MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfixp1 Structured version   Visualization version   GIF version

Theorem nfixp1 8937
Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfixp1 𝑥X𝑥𝐴 𝐵

Proof of Theorem nfixp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ixp 8917 . 2 X𝑥𝐴 𝐵 = {𝑦 ∣ (𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)}
2 nfcv 2899 . . . . 5 𝑥𝑦
3 nfab1 2901 . . . . 5 𝑥{𝑥𝑥𝐴}
42, 3nffn 6642 . . . 4 𝑥 𝑦 Fn {𝑥𝑥𝐴}
5 nfra1 3270 . . . 4 𝑥𝑥𝐴 (𝑦𝑥) ∈ 𝐵
64, 5nfan 1899 . . 3 𝑥(𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)
76nfab 2905 . 2 𝑥{𝑦 ∣ (𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)}
81, 7nfcxfr 2897 1 𝑥X𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  {cab 2714  wnfc 2884  wral 3052   Fn wfn 6531  cfv 6536  Xcixp 8916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-fun 6538  df-fn 6539  df-ixp 8917
This theorem is referenced by:  ixpiunwdom  9609  ptbasfi  23524  hoidmvlelem3  46593  hspdifhsp  46612  hoiqssbllem2  46619  hspmbllem2  46623  opnvonmbllem2  46629  iinhoiicc  46670  iunhoiioo  46672  vonioo  46678  vonicc  46681
  Copyright terms: Public domain W3C validator