| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-h0v | Structured version Visualization version GIF version | ||
| Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 31112. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-h0v | ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0v 30868 | . 2 class 0ℎ | |
| 2 | cva 30864 | . . . . 5 class +ℎ | |
| 3 | csm 30865 | . . . . 5 class ·ℎ | |
| 4 | 2, 3 | cop 4583 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
| 5 | cno 30867 | . . . 4 class normℎ | |
| 6 | 4, 5 | cop 4583 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| 7 | cn0v 30532 | . . 3 class 0vec | |
| 8 | 6, 7 | cfv 6482 | . 2 class (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 9 | 1, 8 | wceq 1540 | 1 wff 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: axhv0cl-zf 30929 axhvaddid-zf 30930 axhvmul0-zf 30936 axhis4-zf 30941 |
| Copyright terms: Public domain | W3C validator |