Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfixp | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed Cartesian product. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker nfixpw 8597 when possible. (Contributed by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfixp.1 | ⊢ Ⅎ𝑦𝐴 |
nfixp.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfixp | ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ixp 8579 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} | |
2 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑦𝑧 | |
3 | nftru 1812 | . . . . . . 7 ⊢ Ⅎ𝑥⊤ | |
4 | nfcvf 2933 | . . . . . . . . 9 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦𝑥) | |
5 | 4 | adantl 485 | . . . . . . . 8 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦𝑥) |
6 | nfixp.1 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝐴 | |
7 | 6 | a1i 11 | . . . . . . . 8 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦𝐴) |
8 | 5, 7 | nfeld 2915 | . . . . . . 7 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦 𝑥 ∈ 𝐴) |
9 | 3, 8 | nfabd2 2930 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴}) |
10 | 9 | mptru 1550 | . . . . 5 ⊢ Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴} |
11 | 2, 10 | nffn 6478 | . . . 4 ⊢ Ⅎ𝑦 𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} |
12 | df-ral 3066 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) | |
13 | 2 | a1i 11 | . . . . . . . . . 10 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦𝑧) |
14 | 13, 5 | nffvd 6729 | . . . . . . . . 9 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑧‘𝑥)) |
15 | nfixp.2 | . . . . . . . . . 10 ⊢ Ⅎ𝑦𝐵 | |
16 | 15 | a1i 11 | . . . . . . . . 9 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦𝐵) |
17 | 14, 16 | nfeld 2915 | . . . . . . . 8 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑧‘𝑥) ∈ 𝐵) |
18 | 8, 17 | nfimd 1902 | . . . . . . 7 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
19 | 3, 18 | nfald2 2444 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
20 | 19 | mptru 1550 | . . . . 5 ⊢ Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵) |
21 | 12, 20 | nfxfr 1860 | . . . 4 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 |
22 | 11, 21 | nfan 1907 | . . 3 ⊢ Ⅎ𝑦(𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵) |
23 | 22 | nfab 2910 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} |
24 | 1, 23 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∀wal 1541 ⊤wtru 1544 Ⅎwnf 1791 ∈ wcel 2110 {cab 2714 Ⅎwnfc 2884 ∀wral 3061 Fn wfn 6375 ‘cfv 6380 Xcixp 8578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-13 2371 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fn 6383 df-fv 6388 df-ixp 8579 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |