| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpn0 | Structured version Visualization version GIF version | ||
| Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10385. (Contributed by Mario Carneiro, 22-Jun-2016.) |
| Ref | Expression |
|---|---|
| ixpn0 | ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4302 | . 2 ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) | |
| 2 | df-ixp 8832 | . . . . 5 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
| 3 | 2 | eqabri 2875 | . . . 4 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
| 4 | ne0i 4290 | . . . . 5 ⊢ ((𝑓‘𝑥) ∈ 𝐵 → 𝐵 ≠ ∅) | |
| 5 | 4 | ralimi 3070 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
| 6 | 3, 5 | simplbiim 504 | . . 3 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
| 7 | 6 | exlimiv 1931 | . 2 ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 {cab 2711 ≠ wne 2929 ∀wral 3048 ∅c0 4282 Fn wfn 6484 ‘cfv 6489 Xcixp 8831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-dif 3901 df-nul 4283 df-ixp 8832 |
| This theorem is referenced by: ixp0 8865 ac9 10385 ac9s 10395 |
| Copyright terms: Public domain | W3C validator |