| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucofunc | Structured version Visualization version GIF version | ||
| Description: The functor composition
bifunctor is a functor. See also fucofunca 49485.
However, it is unlikely the unique functor compatible with the functor composition. As a counterexample, let 𝐶 and 𝐷 be terminal categories (categories of one object and one morphism, df-termc 49598), for example, (SetCat‘1o) (the trivial category, setc1oterm 49616), and 𝐸 be a category with two objects equipped with only two non-identity morphisms 𝑓 and 𝑔, pointing in the same direction. It is possible to map the ordered pair of natural transformations 〈𝑎, 𝑖〉, where 𝑎 sends to 𝑓 and 𝑖 is the identity natural transformation, to the other natural transformation 𝑏 sending to 𝑔, i.e., define the morphism part 𝑃 such that (𝑎(𝑈𝑃𝑉)𝑖) = 𝑏 such that (𝑏‘𝑋) = 𝑔 given hypotheses of fuco23 49466. Such construction should be provable as a functor. Given any 𝑃, it is a morphism part of a functor compatible with the object part, i.e., the functor composition, i.e., the restriction of ∘func, iff both of the following hold. 1. It has the same form as df-fuco 49442 up to fuco23 49466, but ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) might be mapped to a different morphism in category 𝐸. See fucofulem2 49436 for some insights. 2. fuco22nat 49471, fucoid 49473, and fucoco 49482 are satisfied. (Contributed by Zhi Wang, 3-Oct-2025.) |
| Ref | Expression |
|---|---|
| fucoco2.t | ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) |
| fucoco2.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐸) |
| fucoco2.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fucofunc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| fucofunc.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| fucofunc.e | ⊢ (𝜑 → 𝐸 ∈ Cat) |
| Ref | Expression |
|---|---|
| fucofunc | ⊢ (𝜑 → 𝑂(𝑇 Func 𝑄)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoco2.t | . . 3 ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) | |
| 2 | 1 | xpcfucbas 49377 | . 2 ⊢ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇) |
| 3 | fucoco2.q | . . 3 ⊢ 𝑄 = (𝐶 FuncCat 𝐸) | |
| 4 | 3 | fucbas 17872 | . 2 ⊢ (𝐶 Func 𝐸) = (Base‘𝑄) |
| 5 | eqid 2733 | . 2 ⊢ (Hom ‘𝑇) = (Hom ‘𝑇) | |
| 6 | eqid 2733 | . . 3 ⊢ (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸) | |
| 7 | 3, 6 | fuchom 17873 | . 2 ⊢ (𝐶 Nat 𝐸) = (Hom ‘𝑄) |
| 8 | eqid 2733 | . 2 ⊢ (Id‘𝑇) = (Id‘𝑇) | |
| 9 | eqid 2733 | . 2 ⊢ (Id‘𝑄) = (Id‘𝑄) | |
| 10 | eqid 2733 | . 2 ⊢ (comp‘𝑇) = (comp‘𝑇) | |
| 11 | eqid 2733 | . 2 ⊢ (comp‘𝑄) = (comp‘𝑄) | |
| 12 | eqid 2733 | . . . 4 ⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) | |
| 13 | fucofunc.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 14 | fucofunc.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
| 15 | 12, 13, 14 | fuccat 17882 | . . 3 ⊢ (𝜑 → (𝐷 FuncCat 𝐸) ∈ Cat) |
| 16 | eqid 2733 | . . . 4 ⊢ (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷) | |
| 17 | fucofunc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 18 | 16, 17, 13 | fuccat 17882 | . . 3 ⊢ (𝜑 → (𝐶 FuncCat 𝐷) ∈ Cat) |
| 19 | 1, 15, 18 | xpccat 18098 | . 2 ⊢ (𝜑 → 𝑇 ∈ Cat) |
| 20 | 3, 17, 14 | fuccat 17882 | . 2 ⊢ (𝜑 → 𝑄 ∈ Cat) |
| 21 | fucoco2.o | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 22 | eqidd 2734 | . . 3 ⊢ (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 23 | 17, 13, 14, 21, 22 | fucof1 49447 | . 2 ⊢ (𝜑 → 𝑂:((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)) |
| 24 | 17, 13, 14, 21, 22 | fucofn2 49449 | . 2 ⊢ (𝜑 → 𝑃 Fn (((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) × ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
| 25 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| 26 | eqidd 2734 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 27 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 28 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 29 | 25, 1, 5, 26, 27, 28 | fucof21 49472 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶((𝑂‘𝑥)(𝐶 Nat 𝐸)(𝑂‘𝑦))) |
| 30 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| 31 | eqidd 2734 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 33 | 30, 1, 8, 3, 9, 31, 32 | fucoid2 49474 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((𝑥𝑃𝑥)‘((Id‘𝑇)‘𝑥)) = ((Id‘𝑄)‘(𝑂‘𝑥))) |
| 34 | 21 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| 35 | eqidd 2734 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 36 | simp21 1207 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 37 | simp22 1208 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 38 | simp23 1209 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 39 | simp3l 1202 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦)) | |
| 40 | simp3r 1203 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧)) | |
| 41 | 1, 3, 34, 10, 11, 35, 36, 37, 38, 5, 39, 40 | fucoco2 49483 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥𝑃𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑇)𝑧)𝑚)) = (((𝑦𝑃𝑧)‘𝑛)(〈(𝑂‘𝑥), (𝑂‘𝑦)〉(comp‘𝑄)(𝑂‘𝑧))((𝑥𝑃𝑦)‘𝑚))) |
| 42 | 2, 4, 5, 7, 8, 9, 10, 11, 19, 20, 23, 24, 29, 33, 41 | isfuncd 17774 | 1 ⊢ (𝜑 → 𝑂(𝑇 Func 𝑄)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 〈cop 4581 class class class wbr 5093 × cxp 5617 ‘cfv 6486 (class class class)co 7352 Hom chom 17174 compcco 17175 Catccat 17572 Idccid 17573 Func cfunc 17763 Nat cnat 17853 FuncCat cfuc 17854 ×c cxpc 18076 ∘F cfuco 49441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-hom 17187 df-cco 17188 df-cat 17576 df-cid 17577 df-func 17767 df-cofu 17769 df-nat 17855 df-fuc 17856 df-xpc 18080 df-fuco 49442 |
| This theorem is referenced by: fucofunca 49485 |
| Copyright terms: Public domain | W3C validator |