HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0v Structured version   Visualization version   GIF version

Definition df-h0v 29332
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 29530. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0v 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-h0v
StepHypRef Expression
1 c0v 29286 . 2 class 0
2 cva 29282 . . . . 5 class +
3 csm 29283 . . . . 5 class ·
42, 3cop 4567 . . . 4 class ⟨ + , ·
5 cno 29285 . . . 4 class norm
64, 5cop 4567 . . 3 class ⟨⟨ + , · ⟩, norm
7 cn0v 28950 . . 3 class 0vec
86, 7cfv 6433 . 2 class (0vec‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1539 1 wff 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhv0cl-zf  29347  axhvaddid-zf  29348  axhvmul0-zf  29354  axhis4-zf  29359
  Copyright terms: Public domain W3C validator