MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfixp Structured version   Visualization version   GIF version

Theorem dfixp 8147
Description: Eliminate the expression {𝑥𝑥𝐴} in df-ixp 8146, under the assumption that 𝐴 and 𝑥 are disjoint. This way, we can say that 𝑥 is bound in X𝑥𝐴𝐵 even if it appears free in 𝐴. (Contributed by Mario Carneiro, 12-Aug-2016.)
Assertion
Ref Expression
dfixp X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem dfixp
StepHypRef Expression
1 df-ixp 8146 . 2 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
2 abid2 2929 . . . . 5 {𝑥𝑥𝐴} = 𝐴
32fneq2i 6197 . . . 4 (𝑓 Fn {𝑥𝑥𝐴} ↔ 𝑓 Fn 𝐴)
43anbi1i 612 . . 3 ((𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
54abbii 2923 . 2 {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
61, 5eqtri 2828 1 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1637  wcel 2156  {cab 2792  wral 3096   Fn wfn 6096  cfv 6101  Xcixp 8145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-ext 2784
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-clab 2793  df-cleq 2799  df-clel 2802  df-fn 6104  df-ixp 8146
This theorem is referenced by:  ixpsnval  8148  elixp2  8149  ixpeq1  8156  cbvixp  8162  ixp0x  8173
  Copyright terms: Public domain W3C validator