HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0v Structured version   Visualization version   GIF version

Definition df-h0v 30218
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 30416. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0v 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-h0v
StepHypRef Expression
1 c0v 30172 . 2 class 0
2 cva 30168 . . . . 5 class +
3 csm 30169 . . . . 5 class ·
42, 3cop 4634 . . . 4 class ⟨ + , ·
5 cno 30171 . . . 4 class norm
64, 5cop 4634 . . 3 class ⟨⟨ + , · ⟩, norm
7 cn0v 29836 . . 3 class 0vec
86, 7cfv 6543 . 2 class (0vec‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1541 1 wff 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhv0cl-zf  30233  axhvaddid-zf  30234  axhvmul0-zf  30240  axhis4-zf  30245
  Copyright terms: Public domain W3C validator