Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucofunc Structured version   Visualization version   GIF version

Theorem fucofunc 49484
Description: The functor composition bifunctor is a functor. See also fucofunca 49485.

However, it is unlikely the unique functor compatible with the functor composition. As a counterexample, let 𝐶 and 𝐷 be terminal categories (categories of one object and one morphism, df-termc 49598), for example, (SetCat‘1o) (the trivial category, setc1oterm 49616), and 𝐸 be a category with two objects equipped with only two non-identity morphisms 𝑓 and 𝑔, pointing in the same direction. It is possible to map the ordered pair of natural transformations 𝑎, 𝑖, where 𝑎 sends to 𝑓 and 𝑖 is the identity natural transformation, to the other natural transformation 𝑏 sending to 𝑔, i.e., define the morphism part 𝑃 such that (𝑎(𝑈𝑃𝑉)𝑖) = 𝑏 such that (𝑏𝑋) = 𝑔 given hypotheses of fuco23 49466. Such construction should be provable as a functor.

Given any 𝑃, it is a morphism part of a functor compatible with the object part, i.e., the functor composition, i.e., the restriction of func, iff both of the following hold.

1. It has the same form as df-fuco 49442 up to fuco23 49466, but ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) might be mapped to a different morphism in category 𝐸. See fucofulem2 49436 for some insights.

2. fuco22nat 49471, fucoid 49473, and fucoco 49482 are satisfied.

(Contributed by Zhi Wang, 3-Oct-2025.)

Hypotheses
Ref Expression
fucoco2.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoco2.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoco2.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucofunc.c (𝜑𝐶 ∈ Cat)
fucofunc.d (𝜑𝐷 ∈ Cat)
fucofunc.e (𝜑𝐸 ∈ Cat)
Assertion
Ref Expression
fucofunc (𝜑𝑂(𝑇 Func 𝑄)𝑃)

Proof of Theorem fucofunc
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucoco2.t . . 3 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
21xpcfucbas 49377 . 2 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇)
3 fucoco2.q . . 3 𝑄 = (𝐶 FuncCat 𝐸)
43fucbas 17872 . 2 (𝐶 Func 𝐸) = (Base‘𝑄)
5 eqid 2733 . 2 (Hom ‘𝑇) = (Hom ‘𝑇)
6 eqid 2733 . . 3 (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸)
73, 6fuchom 17873 . 2 (𝐶 Nat 𝐸) = (Hom ‘𝑄)
8 eqid 2733 . 2 (Id‘𝑇) = (Id‘𝑇)
9 eqid 2733 . 2 (Id‘𝑄) = (Id‘𝑄)
10 eqid 2733 . 2 (comp‘𝑇) = (comp‘𝑇)
11 eqid 2733 . 2 (comp‘𝑄) = (comp‘𝑄)
12 eqid 2733 . . . 4 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
13 fucofunc.d . . . 4 (𝜑𝐷 ∈ Cat)
14 fucofunc.e . . . 4 (𝜑𝐸 ∈ Cat)
1512, 13, 14fuccat 17882 . . 3 (𝜑 → (𝐷 FuncCat 𝐸) ∈ Cat)
16 eqid 2733 . . . 4 (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷)
17 fucofunc.c . . . 4 (𝜑𝐶 ∈ Cat)
1816, 17, 13fuccat 17882 . . 3 (𝜑 → (𝐶 FuncCat 𝐷) ∈ Cat)
191, 15, 18xpccat 18098 . 2 (𝜑𝑇 ∈ Cat)
203, 17, 14fuccat 17882 . 2 (𝜑𝑄 ∈ Cat)
21 fucoco2.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
22 eqidd 2734 . . 3 (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
2317, 13, 14, 21, 22fucof1 49447 . 2 (𝜑𝑂:((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸))
2417, 13, 14, 21, 22fucofn2 49449 . 2 (𝜑𝑃 Fn (((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) × ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
2521adantr 480 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
26 eqidd 2734 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
27 simprl 770 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
28 simprr 772 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
2925, 1, 5, 26, 27, 28fucof21 49472 . 2 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶((𝑂𝑥)(𝐶 Nat 𝐸)(𝑂𝑦)))
3021adantr 480 . . 3 ((𝜑𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
31 eqidd 2734 . . 3 ((𝜑𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
32 simpr 484 . . 3 ((𝜑𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
3330, 1, 8, 3, 9, 31, 32fucoid2 49474 . 2 ((𝜑𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((𝑥𝑃𝑥)‘((Id‘𝑇)‘𝑥)) = ((Id‘𝑄)‘(𝑂𝑥)))
34213ad2ant1 1133 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
35 eqidd 2734 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
36 simp21 1207 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
37 simp22 1208 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
38 simp23 1209 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
39 simp3l 1202 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦))
40 simp3r 1203 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))
411, 3, 34, 10, 11, 35, 36, 37, 38, 5, 39, 40fucoco2 49483 . 2 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥𝑃𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑚)) = (((𝑦𝑃𝑧)‘𝑛)(⟨(𝑂𝑥), (𝑂𝑦)⟩(comp‘𝑄)(𝑂𝑧))((𝑥𝑃𝑦)‘𝑚)))
422, 4, 5, 7, 8, 9, 10, 11, 19, 20, 23, 24, 29, 33, 41isfuncd 17774 1 (𝜑𝑂(𝑇 Func 𝑄)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cop 4581   class class class wbr 5093   × cxp 5617  cfv 6486  (class class class)co 7352  Hom chom 17174  compcco 17175  Catccat 17572  Idccid 17573   Func cfunc 17763   Nat cnat 17853   FuncCat cfuc 17854   ×c cxpc 18076  F cfuco 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-hom 17187  df-cco 17188  df-cat 17576  df-cid 17577  df-func 17767  df-cofu 17769  df-nat 17855  df-fuc 17856  df-xpc 18080  df-fuco 49442
This theorem is referenced by:  fucofunca  49485
  Copyright terms: Public domain W3C validator