| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-h0v | Structured version Visualization version GIF version | ||
| Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 31097. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-h0v | ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0v 30853 | . 2 class 0ℎ | |
| 2 | cva 30849 | . . . . 5 class +ℎ | |
| 3 | csm 30850 | . . . . 5 class ·ℎ | |
| 4 | 2, 3 | cop 4595 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
| 5 | cno 30852 | . . . 4 class normℎ | |
| 6 | 4, 5 | cop 4595 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| 7 | cn0v 30517 | . . 3 class 0vec | |
| 8 | 6, 7 | cfv 6511 | . 2 class (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 9 | 1, 8 | wceq 1540 | 1 wff 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: axhv0cl-zf 30914 axhvaddid-zf 30915 axhvmul0-zf 30921 axhis4-zf 30926 |
| Copyright terms: Public domain | W3C validator |