MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfixp1 Structured version   Visualization version   GIF version

Theorem nfixp1 8959
Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfixp1 𝑥X𝑥𝐴 𝐵

Proof of Theorem nfixp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ixp 8939 . 2 X𝑥𝐴 𝐵 = {𝑦 ∣ (𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)}
2 nfcv 2904 . . . . 5 𝑥𝑦
3 nfab1 2906 . . . . 5 𝑥{𝑥𝑥𝐴}
42, 3nffn 6666 . . . 4 𝑥 𝑦 Fn {𝑥𝑥𝐴}
5 nfra1 3283 . . . 4 𝑥𝑥𝐴 (𝑦𝑥) ∈ 𝐵
64, 5nfan 1898 . . 3 𝑥(𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)
76nfab 2910 . 2 𝑥{𝑦 ∣ (𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)}
81, 7nfcxfr 2902 1 𝑥X𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2107  {cab 2713  wnfc 2889  wral 3060   Fn wfn 6555  cfv 6560  Xcixp 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-fun 6562  df-fn 6563  df-ixp 8939
This theorem is referenced by:  ixpiunwdom  9631  ptbasfi  23590  hoidmvlelem3  46617  hspdifhsp  46636  hoiqssbllem2  46643  hspmbllem2  46647  opnvonmbllem2  46653  iinhoiicc  46694  iunhoiioo  46696  vonioo  46702  vonicc  46705
  Copyright terms: Public domain W3C validator