Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfixp1 | Structured version Visualization version GIF version |
Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfixp1 | ⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ixp 8686 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ (𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵)} | |
2 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
3 | nfab1 2909 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} | |
4 | 2, 3 | nffn 6532 | . . . 4 ⊢ Ⅎ𝑥 𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} |
5 | nfra1 3144 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵 | |
6 | 4, 5 | nfan 1902 | . . 3 ⊢ Ⅎ𝑥(𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵) |
7 | 6 | nfab 2913 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵)} |
8 | 1, 7 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 ∀wral 3064 Fn wfn 6428 ‘cfv 6433 Xcixp 8685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-fun 6435 df-fn 6436 df-ixp 8686 |
This theorem is referenced by: ixpiunwdom 9349 ptbasfi 22732 hoidmvlelem3 44135 hspdifhsp 44154 hoiqssbllem2 44161 hspmbllem2 44165 opnvonmbllem2 44171 iinhoiicc 44212 iunhoiioo 44214 vonioo 44220 vonicc 44223 |
Copyright terms: Public domain | W3C validator |