| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfixpw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed Cartesian product. Version of nfixp 8893 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Mario Carneiro, 15-Oct-2016.) Avoid ax-13 2371. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfixpw.1 | ⊢ Ⅎ𝑦𝐴 |
| nfixpw.2 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| nfixpw | ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ixp 8874 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} | |
| 2 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑦𝑧 | |
| 3 | nfcv 2892 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝑥 | |
| 4 | nfixpw.1 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝐴 | |
| 5 | 3, 4 | nfel 2907 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 6 | 5 | nfab 2898 | . . . . . . 7 ⊢ Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴} |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴}) |
| 8 | 7 | mptru 1547 | . . . . 5 ⊢ Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴} |
| 9 | 2, 8 | nffn 6620 | . . . 4 ⊢ Ⅎ𝑦 𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 10 | df-ral 3046 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) | |
| 11 | nftru 1804 | . . . . . . 7 ⊢ Ⅎ𝑥⊤ | |
| 12 | 5 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → Ⅎ𝑦 𝑥 ∈ 𝐴) |
| 13 | 2 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → Ⅎ𝑦𝑧) |
| 14 | 3 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → Ⅎ𝑦𝑥) |
| 15 | 13, 14 | nffvd 6873 | . . . . . . . . 9 ⊢ (⊤ → Ⅎ𝑦(𝑧‘𝑥)) |
| 16 | nfixpw.2 | . . . . . . . . . 10 ⊢ Ⅎ𝑦𝐵 | |
| 17 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → Ⅎ𝑦𝐵) |
| 18 | 15, 17 | nfeld 2904 | . . . . . . . 8 ⊢ (⊤ → Ⅎ𝑦(𝑧‘𝑥) ∈ 𝐵) |
| 19 | 12, 18 | nfimd 1894 | . . . . . . 7 ⊢ (⊤ → Ⅎ𝑦(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
| 20 | 11, 19 | nfald 2327 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
| 21 | 20 | mptru 1547 | . . . . 5 ⊢ Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵) |
| 22 | 10, 21 | nfxfr 1853 | . . . 4 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 |
| 23 | 9, 22 | nfan 1899 | . . 3 ⊢ Ⅎ𝑦(𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵) |
| 24 | 23 | nfab 2898 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} |
| 25 | 1, 24 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ⊤wtru 1541 Ⅎwnf 1783 ∈ wcel 2109 {cab 2708 Ⅎwnfc 2877 ∀wral 3045 Fn wfn 6509 ‘cfv 6514 Xcixp 8873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-ixp 8874 |
| This theorem is referenced by: vonioo 46687 |
| Copyright terms: Public domain | W3C validator |