MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfixpw Structured version   Visualization version   GIF version

Theorem nfixpw 8835
Description: Bound-variable hypothesis builder for indexed Cartesian product. Version of nfixp 8836 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 15-Oct-2016.) Avoid ax-13 2372. (Revised by GG, 26-Jan-2024.)
Hypotheses
Ref Expression
nfixpw.1 𝑦𝐴
nfixpw.2 𝑦𝐵
Assertion
Ref Expression
nfixpw 𝑦X𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfixpw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ixp 8817 . 2 X𝑥𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
2 nfcv 2894 . . . . 5 𝑦𝑧
3 nfcv 2894 . . . . . . . . 9 𝑦𝑥
4 nfixpw.1 . . . . . . . . 9 𝑦𝐴
53, 4nfel 2909 . . . . . . . 8 𝑦 𝑥𝐴
65nfab 2900 . . . . . . 7 𝑦{𝑥𝑥𝐴}
76a1i 11 . . . . . 6 (⊤ → 𝑦{𝑥𝑥𝐴})
87mptru 1548 . . . . 5 𝑦{𝑥𝑥𝐴}
92, 8nffn 6575 . . . 4 𝑦 𝑧 Fn {𝑥𝑥𝐴}
10 df-ral 3048 . . . . 5 (∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
11 nftru 1805 . . . . . . 7 𝑥
125a1i 11 . . . . . . . 8 (⊤ → Ⅎ𝑦 𝑥𝐴)
132a1i 11 . . . . . . . . . 10 (⊤ → 𝑦𝑧)
143a1i 11 . . . . . . . . . 10 (⊤ → 𝑦𝑥)
1513, 14nffvd 6829 . . . . . . . . 9 (⊤ → 𝑦(𝑧𝑥))
16 nfixpw.2 . . . . . . . . . 10 𝑦𝐵
1716a1i 11 . . . . . . . . 9 (⊤ → 𝑦𝐵)
1815, 17nfeld 2906 . . . . . . . 8 (⊤ → Ⅎ𝑦(𝑧𝑥) ∈ 𝐵)
1912, 18nfimd 1895 . . . . . . 7 (⊤ → Ⅎ𝑦(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
2011, 19nfald 2329 . . . . . 6 (⊤ → Ⅎ𝑦𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
2120mptru 1548 . . . . 5 𝑦𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵)
2210, 21nfxfr 1854 . . . 4 𝑦𝑥𝐴 (𝑧𝑥) ∈ 𝐵
239, 22nfan 1900 . . 3 𝑦(𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)
2423nfab 2900 . 2 𝑦{𝑧 ∣ (𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
251, 24nfcxfr 2892 1 𝑦X𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wtru 1542  wnf 1784  wcel 2111  {cab 2709  wnfc 2879  wral 3047   Fn wfn 6471  cfv 6476  Xcixp 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fn 6479  df-fv 6484  df-ixp 8817
This theorem is referenced by:  vonioo  46720
  Copyright terms: Public domain W3C validator