HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhv0cl-zf Structured version   Visualization version   GIF version

Theorem axhv0cl-zf 30947
Description: Derive Axiom ax-hv0cl 30965 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhv0cl-zf 0 ∈ ℋ

Proof of Theorem axhv0cl-zf
StepHypRef Expression
1 axhil.2 . 2 𝑈 ∈ CHilOLD
2 df-hba 30931 . . . 4 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
3 axhil.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
43fveq2i 6829 . . . 4 (BaseSet‘𝑈) = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
52, 4eqtr4i 2755 . . 3 ℋ = (BaseSet‘𝑈)
6 df-h0v 30932 . . . 4 0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
73fveq2i 6829 . . . 4 (0vec𝑈) = (0vec‘⟨⟨ + , · ⟩, norm⟩)
86, 7eqtr4i 2755 . . 3 0 = (0vec𝑈)
95, 8hl0cl 30864 . 2 (𝑈 ∈ CHilOLD → 0 ∈ ℋ)
101, 9ax-mp 5 1 0 ∈ ℋ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cop 4585  cfv 6486  BaseSetcba 30548  0veccn0v 30550  CHilOLDchlo 30847  chba 30881   + cva 30882   · csm 30883  normcno 30885  0c0v 30886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-1st 7931  df-2nd 7932  df-grpo 30455  df-gid 30456  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-nmcv 30562  df-cbn 30825  df-hlo 30848  df-hba 30931  df-h0v 30932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator