| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ixp | Structured version Visualization version GIF version | ||
| Description: Definition of infinite Cartesian product of [Enderton] p. 54. Enderton uses a bold "X" with 𝑥 ∈ 𝐴 written underneath or as a subscript, as does Stoll p. 47. Some books use a capital pi, but we will reserve that notation for products of numbers. Usually 𝐵 represents a class expression containing 𝑥 free and thus can be thought of as 𝐵(𝑥). Normally, 𝑥 is not free in 𝐴, although this is not a requirement of the definition. (Contributed by NM, 28-Sep-2006.) |
| Ref | Expression |
|---|---|
| df-ixp | ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | cixp 8937 | . 2 class X𝑥 ∈ 𝐴 𝐵 |
| 5 | vf | . . . . . 6 setvar 𝑓 | |
| 6 | 5 | cv 1539 | . . . . 5 class 𝑓 |
| 7 | 1 | cv 1539 | . . . . . . 7 class 𝑥 |
| 8 | 7, 2 | wcel 2108 | . . . . . 6 wff 𝑥 ∈ 𝐴 |
| 9 | 8, 1 | cab 2714 | . . . . 5 class {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 10 | 6, 9 | wfn 6556 | . . . 4 wff 𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 11 | 7, 6 | cfv 6561 | . . . . . 6 class (𝑓‘𝑥) |
| 12 | 11, 3 | wcel 2108 | . . . . 5 wff (𝑓‘𝑥) ∈ 𝐵 |
| 13 | 12, 1, 2 | wral 3061 | . . . 4 wff ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 |
| 14 | 10, 13 | wa 395 | . . 3 wff (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) |
| 15 | 14, 5 | cab 2714 | . 2 class {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
| 16 | 4, 15 | wceq 1540 | 1 wff X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfixp 8939 ss2ixp 8950 nfixpw 8956 nfixp 8957 nfixp1 8958 ixpn0 8970 ixpeq1i 36201 ixpeq12dv 36217 cbvixpvw2 36246 cbvixpdavw 36279 cbvixpdavw2 36295 |
| Copyright terms: Public domain | W3C validator |