MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfixp Structured version   Visualization version   GIF version

Theorem dfixp 8687
Description: Eliminate the expression {𝑥𝑥𝐴} in df-ixp 8686, under the assumption that 𝐴 and 𝑥 are disjoint. This way, we can say that 𝑥 is bound in X𝑥𝐴𝐵 even if it appears free in 𝐴. (Contributed by Mario Carneiro, 12-Aug-2016.)
Assertion
Ref Expression
dfixp X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem dfixp
StepHypRef Expression
1 df-ixp 8686 . 2 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
2 abid2 2882 . . . . 5 {𝑥𝑥𝐴} = 𝐴
32fneq2i 6531 . . . 4 (𝑓 Fn {𝑥𝑥𝐴} ↔ 𝑓 Fn 𝐴)
43anbi1i 624 . . 3 ((𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
54abbii 2808 . 2 {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
61, 5eqtri 2766 1 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064   Fn wfn 6428  cfv 6433  Xcixp 8685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-fn 6436  df-ixp 8686
This theorem is referenced by:  ixpsnval  8688  elixp2  8689  ixpeq1  8696  cbvixp  8702  ixp0x  8714
  Copyright terms: Public domain W3C validator