Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucofunc Structured version   Visualization version   GIF version

Theorem fucofunc 48926
Description: The functor composition bifunctor is a functor.

However, it is unlikely the unique functor compatible with the functor composition. As a counterexample, let 𝐶 and 𝐷 be categories of one object and one morphism, for example, (SetCat‘1o), and 𝐸 be a category with two objects equipped with only two non-identity morphisms 𝑓 and 𝑔, pointing in the same direction. It is possible to map the ordered pair of natural transformations 𝑎, 𝑖, where 𝑎 sends to 𝑓 and 𝑖 is the identity natural transformation, to the other natural transformation 𝑏 sending to 𝑔, i.e., define the morphism part 𝑃 such that (𝑎(𝑈𝑃𝑉)𝑖) = 𝑏 such that (𝑏𝑋) = 𝑔 given hypotheses of fuco23 48908. Such construction should be provable as a functor.

Given any 𝑃, it is a morphism part of a functor compatible with the object part, i.e., the functor composition, i.e., the restriction of func, iff both of the following hold.

1. It has the same form as df-fuco 48886 up to fuco23 48908, but ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) might be mapped to a different morphism in category 𝐸. See fucofulem2 48880 for some insights.

2. fuco22nat 48913, fucoid 48915, and fucoco 48924 are satisfied.

(Contributed by Zhi Wang, 3-Oct-2025.)

Hypotheses
Ref Expression
fucoco2.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoco2.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoco2.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucofunc.c (𝜑𝐶 ∈ Cat)
fucofunc.d (𝜑𝐷 ∈ Cat)
fucofunc.e (𝜑𝐸 ∈ Cat)
Assertion
Ref Expression
fucofunc (𝜑𝑂(𝑇 Func 𝑄)𝑃)

Proof of Theorem fucofunc
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucoco2.t . . 3 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
21xpcfucbas 48872 . 2 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇)
3 fucoco2.q . . 3 𝑄 = (𝐶 FuncCat 𝐸)
43fucbas 18025 . 2 (𝐶 Func 𝐸) = (Base‘𝑄)
5 eqid 2737 . 2 (Hom ‘𝑇) = (Hom ‘𝑇)
6 eqid 2737 . . 3 (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸)
73, 6fuchom 18026 . 2 (𝐶 Nat 𝐸) = (Hom ‘𝑄)
8 eqid 2737 . 2 (Id‘𝑇) = (Id‘𝑇)
9 eqid 2737 . 2 (Id‘𝑄) = (Id‘𝑄)
10 eqid 2737 . 2 (comp‘𝑇) = (comp‘𝑇)
11 eqid 2737 . 2 (comp‘𝑄) = (comp‘𝑄)
12 eqid 2737 . . . 4 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
13 fucofunc.d . . . 4 (𝜑𝐷 ∈ Cat)
14 fucofunc.e . . . 4 (𝜑𝐸 ∈ Cat)
1512, 13, 14fuccat 18036 . . 3 (𝜑 → (𝐷 FuncCat 𝐸) ∈ Cat)
16 eqid 2737 . . . 4 (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷)
17 fucofunc.c . . . 4 (𝜑𝐶 ∈ Cat)
1816, 17, 13fuccat 18036 . . 3 (𝜑 → (𝐶 FuncCat 𝐷) ∈ Cat)
191, 15, 18xpccat 18255 . 2 (𝜑𝑇 ∈ Cat)
203, 17, 14fuccat 18036 . 2 (𝜑𝑄 ∈ Cat)
21 fucoco2.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
22 eqidd 2738 . . 3 (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
2317, 13, 14, 21, 22fucof1 48891 . 2 (𝜑𝑂:((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸))
2417, 13, 14, 21, 22fucofn2 48893 . 2 (𝜑𝑃 Fn (((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) × ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
2521adantr 480 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
26 eqidd 2738 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
27 simprl 771 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
28 simprr 773 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
2925, 1, 5, 26, 27, 28fucof21 48914 . 2 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶((𝑂𝑥)(𝐶 Nat 𝐸)(𝑂𝑦)))
3021adantr 480 . . 3 ((𝜑𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
31 eqidd 2738 . . 3 ((𝜑𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
32 simpr 484 . . 3 ((𝜑𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
3330, 1, 8, 3, 9, 31, 32fucoid2 48916 . 2 ((𝜑𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((𝑥𝑃𝑥)‘((Id‘𝑇)‘𝑥)) = ((Id‘𝑄)‘(𝑂𝑥)))
34213ad2ant1 1134 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
35 eqidd 2738 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
36 simp21 1207 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
37 simp22 1208 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
38 simp23 1209 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
39 simp3l 1202 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦))
40 simp3r 1203 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))
411, 3, 34, 10, 11, 35, 36, 37, 38, 5, 39, 40fucoco2 48925 . 2 ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥𝑃𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑚)) = (((𝑦𝑃𝑧)‘𝑛)(⟨(𝑂𝑥), (𝑂𝑦)⟩(comp‘𝑄)(𝑂𝑧))((𝑥𝑃𝑦)‘𝑚)))
422, 4, 5, 7, 8, 9, 10, 11, 19, 20, 23, 24, 29, 33, 41isfuncd 17925 1 (𝜑𝑂(𝑇 Func 𝑄)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  cop 4640   class class class wbr 5151   × cxp 5691  cfv 6569  (class class class)co 7438  Hom chom 17318  compcco 17319  Catccat 17718  Idccid 17719   Func cfunc 17914   Nat cnat 18005   FuncCat cfuc 18006   ×c cxpc 18233  F cfuco 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-map 8876  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-fz 13554  df-struct 17190  df-slot 17225  df-ndx 17237  df-base 17255  df-hom 17331  df-cco 17332  df-cat 17722  df-cid 17723  df-func 17918  df-cofu 17920  df-nat 18007  df-fuc 18008  df-xpc 18237  df-fuco 48886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator