![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fucofunc | Structured version Visualization version GIF version |
Description: The functor composition
bifunctor is a functor.
However, it is unlikely the unique functor compatible with the functor composition. As a counterexample, let 𝐶 and 𝐷 be categories of one object and one morphism, for example, (SetCat‘1o), and 𝐸 be a category with two objects equipped with only two non-identity morphisms 𝑓 and 𝑔, pointing in the same direction. It is possible to map the ordered pair of natural transformations 〈𝑎, 𝑖〉, where 𝑎 sends to 𝑓 and 𝑖 is the identity natural transformation, to the other natural transformation 𝑏 sending to 𝑔, i.e., define the morphism part 𝑃 such that (𝑎(𝑈𝑃𝑉)𝑖) = 𝑏 such that (𝑏‘𝑋) = 𝑔 given hypotheses of fuco23 48908. Such construction should be provable as a functor. Given any 𝑃, it is a morphism part of a functor compatible with the object part, i.e., the functor composition, i.e., the restriction of ∘func, iff both of the following hold. 1. It has the same form as df-fuco 48886 up to fuco23 48908, but ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) might be mapped to a different morphism in category 𝐸. See fucofulem2 48880 for some insights. 2. fuco22nat 48913, fucoid 48915, and fucoco 48924 are satisfied. (Contributed by Zhi Wang, 3-Oct-2025.) |
Ref | Expression |
---|---|
fucoco2.t | ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) |
fucoco2.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐸) |
fucoco2.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
fucofunc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
fucofunc.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
fucofunc.e | ⊢ (𝜑 → 𝐸 ∈ Cat) |
Ref | Expression |
---|---|
fucofunc | ⊢ (𝜑 → 𝑂(𝑇 Func 𝑄)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucoco2.t | . . 3 ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) | |
2 | 1 | xpcfucbas 48872 | . 2 ⊢ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇) |
3 | fucoco2.q | . . 3 ⊢ 𝑄 = (𝐶 FuncCat 𝐸) | |
4 | 3 | fucbas 18025 | . 2 ⊢ (𝐶 Func 𝐸) = (Base‘𝑄) |
5 | eqid 2737 | . 2 ⊢ (Hom ‘𝑇) = (Hom ‘𝑇) | |
6 | eqid 2737 | . . 3 ⊢ (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸) | |
7 | 3, 6 | fuchom 18026 | . 2 ⊢ (𝐶 Nat 𝐸) = (Hom ‘𝑄) |
8 | eqid 2737 | . 2 ⊢ (Id‘𝑇) = (Id‘𝑇) | |
9 | eqid 2737 | . 2 ⊢ (Id‘𝑄) = (Id‘𝑄) | |
10 | eqid 2737 | . 2 ⊢ (comp‘𝑇) = (comp‘𝑇) | |
11 | eqid 2737 | . 2 ⊢ (comp‘𝑄) = (comp‘𝑄) | |
12 | eqid 2737 | . . . 4 ⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) | |
13 | fucofunc.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
14 | fucofunc.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
15 | 12, 13, 14 | fuccat 18036 | . . 3 ⊢ (𝜑 → (𝐷 FuncCat 𝐸) ∈ Cat) |
16 | eqid 2737 | . . . 4 ⊢ (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷) | |
17 | fucofunc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
18 | 16, 17, 13 | fuccat 18036 | . . 3 ⊢ (𝜑 → (𝐶 FuncCat 𝐷) ∈ Cat) |
19 | 1, 15, 18 | xpccat 18255 | . 2 ⊢ (𝜑 → 𝑇 ∈ Cat) |
20 | 3, 17, 14 | fuccat 18036 | . 2 ⊢ (𝜑 → 𝑄 ∈ Cat) |
21 | fucoco2.o | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
22 | eqidd 2738 | . . 3 ⊢ (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
23 | 17, 13, 14, 21, 22 | fucof1 48891 | . 2 ⊢ (𝜑 → 𝑂:((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)) |
24 | 17, 13, 14, 21, 22 | fucofn2 48893 | . 2 ⊢ (𝜑 → 𝑃 Fn (((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) × ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
25 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
26 | eqidd 2738 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
27 | simprl 771 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
28 | simprr 773 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
29 | 25, 1, 5, 26, 27, 28 | fucof21 48914 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶((𝑂‘𝑥)(𝐶 Nat 𝐸)(𝑂‘𝑦))) |
30 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
31 | eqidd 2738 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
33 | 30, 1, 8, 3, 9, 31, 32 | fucoid2 48916 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((𝑥𝑃𝑥)‘((Id‘𝑇)‘𝑥)) = ((Id‘𝑄)‘(𝑂‘𝑥))) |
34 | 21 | 3ad2ant1 1134 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
35 | eqidd 2738 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
36 | simp21 1207 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
37 | simp22 1208 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
38 | simp23 1209 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
39 | simp3l 1202 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦)) | |
40 | simp3r 1203 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧)) | |
41 | 1, 3, 34, 10, 11, 35, 36, 37, 38, 5, 39, 40 | fucoco2 48925 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑦 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∧ 𝑧 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥𝑃𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑇)𝑧)𝑚)) = (((𝑦𝑃𝑧)‘𝑛)(〈(𝑂‘𝑥), (𝑂‘𝑦)〉(comp‘𝑄)(𝑂‘𝑧))((𝑥𝑃𝑦)‘𝑚))) |
42 | 2, 4, 5, 7, 8, 9, 10, 11, 19, 20, 23, 24, 29, 33, 41 | isfuncd 17925 | 1 ⊢ (𝜑 → 𝑂(𝑇 Func 𝑄)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 〈cop 4640 class class class wbr 5151 × cxp 5691 ‘cfv 6569 (class class class)co 7438 Hom chom 17318 compcco 17319 Catccat 17718 Idccid 17719 Func cfunc 17914 Nat cnat 18005 FuncCat cfuc 18006 ×c cxpc 18233 ∘F cfuco 48885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-fz 13554 df-struct 17190 df-slot 17225 df-ndx 17237 df-base 17255 df-hom 17331 df-cco 17332 df-cat 17722 df-cid 17723 df-func 17918 df-cofu 17920 df-nat 18007 df-fuc 18008 df-xpc 18237 df-fuco 48886 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |