![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > axhv0cl-zf | Structured version Visualization version GIF version |
Description: Derive Axiom ax-hv0cl 31035 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
Ref | Expression |
---|---|
axhv0cl-zf | ⊢ 0ℎ ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.2 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
2 | df-hba 31001 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
3 | axhil.1 | . . . . 5 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
4 | 3 | fveq2i 6923 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
5 | 2, 4 | eqtr4i 2771 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) |
6 | df-h0v 31002 | . . . 4 ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
7 | 3 | fveq2i 6923 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
8 | 6, 7 | eqtr4i 2771 | . . 3 ⊢ 0ℎ = (0vec‘𝑈) |
9 | 5, 8 | hl0cl 30934 | . 2 ⊢ (𝑈 ∈ CHilOLD → 0ℎ ∈ ℋ) |
10 | 1, 9 | ax-mp 5 | 1 ⊢ 0ℎ ∈ ℋ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 〈cop 4654 ‘cfv 6573 BaseSetcba 30618 0veccn0v 30620 CHilOLDchlo 30917 ℋchba 30951 +ℎ cva 30952 ·ℎ csm 30953 normℎcno 30955 0ℎc0v 30956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-1st 8030 df-2nd 8031 df-grpo 30525 df-gid 30526 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-nmcv 30632 df-cbn 30895 df-hlo 30918 df-hba 31001 df-h0v 31002 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |