MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfixp1 Structured version   Visualization version   GIF version

Theorem nfixp1 8664
Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfixp1 𝑥X𝑥𝐴 𝐵

Proof of Theorem nfixp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ixp 8644 . 2 X𝑥𝐴 𝐵 = {𝑦 ∣ (𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)}
2 nfcv 2906 . . . . 5 𝑥𝑦
3 nfab1 2908 . . . . 5 𝑥{𝑥𝑥𝐴}
42, 3nffn 6516 . . . 4 𝑥 𝑦 Fn {𝑥𝑥𝐴}
5 nfra1 3142 . . . 4 𝑥𝑥𝐴 (𝑦𝑥) ∈ 𝐵
64, 5nfan 1903 . . 3 𝑥(𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)
76nfab 2912 . 2 𝑥{𝑦 ∣ (𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)}
81, 7nfcxfr 2904 1 𝑥X𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  {cab 2715  wnfc 2886  wral 3063   Fn wfn 6413  cfv 6418  Xcixp 8643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-fun 6420  df-fn 6421  df-ixp 8644
This theorem is referenced by:  ixpiunwdom  9279  ptbasfi  22640  hoidmvlelem3  44025  hspdifhsp  44044  hoiqssbllem2  44051  hspmbllem2  44055  opnvonmbllem2  44061  iinhoiicc  44102  iunhoiioo  44104  vonioo  44110  vonicc  44113
  Copyright terms: Public domain W3C validator