Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfixpw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed Cartesian product. Version of nfixp 8725 with a disjoint variable condition, which does not require ax-13 2367. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
nfixpw.1 | ⊢ Ⅎ𝑦𝐴 |
nfixpw.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfixpw | ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ixp 8706 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} | |
2 | nfcv 2902 | . . . . 5 ⊢ Ⅎ𝑦𝑧 | |
3 | nfcv 2902 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝑥 | |
4 | nfixpw.1 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝐴 | |
5 | 3, 4 | nfel 2916 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
6 | 5 | nfab 2908 | . . . . . . 7 ⊢ Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴} |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴}) |
8 | 7 | mptru 1544 | . . . . 5 ⊢ Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴} |
9 | 2, 8 | nffn 6551 | . . . 4 ⊢ Ⅎ𝑦 𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} |
10 | df-ral 3060 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) | |
11 | nftru 1802 | . . . . . . 7 ⊢ Ⅎ𝑥⊤ | |
12 | 5 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → Ⅎ𝑦 𝑥 ∈ 𝐴) |
13 | 2 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → Ⅎ𝑦𝑧) |
14 | 3 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → Ⅎ𝑦𝑥) |
15 | 13, 14 | nffvd 6804 | . . . . . . . . 9 ⊢ (⊤ → Ⅎ𝑦(𝑧‘𝑥)) |
16 | nfixpw.2 | . . . . . . . . . 10 ⊢ Ⅎ𝑦𝐵 | |
17 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → Ⅎ𝑦𝐵) |
18 | 15, 17 | nfeld 2913 | . . . . . . . 8 ⊢ (⊤ → Ⅎ𝑦(𝑧‘𝑥) ∈ 𝐵) |
19 | 12, 18 | nfimd 1893 | . . . . . . 7 ⊢ (⊤ → Ⅎ𝑦(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
20 | 11, 19 | nfald 2317 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
21 | 20 | mptru 1544 | . . . . 5 ⊢ Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵) |
22 | 10, 21 | nfxfr 1851 | . . . 4 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 |
23 | 9, 22 | nfan 1898 | . . 3 ⊢ Ⅎ𝑦(𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵) |
24 | 23 | nfab 2908 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} |
25 | 1, 24 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 ⊤wtru 1538 Ⅎwnf 1781 ∈ wcel 2101 {cab 2710 Ⅎwnfc 2882 ∀wral 3059 Fn wfn 6442 ‘cfv 6447 Xcixp 8705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-iota 6399 df-fun 6449 df-fn 6450 df-fv 6455 df-ixp 8706 |
This theorem is referenced by: vonioo 44256 |
Copyright terms: Public domain | W3C validator |