HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0v Structured version   Visualization version   GIF version

Definition df-h0v 30254
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 30452. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0v 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-h0v
StepHypRef Expression
1 c0v 30208 . 2 class 0
2 cva 30204 . . . . 5 class +
3 csm 30205 . . . . 5 class ·
42, 3cop 4635 . . . 4 class ⟨ + , ·
5 cno 30207 . . . 4 class norm
64, 5cop 4635 . . 3 class ⟨⟨ + , · ⟩, norm
7 cn0v 29872 . . 3 class 0vec
86, 7cfv 6544 . 2 class (0vec‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1542 1 wff 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhv0cl-zf  30269  axhvaddid-zf  30270  axhvmul0-zf  30276  axhis4-zf  30281
  Copyright terms: Public domain W3C validator