HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0v Structured version   Visualization version   GIF version

Definition df-h0v 29341
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 29539. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0v 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-h0v
StepHypRef Expression
1 c0v 29295 . 2 class 0
2 cva 29291 . . . . 5 class +
3 csm 29292 . . . . 5 class ·
42, 3cop 4573 . . . 4 class ⟨ + , ·
5 cno 29294 . . . 4 class norm
64, 5cop 4573 . . 3 class ⟨⟨ + , · ⟩, norm
7 cn0v 28959 . . 3 class 0vec
86, 7cfv 6432 . 2 class (0vec‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1542 1 wff 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhv0cl-zf  29356  axhvaddid-zf  29357  axhvmul0-zf  29363  axhis4-zf  29368
  Copyright terms: Public domain W3C validator