HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0v Structured version   Visualization version   GIF version

Definition df-h0v 30950
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 31148. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0v 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-h0v
StepHypRef Expression
1 c0v 30904 . 2 class 0
2 cva 30900 . . . . 5 class +
3 csm 30901 . . . . 5 class ·
42, 3cop 4579 . . . 4 class ⟨ + , ·
5 cno 30903 . . . 4 class norm
64, 5cop 4579 . . 3 class ⟨⟨ + , · ⟩, norm
7 cn0v 30568 . . 3 class 0vec
86, 7cfv 6481 . 2 class (0vec‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1541 1 wff 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhv0cl-zf  30965  axhvaddid-zf  30966  axhvmul0-zf  30972  axhis4-zf  30977
  Copyright terms: Public domain W3C validator