HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0v Structured version   Visualization version   GIF version

Definition df-h0v 30999
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 31197. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0v 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-h0v
StepHypRef Expression
1 c0v 30953 . 2 class 0
2 cva 30949 . . . . 5 class +
3 csm 30950 . . . . 5 class ·
42, 3cop 4637 . . . 4 class ⟨ + , ·
5 cno 30952 . . . 4 class norm
64, 5cop 4637 . . 3 class ⟨⟨ + , · ⟩, norm
7 cn0v 30617 . . 3 class 0vec
86, 7cfv 6563 . 2 class (0vec‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1537 1 wff 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhv0cl-zf  31014  axhvaddid-zf  31015  axhvmul0-zf  31021  axhis4-zf  31026
  Copyright terms: Public domain W3C validator