| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfixp1 | Structured version Visualization version GIF version | ||
| Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfixp1 | ⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ixp 8871 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ (𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵)} | |
| 2 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfab1 2893 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 4 | 2, 3 | nffn 6617 | . . . 4 ⊢ Ⅎ𝑥 𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 5 | nfra1 3261 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵 | |
| 6 | 4, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵) |
| 7 | 6 | nfab 2897 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵)} |
| 8 | 1, 7 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 ∀wral 3044 Fn wfn 6506 ‘cfv 6511 Xcixp 8870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-fun 6513 df-fn 6514 df-ixp 8871 |
| This theorem is referenced by: ixpiunwdom 9543 ptbasfi 23468 hoidmvlelem3 46595 hspdifhsp 46614 hoiqssbllem2 46621 hspmbllem2 46625 opnvonmbllem2 46631 iinhoiicc 46672 iunhoiioo 46674 vonioo 46680 vonicc 46683 |
| Copyright terms: Public domain | W3C validator |