MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpn0 Structured version   Visualization version   GIF version

Theorem ixpn0 8849
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10369. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
ixpn0 (X𝑥𝐴 𝐵 ≠ ∅ → ∀𝑥𝐴 𝐵 ≠ ∅)

Proof of Theorem ixpn0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 n0 4298 . 2 (X𝑥𝐴 𝐵 ≠ ∅ ↔ ∃𝑓 𝑓X𝑥𝐴 𝐵)
2 df-ixp 8817 . . . . 5 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
32eqabri 2874 . . . 4 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
4 ne0i 4286 . . . . 5 ((𝑓𝑥) ∈ 𝐵𝐵 ≠ ∅)
54ralimi 3069 . . . 4 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 → ∀𝑥𝐴 𝐵 ≠ ∅)
63, 5simplbiim 504 . . 3 (𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴 𝐵 ≠ ∅)
76exlimiv 1931 . 2 (∃𝑓 𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴 𝐵 ≠ ∅)
81, 7sylbi 217 1 (X𝑥𝐴 𝐵 ≠ ∅ → ∀𝑥𝐴 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2111  {cab 2709  wne 2928  wral 3047  c0 4278   Fn wfn 6471  cfv 6476  Xcixp 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-dif 3900  df-nul 4279  df-ixp 8817
This theorem is referenced by:  ixp0  8850  ac9  10369  ac9s  10379
  Copyright terms: Public domain W3C validator