HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0v Structured version   Visualization version   GIF version

Definition df-h0v 31002
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 31200. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0v 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-h0v
StepHypRef Expression
1 c0v 30956 . 2 class 0
2 cva 30952 . . . . 5 class +
3 csm 30953 . . . . 5 class ·
42, 3cop 4654 . . . 4 class ⟨ + , ·
5 cno 30955 . . . 4 class norm
64, 5cop 4654 . . 3 class ⟨⟨ + , · ⟩, norm
7 cn0v 30620 . . 3 class 0vec
86, 7cfv 6573 . 2 class (0vec‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1537 1 wff 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhv0cl-zf  31017  axhvaddid-zf  31018  axhvmul0-zf  31024  axhis4-zf  31029
  Copyright terms: Public domain W3C validator