HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0v Structured version   Visualization version   GIF version

Definition df-h0v 30906
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 31104. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0v 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-h0v
StepHypRef Expression
1 c0v 30860 . 2 class 0
2 cva 30856 . . . . 5 class +
3 csm 30857 . . . . 5 class ·
42, 3cop 4603 . . . 4 class ⟨ + , ·
5 cno 30859 . . . 4 class norm
64, 5cop 4603 . . 3 class ⟨⟨ + , · ⟩, norm
7 cn0v 30524 . . 3 class 0vec
86, 7cfv 6519 . 2 class (0vec‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1540 1 wff 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhv0cl-zf  30921  axhvaddid-zf  30922  axhvmul0-zf  30928  axhis4-zf  30933
  Copyright terms: Public domain W3C validator