HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0v Structured version   Visualization version   GIF version

Definition df-h0v 30899
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 31097. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0v 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-h0v
StepHypRef Expression
1 c0v 30853 . 2 class 0
2 cva 30849 . . . . 5 class +
3 csm 30850 . . . . 5 class ·
42, 3cop 4595 . . . 4 class ⟨ + , ·
5 cno 30852 . . . 4 class norm
64, 5cop 4595 . . 3 class ⟨⟨ + , · ⟩, norm
7 cn0v 30517 . . 3 class 0vec
86, 7cfv 6511 . 2 class (0vec‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1540 1 wff 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhv0cl-zf  30914  axhvaddid-zf  30915  axhvmul0-zf  30921  axhis4-zf  30926
  Copyright terms: Public domain W3C validator