MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfixpw Structured version   Visualization version   GIF version

Theorem nfixpw 8753
Description: Bound-variable hypothesis builder for indexed Cartesian product. Version of nfixp 8754 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Mario Carneiro, 15-Oct-2016.) Avoid ax-13 2370. (Revised by Gino Giotto, 26-Jan-2024.)
Hypotheses
Ref Expression
nfixpw.1 𝑦𝐴
nfixpw.2 𝑦𝐵
Assertion
Ref Expression
nfixpw 𝑦X𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfixpw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ixp 8735 . 2 X𝑥𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
2 nfcv 2904 . . . . 5 𝑦𝑧
3 nfcv 2904 . . . . . . . . 9 𝑦𝑥
4 nfixpw.1 . . . . . . . . 9 𝑦𝐴
53, 4nfel 2918 . . . . . . . 8 𝑦 𝑥𝐴
65nfab 2910 . . . . . . 7 𝑦{𝑥𝑥𝐴}
76a1i 11 . . . . . 6 (⊤ → 𝑦{𝑥𝑥𝐴})
87mptru 1547 . . . . 5 𝑦{𝑥𝑥𝐴}
92, 8nffn 6570 . . . 4 𝑦 𝑧 Fn {𝑥𝑥𝐴}
10 df-ral 3062 . . . . 5 (∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
11 nftru 1805 . . . . . . 7 𝑥
125a1i 11 . . . . . . . 8 (⊤ → Ⅎ𝑦 𝑥𝐴)
132a1i 11 . . . . . . . . . 10 (⊤ → 𝑦𝑧)
143a1i 11 . . . . . . . . . 10 (⊤ → 𝑦𝑥)
1513, 14nffvd 6823 . . . . . . . . 9 (⊤ → 𝑦(𝑧𝑥))
16 nfixpw.2 . . . . . . . . . 10 𝑦𝐵
1716a1i 11 . . . . . . . . 9 (⊤ → 𝑦𝐵)
1815, 17nfeld 2915 . . . . . . . 8 (⊤ → Ⅎ𝑦(𝑧𝑥) ∈ 𝐵)
1912, 18nfimd 1896 . . . . . . 7 (⊤ → Ⅎ𝑦(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
2011, 19nfald 2321 . . . . . 6 (⊤ → Ⅎ𝑦𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
2120mptru 1547 . . . . 5 𝑦𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵)
2210, 21nfxfr 1854 . . . 4 𝑦𝑥𝐴 (𝑧𝑥) ∈ 𝐵
239, 22nfan 1901 . . 3 𝑦(𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)
2423nfab 2910 . 2 𝑦{𝑧 ∣ (𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
251, 24nfcxfr 2902 1 𝑦X𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1538  wtru 1541  wnf 1784  wcel 2105  {cab 2713  wnfc 2884  wral 3061   Fn wfn 6460  cfv 6465  Xcixp 8734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-iota 6417  df-fun 6467  df-fn 6468  df-fv 6473  df-ixp 8735
This theorem is referenced by:  vonioo  44476
  Copyright terms: Public domain W3C validator