| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfixp | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed Cartesian product. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker nfixpw 8889 when possible. (Contributed by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfixp.1 | ⊢ Ⅎ𝑦𝐴 |
| nfixp.2 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| nfixp | ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ixp 8871 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} | |
| 2 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑦𝑧 | |
| 3 | nftru 1804 | . . . . . . 7 ⊢ Ⅎ𝑥⊤ | |
| 4 | nfcvf 2918 | . . . . . . . . 9 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦𝑥) | |
| 5 | 4 | adantl 481 | . . . . . . . 8 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦𝑥) |
| 6 | nfixp.1 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝐴 | |
| 7 | 6 | a1i 11 | . . . . . . . 8 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦𝐴) |
| 8 | 5, 7 | nfeld 2903 | . . . . . . 7 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦 𝑥 ∈ 𝐴) |
| 9 | 3, 8 | nfabd2 2915 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴}) |
| 10 | 9 | mptru 1547 | . . . . 5 ⊢ Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴} |
| 11 | 2, 10 | nffn 6617 | . . . 4 ⊢ Ⅎ𝑦 𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 12 | df-ral 3045 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) | |
| 13 | 2 | a1i 11 | . . . . . . . . . 10 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦𝑧) |
| 14 | 13, 5 | nffvd 6870 | . . . . . . . . 9 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑧‘𝑥)) |
| 15 | nfixp.2 | . . . . . . . . . 10 ⊢ Ⅎ𝑦𝐵 | |
| 16 | 15 | a1i 11 | . . . . . . . . 9 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦𝐵) |
| 17 | 14, 16 | nfeld 2903 | . . . . . . . 8 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑧‘𝑥) ∈ 𝐵) |
| 18 | 8, 17 | nfimd 1894 | . . . . . . 7 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
| 19 | 3, 18 | nfald2 2443 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
| 20 | 19 | mptru 1547 | . . . . 5 ⊢ Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵) |
| 21 | 12, 20 | nfxfr 1853 | . . . 4 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 |
| 22 | 11, 21 | nfan 1899 | . . 3 ⊢ Ⅎ𝑦(𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵) |
| 23 | 22 | nfab 2897 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} |
| 24 | 1, 23 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 ⊤wtru 1541 Ⅎwnf 1783 ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 ∀wral 3044 Fn wfn 6506 ‘cfv 6511 Xcixp 8870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-ixp 8871 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |