![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-h0v | Structured version Visualization version GIF version |
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 30452. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-h0v | ⊢ 0ℎ = (0vec‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0v 30208 | . 2 class 0ℎ | |
2 | cva 30204 | . . . . 5 class +ℎ | |
3 | csm 30205 | . . . . 5 class ·ℎ | |
4 | 2, 3 | cop 4635 | . . . 4 class ⟨ +ℎ , ·ℎ ⟩ |
5 | cno 30207 | . . . 4 class normℎ | |
6 | 4, 5 | cop 4635 | . . 3 class ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ |
7 | cn0v 29872 | . . 3 class 0vec | |
8 | 6, 7 | cfv 6544 | . 2 class (0vec‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
9 | 1, 8 | wceq 1542 | 1 wff 0ℎ = (0vec‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
Colors of variables: wff setvar class |
This definition is referenced by: axhv0cl-zf 30269 axhvaddid-zf 30270 axhvmul0-zf 30276 axhis4-zf 30281 |
Copyright terms: Public domain | W3C validator |