|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > axhvaddid-zf | Structured version Visualization version GIF version | ||
| Description: Derive Axiom ax-hvaddid 31024 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | 
| axhil.2 | ⊢ 𝑈 ∈ CHilOLD | 
| Ref | Expression | 
|---|---|
| axhvaddid-zf | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | axhil.2 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
| 2 | df-hba 30989 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 3 | axhil.1 | . . . . 5 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 4 | 3 | fveq2i 6908 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | 
| 5 | 2, 4 | eqtr4i 2767 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) | 
| 6 | 1 | hlnvi 30912 | . . . 4 ⊢ 𝑈 ∈ NrmCVec | 
| 7 | 3, 6 | h2hva 30994 | . . 3 ⊢ +ℎ = ( +𝑣 ‘𝑈) | 
| 8 | df-h0v 30990 | . . . 4 ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 9 | 3 | fveq2i 6908 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | 
| 10 | 8, 9 | eqtr4i 2767 | . . 3 ⊢ 0ℎ = (0vec‘𝑈) | 
| 11 | 5, 7, 10 | hladdid 30923 | . 2 ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ ℋ) → (𝐴 +ℎ 0ℎ) = 𝐴) | 
| 12 | 1, 11 | mpan 690 | 1 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4631 ‘cfv 6560 (class class class)co 7432 BaseSetcba 30606 0veccn0v 30608 CHilOLDchlo 30905 ℋchba 30939 +ℎ cva 30940 ·ℎ csm 30941 normℎcno 30943 0ℎc0v 30944 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-1st 8015 df-2nd 8016 df-grpo 30513 df-gid 30514 df-ablo 30565 df-vc 30579 df-nv 30612 df-va 30615 df-ba 30616 df-sm 30617 df-0v 30618 df-nmcv 30620 df-cbn 30883 df-hlo 30906 df-hba 30989 df-h0v 30990 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |