Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > axhvaddid-zf | Structured version Visualization version GIF version |
Description: Derive Axiom ax-hvaddid 29267 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
Ref | Expression |
---|---|
axhvaddid-zf | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.2 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
2 | df-hba 29232 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
3 | axhil.1 | . . . . 5 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
4 | 3 | fveq2i 6759 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
5 | 2, 4 | eqtr4i 2769 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) |
6 | 1 | hlnvi 29155 | . . . 4 ⊢ 𝑈 ∈ NrmCVec |
7 | 3, 6 | h2hva 29237 | . . 3 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
8 | df-h0v 29233 | . . . 4 ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
9 | 3 | fveq2i 6759 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
10 | 8, 9 | eqtr4i 2769 | . . 3 ⊢ 0ℎ = (0vec‘𝑈) |
11 | 5, 7, 10 | hladdid 29166 | . 2 ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ ℋ) → (𝐴 +ℎ 0ℎ) = 𝐴) |
12 | 1, 11 | mpan 686 | 1 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4564 ‘cfv 6418 (class class class)co 7255 BaseSetcba 28849 0veccn0v 28851 CHilOLDchlo 29148 ℋchba 29182 +ℎ cva 29183 ·ℎ csm 29184 normℎcno 29186 0ℎc0v 29187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-1st 7804 df-2nd 7805 df-grpo 28756 df-gid 28757 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 df-cbn 29126 df-hlo 29149 df-hba 29232 df-h0v 29233 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |