . 4 ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑂) | |
| 2 | fuco11b.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | 2 | func1st2nd 49038 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 4 | 3 | funcrcl2 49041 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 5 | fuco11b.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
| 6 | 5 | func1st2nd 49038 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐺)(𝐷 Func 𝐸)(2nd ‘𝐺)) |
| 7 | 6 | funcrcl2 49041 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 8 | 6 | funcrcl3 49042 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 9 | eqidd 2730 | . . . . . . 7 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = (〈𝐶, 𝐷〉 ∘F 𝐸)) | |
| 10 | 4, 7, 8, 9 | fucoelvv 49282 | . . . . . 6 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) ∈ (V × V)) |
| 11 | 1st2nd2 7986 | . . . . . 6 ⊢ ((〈𝐶, 𝐷〉 ∘F 𝐸) ∈ (V × V) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) |
| 13 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 14 | 4, 7, 8, 12, 13 | fuco1 49283 | . . . 4 ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
| 15 | 1, 14 | eqtr3d 2766 | . . 3 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
| 16 | 15 | oveqd 7386 | . 2 ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹)) |
| 17 | ovres 7535 | . . 3 ⊢ ((𝐺 ∈ (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹) = (𝐺 ∘func 𝐹)) | |
| 18 | 5, 2, 17 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹) = (𝐺 ∘func 𝐹)) |
| 19 | 16, 18 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cop 4591 × cxp 5629 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 Catccat 17601 Func cfunc 17792 ∘func ccofu 17794 ∘F cfuco 49278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-func 17796 df-cofu 17798 df-fuco 49279 |
| This theorem is referenced by: postcofval 49326 precofval 49329 |
| Copyright terms: Public domain | W3C validator |