| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-h0v | Structured version Visualization version GIF version | ||
| Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 31148. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-h0v | ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0v 30904 | . 2 class 0ℎ | |
| 2 | cva 30900 | . . . . 5 class +ℎ | |
| 3 | csm 30901 | . . . . 5 class ·ℎ | |
| 4 | 2, 3 | cop 4579 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
| 5 | cno 30903 | . . . 4 class normℎ | |
| 6 | 4, 5 | cop 4579 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| 7 | cn0v 30568 | . . 3 class 0vec | |
| 8 | 6, 7 | cfv 6481 | . 2 class (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 9 | 1, 8 | wceq 1541 | 1 wff 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: axhv0cl-zf 30965 axhvaddid-zf 30966 axhvmul0-zf 30972 axhis4-zf 30977 |
| Copyright terms: Public domain | W3C validator |