| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco11b | Structured version Visualization version GIF version | ||
| Description: The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| fuco11b.o | ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑂) |
| fuco11b.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| fuco11b.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
| Ref | Expression |
|---|---|
| fuco11b | ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco11b.o | . . . 4 ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑂) | |
| 2 | relfunc 17879 | . . . . . . 7 ⊢ Rel (𝐶 Func 𝐷) | |
| 3 | fuco11b.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 4 | 1st2ndbr 8049 | . . . . . . 7 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 5 | 2, 3, 4 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 6 | 5 | funcrcl2 48937 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | relfunc 17879 | . . . . . . 7 ⊢ Rel (𝐷 Func 𝐸) | |
| 8 | fuco11b.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
| 9 | 1st2ndbr 8049 | . . . . . . 7 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → (1st ‘𝐺)(𝐷 Func 𝐸)(2nd ‘𝐺)) | |
| 10 | 7, 8, 9 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐺)(𝐷 Func 𝐸)(2nd ‘𝐺)) |
| 11 | 10 | funcrcl2 48937 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 12 | 10 | funcrcl3 48938 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 13 | eqidd 2735 | . . . . . . 7 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = (〈𝐶, 𝐷〉 ∘F 𝐸)) | |
| 14 | 6, 11, 12, 13 | fucoelvv 49065 | . . . . . 6 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) ∈ (V × V)) |
| 15 | 1st2nd2 8035 | . . . . . 6 ⊢ ((〈𝐶, 𝐷〉 ∘F 𝐸) ∈ (V × V) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) |
| 17 | eqidd 2735 | . . . . 5 ⊢ (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 18 | 6, 11, 12, 16, 17 | fuco1 49066 | . . . 4 ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
| 19 | 1, 18 | eqtr3d 2771 | . . 3 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
| 20 | 19 | oveqd 7430 | . 2 ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹)) |
| 21 | ovres 7581 | . . 3 ⊢ ((𝐺 ∈ (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹) = (𝐺 ∘func 𝐹)) | |
| 22 | 8, 3, 21 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))𝐹) = (𝐺 ∘func 𝐹)) |
| 23 | 20, 22 | eqtrd 2769 | 1 ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 〈cop 4612 class class class wbr 5123 × cxp 5663 ↾ cres 5667 Rel wrel 5670 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 2nd c2nd 7995 Catccat 17679 Func cfunc 17871 ∘func ccofu 17873 ∘F cfuco 49061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-func 17875 df-cofu 17877 df-fuco 49062 |
| This theorem is referenced by: postcofval 49109 precofval 49112 |
| Copyright terms: Public domain | W3C validator |