Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfixpw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed Cartesian product. Version of nfixp 8663 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
nfixpw.1 | ⊢ Ⅎ𝑦𝐴 |
nfixpw.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfixpw | ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ixp 8644 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} | |
2 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑦𝑧 | |
3 | nfcv 2906 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝑥 | |
4 | nfixpw.1 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝐴 | |
5 | 3, 4 | nfel 2920 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
6 | 5 | nfab 2912 | . . . . . . 7 ⊢ Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴} |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴}) |
8 | 7 | mptru 1546 | . . . . 5 ⊢ Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴} |
9 | 2, 8 | nffn 6516 | . . . 4 ⊢ Ⅎ𝑦 𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} |
10 | df-ral 3068 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) | |
11 | nftru 1808 | . . . . . . 7 ⊢ Ⅎ𝑥⊤ | |
12 | 5 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → Ⅎ𝑦 𝑥 ∈ 𝐴) |
13 | 2 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → Ⅎ𝑦𝑧) |
14 | 3 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → Ⅎ𝑦𝑥) |
15 | 13, 14 | nffvd 6768 | . . . . . . . . 9 ⊢ (⊤ → Ⅎ𝑦(𝑧‘𝑥)) |
16 | nfixpw.2 | . . . . . . . . . 10 ⊢ Ⅎ𝑦𝐵 | |
17 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → Ⅎ𝑦𝐵) |
18 | 15, 17 | nfeld 2917 | . . . . . . . 8 ⊢ (⊤ → Ⅎ𝑦(𝑧‘𝑥) ∈ 𝐵) |
19 | 12, 18 | nfimd 1898 | . . . . . . 7 ⊢ (⊤ → Ⅎ𝑦(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
20 | 11, 19 | nfald 2326 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
21 | 20 | mptru 1546 | . . . . 5 ⊢ Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵) |
22 | 10, 21 | nfxfr 1856 | . . . 4 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 |
23 | 9, 22 | nfan 1903 | . . 3 ⊢ Ⅎ𝑦(𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵) |
24 | 23 | nfab 2912 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} |
25 | 1, 24 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ⊤wtru 1540 Ⅎwnf 1787 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 ∀wral 3063 Fn wfn 6413 ‘cfv 6418 Xcixp 8643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-ixp 8644 |
This theorem is referenced by: vonioo 44110 |
Copyright terms: Public domain | W3C validator |