| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfixp | Structured version Visualization version GIF version | ||
| Description: Eliminate the expression {𝑥 ∣ 𝑥 ∈ 𝐴} in df-ixp 8917, under the assumption that 𝐴 and 𝑥 are disjoint. This way, we can say that 𝑥 is bound in X𝑥 ∈ 𝐴𝐵 even if it appears free in 𝐴. (Contributed by Mario Carneiro, 12-Aug-2016.) |
| Ref | Expression |
|---|---|
| dfixp | ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ixp 8917 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
| 2 | abid2 2873 | . . . . 5 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 3 | 2 | fneq2i 6641 | . . . 4 ⊢ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ 𝑓 Fn 𝐴) |
| 4 | 3 | anbi1i 624 | . . 3 ⊢ ((𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
| 5 | 4 | abbii 2803 | . 2 ⊢ {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
| 6 | 1, 5 | eqtri 2759 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 Fn wfn 6531 ‘cfv 6536 Xcixp 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-fn 6539 df-ixp 8917 |
| This theorem is referenced by: ixpsnval 8919 elixp2 8920 ixpeq1 8927 cbvixp 8933 cbvixpv 8934 ixp0x 8945 |
| Copyright terms: Public domain | W3C validator |