| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucofunc | Structured version Visualization version GIF version | ||
| Description: The functor composition
bifunctor is a functor. See also fucofunca 49391.
However, it is unlikely the unique functor compatible with the functor composition. As a counterexample, let 𝐶 and 𝐷 be terminal categories (categories of one object and one morphism, df-termc 49504), for example, (SetCat‘1o) (the trivial category, setc1oterm 49522), and 𝐸 be a category with two objects equipped with only two non-identity morphisms 𝑓 and 𝑔, pointing in the same direction. It is possible to map the ordered pair of natural transformations 〈𝑎, 𝑖〉, where 𝑎 sends to 𝑓 and 𝑖 is the identity natural transformation, to the other natural transformation 𝑏 sending to 𝑔, i.e., define the morphism part 𝑃 such that (𝑎(𝑈𝑃𝑉)𝑖) = 𝑏 such that (𝑏‘𝑋) = 𝑔 given hypotheses of fuco23 49372. Such construction should be provable as a functor. Given any 𝑃, it is a morphism part of a functor compatible with the object part, i.e., the functor composition, i.e., the restriction of ∘func, iff both of the following hold. 1. It has the same form as df-fuco 49348 up to fuco23 49372, but ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) might be mapped to a different morphism in category 𝐸. See fucofulem2 49342 for some insights. 2. fuco22nat 49377, fucoid 49379, and fucoco 49388 are satisfied. (Contributed by Zhi Wang, 3-Oct-2025.) |
| Ref | Expression |
|---|---|
| fucoco2.t | ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) |
| fucoco2.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐸) |
| fucoco2.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fucofunc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| fucofunc.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| fucofunc.e | ⊢ (𝜑 → 𝐸 ∈ Cat) |
| Ref | Expression |
|---|---|
| fucofunc | ⊢ (𝜑 → 𝑂(𝑇 Func 𝑄)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoco2.t | . . 3 ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) | |
| 2 | 1 | xpcfucbas 49283 | . 2 ⊢ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇) |
| 3 | fucoco2.q | . . 3 ⊢ 𝑄 = (𝐶 FuncCat 𝐸) | |
| 4 | 3 | fucbas 17867 | . 2 ⊢ (𝐶 Func 𝐸) = (Base‘𝑄) |
| 5 | eqid 2731 | . 2 ⊢ (Hom ‘𝑇) = (Hom ‘𝑇) | |
| 6 | eqid 2731 | . . 3 ⊢ (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸) | |
| 7 | 3, 6 | fuchom 17868 | . 2 ⊢ (𝐶 Nat 𝐸) = (Hom ‘𝑄) |
| 8 | eqid 2731 | . 2 ⊢ (Id‘𝑇) = (Id‘𝑇) | |
| 9 | eqid 2731 | . 2 ⊢ (Id‘𝑄) = (Id‘𝑄) | |
| 10 | eqid 2731 | . 2 ⊢ (comp‘𝑇) = (comp‘𝑇) | |
| 11 | eqid 2731 | . 2 ⊢ (comp‘𝑄) = (comp‘𝑄) | |
| 12 | eqid 2731 | . . . 4 ⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) | |
| 13 | fucofunc.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 14 | fucofunc.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
| 15 | 12, 13, 14 | fuccat 17877 | . . 3 ⊢ (𝜑 → (𝐷 FuncCat 𝐸) ∈ Cat) |
| 16 | eqid 2731 | . . . 4 ⊢ (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷) | |
| 17 | fucofunc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 18 | 16, 17, 13 | fuccat 17877 | . . 3 ⊢ (𝜑 → (𝐶 FuncCat 𝐷) ∈ Cat) |
| 19 | 1, 15, 18 | xpccat 18093 | . 2 ⊢ (𝜑 → 𝑇 ∈ Cat) |
| 20 | 3, 17, 14 | fuccat 17877 | . 2 ⊢ (𝜑 → 𝑄 ∈ Cat) |
| 21 | fucoco2.o | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 22 | eqidd 2732 | . . 3 ⊢ (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 23 | 17, 13, 14, 21, 22 | fucof1 49353 | . 2 ⊢ (𝜑 → 𝑂:((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)) |
| 24 | 17, 13, 14, 21, 22 | fucofn2 49355 | . 2 ⊢ (𝜑 → 𝑃 Fn (((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) × ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
| 25 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| 26 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 27 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 28 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 29 | 25, 1, 5, 26, 27, 28 | fucof21 49378 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶((𝑂‘𝑥)(𝐶 Nat 𝐸)(𝑂‘𝑦))) |
| 30 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| 31 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 33 | 30, 1, 8, 3, 9, 31, 32 | fucoid2 49380 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((𝑥𝑃𝑥)‘((Id‘𝑇)‘𝑥)) = ((Id‘𝑄)‘(𝑂‘𝑥))) |
| 34 | 21 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| 35 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 36 | simp21 1207 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 37 | simp22 1208 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 38 | simp23 1209 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 39 | simp3l 1202 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦)) | |
| 40 | simp3r 1203 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧)) | |
| 41 | 1, 3, 34, 10, 11, 35, 36, 37, 38, 5, 39, 40 | fucoco2 49389 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥𝑃𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑇)𝑧)𝑚)) = (((𝑦𝑃𝑧)‘𝑛)(〈(𝑂‘𝑥), (𝑂‘𝑦)〉(comp‘𝑄)(𝑂‘𝑧))((𝑥𝑃𝑦)‘𝑚))) |
| 42 | 2, 4, 5, 7, 8, 9, 10, 11, 19, 20, 23, 24, 29, 33, 41 | isfuncd 17769 | 1 ⊢ (𝜑 → 𝑂(𝑇 Func 𝑄)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 〈cop 4582 class class class wbr 5091 × cxp 5614 ‘cfv 6481 (class class class)co 7346 Hom chom 17169 compcco 17170 Catccat 17567 Idccid 17568 Func cfunc 17758 Nat cnat 17848 FuncCat cfuc 17849 ×c cxpc 18071 ∘F cfuco 49347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-hom 17182 df-cco 17183 df-cat 17571 df-cid 17572 df-func 17762 df-cofu 17764 df-nat 17850 df-fuc 17851 df-xpc 18075 df-fuco 49348 |
| This theorem is referenced by: fucofunca 49391 |
| Copyright terms: Public domain | W3C validator |