![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpn0 | Structured version Visualization version GIF version |
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10478. (Contributed by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
ixpn0 | ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4347 | . 2 ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) | |
2 | df-ixp 8892 | . . . . 5 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
3 | 2 | eqabri 2878 | . . . 4 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
4 | ne0i 4335 | . . . . 5 ⊢ ((𝑓‘𝑥) ∈ 𝐵 → 𝐵 ≠ ∅) | |
5 | 4 | ralimi 3084 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
6 | 3, 5 | simplbiim 506 | . . 3 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
7 | 6 | exlimiv 1934 | . 2 ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 {cab 2710 ≠ wne 2941 ∀wral 3062 ∅c0 4323 Fn wfn 6539 ‘cfv 6544 Xcixp 8891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-dif 3952 df-nul 4324 df-ixp 8892 |
This theorem is referenced by: ixp0 8925 ac9 10478 ac9s 10488 |
Copyright terms: Public domain | W3C validator |