| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > axhv0cl-zf | Structured version Visualization version GIF version | ||
| Description: Derive Axiom ax-hv0cl 30965 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
| Ref | Expression |
|---|---|
| axhv0cl-zf | ⊢ 0ℎ ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axhil.2 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
| 2 | df-hba 30931 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 3 | axhil.1 | . . . . 5 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 4 | 3 | fveq2i 6829 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 5 | 2, 4 | eqtr4i 2755 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) |
| 6 | df-h0v 30932 | . . . 4 ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 7 | 3 | fveq2i 6829 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 8 | 6, 7 | eqtr4i 2755 | . . 3 ⊢ 0ℎ = (0vec‘𝑈) |
| 9 | 5, 8 | hl0cl 30864 | . 2 ⊢ (𝑈 ∈ CHilOLD → 0ℎ ∈ ℋ) |
| 10 | 1, 9 | ax-mp 5 | 1 ⊢ 0ℎ ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 〈cop 4585 ‘cfv 6486 BaseSetcba 30548 0veccn0v 30550 CHilOLDchlo 30847 ℋchba 30881 +ℎ cva 30882 ·ℎ csm 30883 normℎcno 30885 0ℎc0v 30886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-1st 7931 df-2nd 7932 df-grpo 30455 df-gid 30456 df-ablo 30507 df-vc 30521 df-nv 30554 df-va 30557 df-ba 30558 df-sm 30559 df-0v 30560 df-nmcv 30562 df-cbn 30825 df-hlo 30848 df-hba 30931 df-h0v 30932 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |