Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df-h0v | Structured version Visualization version GIF version |
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 29530. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-h0v | ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0v 29286 | . 2 class 0ℎ | |
2 | cva 29282 | . . . . 5 class +ℎ | |
3 | csm 29283 | . . . . 5 class ·ℎ | |
4 | 2, 3 | cop 4567 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
5 | cno 29285 | . . . 4 class normℎ | |
6 | 4, 5 | cop 4567 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
7 | cn0v 28950 | . . 3 class 0vec | |
8 | 6, 7 | cfv 6433 | . 2 class (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
9 | 1, 8 | wceq 1539 | 1 wff 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Colors of variables: wff setvar class |
This definition is referenced by: axhv0cl-zf 29347 axhvaddid-zf 29348 axhvmul0-zf 29354 axhis4-zf 29359 |
Copyright terms: Public domain | W3C validator |