HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hh0v Structured version   Visualization version   GIF version

Theorem hh0v 29526
Description: The zero vector of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1 𝑈 = ⟨⟨ + , · ⟩, norm
Assertion
Ref Expression
hh0v 0 = (0vec𝑈)

Proof of Theorem hh0v
StepHypRef Expression
1 hhnv.1 . . . 4 𝑈 = ⟨⟨ + , · ⟩, norm
21hhnv 29523 . . 3 𝑈 ∈ NrmCVec
3 eqid 2740 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
4 eqid 2740 . . . 4 (0vec𝑈) = (0vec𝑈)
53, 40vfval 28964 . . 3 (𝑈 ∈ NrmCVec → (0vec𝑈) = (GId‘( +𝑣𝑈)))
62, 5ax-mp 5 . 2 (0vec𝑈) = (GId‘( +𝑣𝑈))
71hhva 29524 . . 3 + = ( +𝑣𝑈)
87fveq2i 6774 . 2 (GId‘ + ) = (GId‘( +𝑣𝑈))
9 hilid 29519 . 2 (GId‘ + ) = 0
106, 8, 93eqtr2ri 2775 1 0 = (0vec𝑈)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2110  cop 4573  cfv 6432  GIdcgi 28848  NrmCVeccnv 28942   +𝑣 cpv 28943  0veccn0v 28946   + cva 29278   · csm 29279  normcno 29281  0c0v 29282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-hilex 29357  ax-hfvadd 29358  ax-hvcom 29359  ax-hvass 29360  ax-hv0cl 29361  ax-hvaddid 29362  ax-hfvmul 29363  ax-hvmulid 29364  ax-hvmulass 29365  ax-hvdistr1 29366  ax-hvdistr2 29367  ax-hvmul0 29368  ax-hfi 29437  ax-his1 29440  ax-his2 29441  ax-his3 29442  ax-his4 29443
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-grpo 28851  df-gid 28852  df-ablo 28903  df-vc 28917  df-nv 28950  df-va 28953  df-0v 28956  df-hnorm 29326  df-hvsub 29329
This theorem is referenced by:  hhshsslem2  29626  hh0oi  30261
  Copyright terms: Public domain W3C validator