![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-h0v | Structured version Visualization version GIF version |
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 31200. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-h0v | ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0v 30956 | . 2 class 0ℎ | |
2 | cva 30952 | . . . . 5 class +ℎ | |
3 | csm 30953 | . . . . 5 class ·ℎ | |
4 | 2, 3 | cop 4654 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
5 | cno 30955 | . . . 4 class normℎ | |
6 | 4, 5 | cop 4654 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
7 | cn0v 30620 | . . 3 class 0vec | |
8 | 6, 7 | cfv 6573 | . 2 class (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
9 | 1, 8 | wceq 1537 | 1 wff 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Colors of variables: wff setvar class |
This definition is referenced by: axhv0cl-zf 31017 axhvaddid-zf 31018 axhvmul0-zf 31024 axhis4-zf 31029 |
Copyright terms: Public domain | W3C validator |