![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-h0v | Structured version Visualization version GIF version |
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 30421. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-h0v | ⊢ 0ℎ = (0vec‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0v 30177 | . 2 class 0ℎ | |
2 | cva 30173 | . . . . 5 class +ℎ | |
3 | csm 30174 | . . . . 5 class ·ℎ | |
4 | 2, 3 | cop 4635 | . . . 4 class ⟨ +ℎ , ·ℎ ⟩ |
5 | cno 30176 | . . . 4 class normℎ | |
6 | 4, 5 | cop 4635 | . . 3 class ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ |
7 | cn0v 29841 | . . 3 class 0vec | |
8 | 6, 7 | cfv 6544 | . 2 class (0vec‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
9 | 1, 8 | wceq 1542 | 1 wff 0ℎ = (0vec‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
Colors of variables: wff setvar class |
This definition is referenced by: axhv0cl-zf 30238 axhvaddid-zf 30239 axhvmul0-zf 30245 axhis4-zf 30250 |
Copyright terms: Public domain | W3C validator |