| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfixp1 | Structured version Visualization version GIF version | ||
| Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfixp1 | ⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ixp 8917 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ (𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵)} | |
| 2 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfab1 2901 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 4 | 2, 3 | nffn 6642 | . . . 4 ⊢ Ⅎ𝑥 𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 5 | nfra1 3270 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵 | |
| 6 | 4, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵) |
| 7 | 6 | nfab 2905 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵)} |
| 8 | 1, 7 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 {cab 2714 Ⅎwnfc 2884 ∀wral 3052 Fn wfn 6531 ‘cfv 6536 Xcixp 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-fun 6538 df-fn 6539 df-ixp 8917 |
| This theorem is referenced by: ixpiunwdom 9609 ptbasfi 23524 hoidmvlelem3 46593 hspdifhsp 46612 hoiqssbllem2 46619 hspmbllem2 46623 opnvonmbllem2 46629 iinhoiicc 46670 iunhoiioo 46672 vonioo 46678 vonicc 46681 |
| Copyright terms: Public domain | W3C validator |