MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfixp1 Structured version   Visualization version   GIF version

Theorem nfixp1 8842
Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfixp1 𝑥X𝑥𝐴 𝐵

Proof of Theorem nfixp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ixp 8822 . 2 X𝑥𝐴 𝐵 = {𝑦 ∣ (𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)}
2 nfcv 2894 . . . . 5 𝑥𝑦
3 nfab1 2896 . . . . 5 𝑥{𝑥𝑥𝐴}
42, 3nffn 6580 . . . 4 𝑥 𝑦 Fn {𝑥𝑥𝐴}
5 nfra1 3256 . . . 4 𝑥𝑥𝐴 (𝑦𝑥) ∈ 𝐵
64, 5nfan 1900 . . 3 𝑥(𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)
76nfab 2900 . 2 𝑥{𝑦 ∣ (𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)}
81, 7nfcxfr 2892 1 𝑥X𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2111  {cab 2709  wnfc 2879  wral 3047   Fn wfn 6476  cfv 6481  Xcixp 8821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-fun 6483  df-fn 6484  df-ixp 8822
This theorem is referenced by:  ixpiunwdom  9476  ptbasfi  23496  hoidmvlelem3  46694  hspdifhsp  46713  hoiqssbllem2  46720  hspmbllem2  46724  opnvonmbllem2  46730  iinhoiicc  46771  iunhoiioo  46773  vonioo  46779  vonicc  46782
  Copyright terms: Public domain W3C validator