Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df-h0v | Structured version Visualization version GIF version |
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 29431. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-h0v | ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0v 29187 | . 2 class 0ℎ | |
2 | cva 29183 | . . . . 5 class +ℎ | |
3 | csm 29184 | . . . . 5 class ·ℎ | |
4 | 2, 3 | cop 4564 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
5 | cno 29186 | . . . 4 class normℎ | |
6 | 4, 5 | cop 4564 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
7 | cn0v 28851 | . . 3 class 0vec | |
8 | 6, 7 | cfv 6418 | . 2 class (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
9 | 1, 8 | wceq 1539 | 1 wff 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Colors of variables: wff setvar class |
This definition is referenced by: axhv0cl-zf 29248 axhvaddid-zf 29249 axhvmul0-zf 29255 axhis4-zf 29260 |
Copyright terms: Public domain | W3C validator |