Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucofunc Structured version   Visualization version   GIF version

Theorem fucofunc 49348
Description: The functor composition bifunctor is a functor. See also fucofunca 49349.

However, it is unlikely the unique functor compatible with the functor composition. As a counterexample, let 𝐶 and 𝐷 be terminal categories (categories of one object and one morphism, df-termc 49462), for example, (SetCat‘1o) (the trivial category, setc1oterm 49480), and 𝐸 be a category with two objects equipped with only two non-identity morphisms 𝑓 and 𝑔, pointing in the same direction. It is possible to map the ordered pair of natural transformations 𝑎, 𝑖, where 𝑎 sends to 𝑓 and 𝑖 is the identity natural transformation, to the other natural transformation 𝑏 sending to 𝑔, i.e., define the morphism part 𝑃 such that (𝑎(𝑈𝑃𝑉)𝑖) = 𝑏 such that (𝑏𝑋) = 𝑔 given hypotheses of fuco23 49330. Such construction should be provable as a functor.

Given any 𝑃, it is a morphism part of a functor compatible with the object part, i.e., the functor composition, i.e., the restriction of func, iff both of the following hold.

1. It has the same form as df-fuco 49306 up to fuco23 49330, but ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) might be mapped to a different morphism in category 𝐸. See fucofulem2 49300 for some insights.

2. fuco22nat 49335, fucoid 49337, and fucoco 49346 are satisfied.

(Contributed by Zhi Wang, 3-Oct-2025.)

Hypotheses
Ref Expression
fucoco2.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoco2.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoco2.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucofunc.c (𝜑𝐶 ∈ Cat)
fucofunc.d (𝜑𝐷 ∈ Cat)
fucofunc.e (𝜑𝐸 ∈ Cat)
Assertion
Ref Expression
fucofunc (𝜑𝑂(𝑇 Func 𝑄)𝑃)

Proof of Theorem fucofunc
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucoco2.t . . 3 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
21xpcfucbas 49241 . 2 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇)
3 fucoco2.q . . 3 𝑄 = (𝐶 FuncCat 𝐸)
43fucbas 17925 . 2 (𝐶 Func 𝐸) = (Base‘𝑄)
5 eqid 2729 . 2 (Hom ‘𝑇) = (Hom ‘𝑇)
6 eqid 2729 . . 3 (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸)
73, 6fuchom 17926 . 2 (𝐶 Nat 𝐸) = (Hom ‘𝑄)
8 eqid 2729 . 2 (Id‘𝑇) = (Id‘𝑇)
9 eqid 2729 . 2 (Id‘𝑄) = (Id‘𝑄)
10 eqid 2729 . 2 (comp‘𝑇) = (comp‘𝑇)
11 eqid 2729 . 2 (comp‘𝑄) = (comp‘𝑄)
12 eqid 2729 . . . 4 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
13 fucofunc.d . . . 4 (𝜑𝐷 ∈ Cat)
14 fucofunc.e . . . 4 (𝜑𝐸 ∈ Cat)
1512, 13, 14fuccat 17935 . . 3 (𝜑 → (𝐷 FuncCat 𝐸) ∈ Cat)
16 eqid 2729 . . . 4 (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷)
17 fucofunc.c . . . 4 (𝜑𝐶 ∈ Cat)
1816, 17, 13fuccat 17935 . . 3 (𝜑 → (𝐶 FuncCat 𝐷) ∈ Cat)
191, 15, 18xpccat 18151 . 2 (𝜑𝑇 ∈ Cat)
203, 17, 14fuccat 17935 . 2 (𝜑𝑄 ∈ Cat)
21 fucoco2.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
22 eqidd 2730 . . 3 (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
2317, 13, 14, 21, 22fucof1 49311 . 2 (𝜑𝑂:((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸))
2417, 13, 14, 21, 22fucofn2 49313 . 2 (𝜑𝑃 Fn (((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) × ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
2521adantr 480 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
26 eqidd 2730 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
27 simprl 770 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
28 simprr 772 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
2925, 1, 5, 26, 27, 28fucof21 49336 . 2 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶((𝑂𝑥)(𝐶 Nat 𝐸)(𝑂𝑦)))
3021adantr 480 . . 3 ((𝜑𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
31 eqidd 2730 . . 3 ((𝜑𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
32 simpr 484 . . 3 ((𝜑𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
3330, 1, 8, 3, 9, 31, 32fucoid2 49338 . 2 ((𝜑𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((𝑥𝑃𝑥)‘((Id‘𝑇)‘𝑥)) = ((Id‘𝑄)‘(𝑂𝑥)))
34213ad2ant1 1133 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
35 eqidd 2730 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
36 simp21 1207 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
37 simp22 1208 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
38 simp23 1209 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
39 simp3l 1202 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦))
40 simp3r 1203 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))
411, 3, 34, 10, 11, 35, 36, 37, 38, 5, 39, 40fucoco2 49347 . 2 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥𝑃𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑚)) = (((𝑦𝑃𝑧)‘𝑛)(⟨(𝑂𝑥), (𝑂𝑦)⟩(comp‘𝑄)(𝑂𝑧))((𝑥𝑃𝑦)‘𝑚)))
422, 4, 5, 7, 8, 9, 10, 11, 19, 20, 23, 24, 29, 33, 41isfuncd 17827 1 (𝜑𝑂(𝑇 Func 𝑄)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107   × cxp 5636  cfv 6511  (class class class)co 7387  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626   Func cfunc 17816   Nat cnat 17906   FuncCat cfuc 17907   ×c cxpc 18129  F cfuco 49305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-func 17820  df-cofu 17822  df-nat 17908  df-fuc 17909  df-xpc 18133  df-fuco 49306
This theorem is referenced by:  fucofunca  49349
  Copyright terms: Public domain W3C validator