![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2ixp | Structured version Visualization version GIF version |
Description: Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.) |
Ref | Expression |
---|---|
ss2ixp | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3975 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → ((𝑓‘𝑥) ∈ 𝐵 → (𝑓‘𝑥) ∈ 𝐶)) | |
2 | 1 | ral2imi 3085 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)) |
3 | 2 | anim2d 612 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ((𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) → (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶))) |
4 | 3 | ss2abdv 4060 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} ⊆ {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)}) |
5 | df-ixp 8891 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
6 | df-ixp 8891 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)} | |
7 | 4, 5, 6 | 3sstr4g 4027 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 {cab 2709 ∀wral 3061 ⊆ wss 3948 Fn wfn 6538 ‘cfv 6543 Xcixp 8890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-v 3476 df-in 3955 df-ss 3965 df-ixp 8891 |
This theorem is referenced by: ixpeq2 8904 boxcutc 8934 pwcfsdom 10577 prdsvallem 17399 prdshom 17412 sscpwex 17761 wunfunc 17848 wunfuncOLD 17849 wunnat 17906 wunnatOLD 17907 dprdss 19898 psrbaglefi 21484 psrbaglefiOLD 21485 ptuni2 23079 ptcld 23116 ptclsg 23118 prdstopn 23131 xkopt 23158 tmdgsum2 23599 ressprdsds 23876 prdsbl 23999 ptrecube 36483 prdstotbnd 36657 ixpssixp 43771 ioorrnopnxrlem 45012 ovnlecvr2 45316 |
Copyright terms: Public domain | W3C validator |