HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0v Structured version   Visualization version   GIF version

Definition df-h0v 30223
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 30421. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0v 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-h0v
StepHypRef Expression
1 c0v 30177 . 2 class 0
2 cva 30173 . . . . 5 class +
3 csm 30174 . . . . 5 class ·
42, 3cop 4635 . . . 4 class ⟨ + , ·
5 cno 30176 . . . 4 class norm
64, 5cop 4635 . . 3 class ⟨⟨ + , · ⟩, norm
7 cn0v 29841 . . 3 class 0vec
86, 7cfv 6544 . 2 class (0vec‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1542 1 wff 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhv0cl-zf  30238  axhvaddid-zf  30239  axhvmul0-zf  30245  axhis4-zf  30250
  Copyright terms: Public domain W3C validator