HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0v Structured version   Visualization version   GIF version

Definition df-h0v 30914
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 31112. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0v 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-h0v
StepHypRef Expression
1 c0v 30868 . 2 class 0
2 cva 30864 . . . . 5 class +
3 csm 30865 . . . . 5 class ·
42, 3cop 4583 . . . 4 class ⟨ + , ·
5 cno 30867 . . . 4 class norm
64, 5cop 4583 . . 3 class ⟨⟨ + , · ⟩, norm
7 cn0v 30532 . . 3 class 0vec
86, 7cfv 6482 . 2 class (0vec‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1540 1 wff 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhv0cl-zf  30929  axhvaddid-zf  30930  axhvmul0-zf  30936  axhis4-zf  30941
  Copyright terms: Public domain W3C validator