Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > axhvaddid-zf | Structured version Visualization version GIF version |
Description: Derive Axiom ax-hvaddid 29475 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
Ref | Expression |
---|---|
axhvaddid-zf | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.2 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
2 | df-hba 29440 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
3 | axhil.1 | . . . . 5 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
4 | 3 | fveq2i 6814 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
5 | 2, 4 | eqtr4i 2768 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) |
6 | 1 | hlnvi 29363 | . . . 4 ⊢ 𝑈 ∈ NrmCVec |
7 | 3, 6 | h2hva 29445 | . . 3 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
8 | df-h0v 29441 | . . . 4 ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
9 | 3 | fveq2i 6814 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
10 | 8, 9 | eqtr4i 2768 | . . 3 ⊢ 0ℎ = (0vec‘𝑈) |
11 | 5, 7, 10 | hladdid 29374 | . 2 ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ ℋ) → (𝐴 +ℎ 0ℎ) = 𝐴) |
12 | 1, 11 | mpan 687 | 1 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 〈cop 4577 ‘cfv 6465 (class class class)co 7315 BaseSetcba 29057 0veccn0v 29059 CHilOLDchlo 29356 ℋchba 29390 +ℎ cva 29391 ·ℎ csm 29392 normℎcno 29394 0ℎc0v 29395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-1st 7876 df-2nd 7877 df-grpo 28964 df-gid 28965 df-ablo 29016 df-vc 29030 df-nv 29063 df-va 29066 df-ba 29067 df-sm 29068 df-0v 29069 df-nmcv 29071 df-cbn 29334 df-hlo 29357 df-hba 29440 df-h0v 29441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |