Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df-h0v | Structured version Visualization version GIF version |
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 29539. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-h0v | ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0v 29295 | . 2 class 0ℎ | |
2 | cva 29291 | . . . . 5 class +ℎ | |
3 | csm 29292 | . . . . 5 class ·ℎ | |
4 | 2, 3 | cop 4573 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
5 | cno 29294 | . . . 4 class normℎ | |
6 | 4, 5 | cop 4573 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
7 | cn0v 28959 | . . 3 class 0vec | |
8 | 6, 7 | cfv 6432 | . 2 class (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
9 | 1, 8 | wceq 1542 | 1 wff 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Colors of variables: wff setvar class |
This definition is referenced by: axhv0cl-zf 29356 axhvaddid-zf 29357 axhvmul0-zf 29363 axhis4-zf 29368 |
Copyright terms: Public domain | W3C validator |