HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0v Structured version   Visualization version   GIF version

Definition df-h0v 29233
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 29431. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0v 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-h0v
StepHypRef Expression
1 c0v 29187 . 2 class 0
2 cva 29183 . . . . 5 class +
3 csm 29184 . . . . 5 class ·
42, 3cop 4564 . . . 4 class ⟨ + , ·
5 cno 29186 . . . 4 class norm
64, 5cop 4564 . . 3 class ⟨⟨ + , · ⟩, norm
7 cn0v 28851 . . 3 class 0vec
86, 7cfv 6418 . 2 class (0vec‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1539 1 wff 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhv0cl-zf  29248  axhvaddid-zf  29249  axhvmul0-zf  29255  axhis4-zf  29260
  Copyright terms: Public domain W3C validator