![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > axhvmul0-zf | Structured version Visualization version GIF version |
Description: Derive Axiom ax-hvmul0 30943 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
Ref | Expression |
---|---|
axhvmul0-zf | ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.2 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
2 | df-hba 30902 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
3 | axhil.1 | . . . . 5 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
4 | 3 | fveq2i 6904 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
5 | 2, 4 | eqtr4i 2757 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) |
6 | 1 | hlnvi 30825 | . . . 4 ⊢ 𝑈 ∈ NrmCVec |
7 | 3, 6 | h2hsm 30908 | . . 3 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
8 | df-h0v 30903 | . . . 4 ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
9 | 3 | fveq2i 6904 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
10 | 8, 9 | eqtr4i 2757 | . . 3 ⊢ 0ℎ = (0vec‘𝑈) |
11 | 5, 7, 10 | hlmul0 30842 | . 2 ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ ℋ) → (0 ·ℎ 𝐴) = 0ℎ) |
12 | 1, 11 | mpan 688 | 1 ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 〈cop 4639 ‘cfv 6554 (class class class)co 7424 0cc0 11158 BaseSetcba 30519 0veccn0v 30521 CHilOLDchlo 30818 ℋchba 30852 +ℎ cva 30853 ·ℎ csm 30854 normℎcno 30856 0ℎc0v 30857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-1st 8003 df-2nd 8004 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-ltxr 11303 df-grpo 30426 df-gid 30427 df-ginv 30428 df-ablo 30478 df-vc 30492 df-nv 30525 df-va 30528 df-ba 30529 df-sm 30530 df-0v 30531 df-nmcv 30533 df-cbn 30796 df-hlo 30819 df-hba 30902 df-h0v 30903 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |