MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2ixp Structured version   Visualization version   GIF version

Theorem ss2ixp 8883
Description: Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.)
Assertion
Ref Expression
ss2ixp (∀𝑥𝐴 𝐵𝐶X𝑥𝐴 𝐵X𝑥𝐴 𝐶)

Proof of Theorem ss2ixp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ssel 3940 . . . . 5 (𝐵𝐶 → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) ∈ 𝐶))
21ral2imi 3068 . . . 4 (∀𝑥𝐴 𝐵𝐶 → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
32anim2d 612 . . 3 (∀𝑥𝐴 𝐵𝐶 → ((𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) → (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
43ss2abdv 4029 . 2 (∀𝑥𝐴 𝐵𝐶 → {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)} ⊆ {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)})
5 df-ixp 8871 . 2 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
6 df-ixp 8871 . 2 X𝑥𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)}
74, 5, 63sstr4g 4000 1 (∀𝑥𝐴 𝐵𝐶X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {cab 2707  wral 3044  wss 3914   Fn wfn 6506  cfv 6511  Xcixp 8870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-ss 3931  df-ixp 8871
This theorem is referenced by:  ixpeq2  8884  boxcutc  8914  pwcfsdom  10536  prdsvallem  17417  prdshom  17430  sscpwex  17777  wunfunc  17863  wunnat  17921  dprdss  19961  psrbaglefi  21835  ptuni2  23463  ptcld  23500  ptclsg  23502  prdstopn  23515  xkopt  23542  tmdgsum2  23983  ressprdsds  24259  prdsbl  24379  ptrecube  37614  prdstotbnd  37788  ixpssixp  45086  ioorrnopnxrlem  46304  ovnlecvr2  46608
  Copyright terms: Public domain W3C validator