![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2ixp | Structured version Visualization version GIF version |
Description: Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.) |
Ref | Expression |
---|---|
ss2ixp | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 4002 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → ((𝑓‘𝑥) ∈ 𝐵 → (𝑓‘𝑥) ∈ 𝐶)) | |
2 | 1 | ral2imi 3091 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)) |
3 | 2 | anim2d 611 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ((𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) → (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶))) |
4 | 3 | ss2abdv 4089 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} ⊆ {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)}) |
5 | df-ixp 8956 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
6 | df-ixp 8956 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)} | |
7 | 4, 5, 6 | 3sstr4g 4054 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 {cab 2717 ∀wral 3067 ⊆ wss 3976 Fn wfn 6568 ‘cfv 6573 Xcixp 8955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-ss 3993 df-ixp 8956 |
This theorem is referenced by: ixpeq2 8969 boxcutc 8999 pwcfsdom 10652 prdsvallem 17514 prdshom 17527 sscpwex 17876 wunfunc 17965 wunfuncOLD 17966 wunnat 18024 wunnatOLD 18025 dprdss 20073 psrbaglefi 21969 ptuni2 23605 ptcld 23642 ptclsg 23644 prdstopn 23657 xkopt 23684 tmdgsum2 24125 ressprdsds 24402 prdsbl 24525 ptrecube 37580 prdstotbnd 37754 ixpssixp 44994 ioorrnopnxrlem 46227 ovnlecvr2 46531 |
Copyright terms: Public domain | W3C validator |