MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpn0 Structured version   Visualization version   GIF version

Theorem ixpn0 8924
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10478. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
ixpn0 (X𝑥𝐴 𝐵 ≠ ∅ → ∀𝑥𝐴 𝐵 ≠ ∅)

Proof of Theorem ixpn0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 n0 4347 . 2 (X𝑥𝐴 𝐵 ≠ ∅ ↔ ∃𝑓 𝑓X𝑥𝐴 𝐵)
2 df-ixp 8892 . . . . 5 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
32eqabri 2878 . . . 4 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
4 ne0i 4335 . . . . 5 ((𝑓𝑥) ∈ 𝐵𝐵 ≠ ∅)
54ralimi 3084 . . . 4 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 → ∀𝑥𝐴 𝐵 ≠ ∅)
63, 5simplbiim 506 . . 3 (𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴 𝐵 ≠ ∅)
76exlimiv 1934 . 2 (∃𝑓 𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴 𝐵 ≠ ∅)
81, 7sylbi 216 1 (X𝑥𝐴 𝐵 ≠ ∅ → ∀𝑥𝐴 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wex 1782  wcel 2107  {cab 2710  wne 2941  wral 3062  c0 4323   Fn wfn 6539  cfv 6544  Xcixp 8891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-dif 3952  df-nul 4324  df-ixp 8892
This theorem is referenced by:  ixp0  8925  ac9  10478  ac9s  10488
  Copyright terms: Public domain W3C validator