| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfixp1 | Structured version Visualization version GIF version | ||
| Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfixp1 | ⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ixp 8822 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ (𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵)} | |
| 2 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfab1 2896 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 4 | 2, 3 | nffn 6580 | . . . 4 ⊢ Ⅎ𝑥 𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 5 | nfra1 3256 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵 | |
| 6 | 4, 5 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵) |
| 7 | 6 | nfab 2900 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵)} |
| 8 | 1, 7 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 {cab 2709 Ⅎwnfc 2879 ∀wral 3047 Fn wfn 6476 ‘cfv 6481 Xcixp 8821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-fun 6483 df-fn 6484 df-ixp 8822 |
| This theorem is referenced by: ixpiunwdom 9476 ptbasfi 23496 hoidmvlelem3 46694 hspdifhsp 46713 hoiqssbllem2 46720 hspmbllem2 46724 opnvonmbllem2 46730 iinhoiicc 46771 iunhoiioo 46773 vonioo 46779 vonicc 46782 |
| Copyright terms: Public domain | W3C validator |