| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2ixp | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.) |
| Ref | Expression |
|---|---|
| ss2ixp | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3925 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → ((𝑓‘𝑥) ∈ 𝐵 → (𝑓‘𝑥) ∈ 𝐶)) | |
| 2 | 1 | ral2imi 3073 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)) |
| 3 | 2 | anim2d 612 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ((𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) → (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶))) |
| 4 | 3 | ss2abdv 4015 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} ⊆ {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)}) |
| 5 | df-ixp 8831 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
| 6 | df-ixp 8831 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)} | |
| 7 | 4, 5, 6 | 3sstr4g 3985 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 {cab 2711 ∀wral 3049 ⊆ wss 3899 Fn wfn 6484 ‘cfv 6489 Xcixp 8830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-ss 3916 df-ixp 8831 |
| This theorem is referenced by: ixpeq2 8844 boxcutc 8874 pwcfsdom 10484 prdsvallem 17368 prdshom 17381 sscpwex 17732 wunfunc 17818 wunnat 17876 dprdss 19953 psrbaglefi 21873 ptuni2 23501 ptcld 23538 ptclsg 23540 prdstopn 23553 xkopt 23580 tmdgsum2 24021 ressprdsds 24296 prdsbl 24416 ptrecube 37670 prdstotbnd 37844 ixpssixp 45203 ioorrnopnxrlem 46418 ovnlecvr2 46722 |
| Copyright terms: Public domain | W3C validator |