![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-h0v | Structured version Visualization version GIF version |
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 30416. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-h0v | ⊢ 0ℎ = (0vec‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0v 30172 | . 2 class 0ℎ | |
2 | cva 30168 | . . . . 5 class +ℎ | |
3 | csm 30169 | . . . . 5 class ·ℎ | |
4 | 2, 3 | cop 4634 | . . . 4 class ⟨ +ℎ , ·ℎ ⟩ |
5 | cno 30171 | . . . 4 class normℎ | |
6 | 4, 5 | cop 4634 | . . 3 class ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ |
7 | cn0v 29836 | . . 3 class 0vec | |
8 | 6, 7 | cfv 6543 | . 2 class (0vec‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
9 | 1, 8 | wceq 1541 | 1 wff 0ℎ = (0vec‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
Colors of variables: wff setvar class |
This definition is referenced by: axhv0cl-zf 30233 axhvaddid-zf 30234 axhvmul0-zf 30240 axhis4-zf 30245 |
Copyright terms: Public domain | W3C validator |