| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-h0v | Structured version Visualization version GIF version | ||
| Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 31104. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-h0v | ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0v 30860 | . 2 class 0ℎ | |
| 2 | cva 30856 | . . . . 5 class +ℎ | |
| 3 | csm 30857 | . . . . 5 class ·ℎ | |
| 4 | 2, 3 | cop 4603 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
| 5 | cno 30859 | . . . 4 class normℎ | |
| 6 | 4, 5 | cop 4603 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| 7 | cn0v 30524 | . . 3 class 0vec | |
| 8 | 6, 7 | cfv 6519 | . 2 class (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 9 | 1, 8 | wceq 1540 | 1 wff 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: axhv0cl-zf 30921 axhvaddid-zf 30922 axhvmul0-zf 30928 axhis4-zf 30933 |
| Copyright terms: Public domain | W3C validator |