MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfixp Structured version   Visualization version   GIF version

Theorem nfixp 8975
Description: Bound-variable hypothesis builder for indexed Cartesian product. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker nfixpw 8974 when possible. (Contributed by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfixp.1 𝑦𝐴
nfixp.2 𝑦𝐵
Assertion
Ref Expression
nfixp 𝑦X𝑥𝐴 𝐵

Proof of Theorem nfixp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ixp 8956 . 2 X𝑥𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
2 nfcv 2908 . . . . 5 𝑦𝑧
3 nftru 1802 . . . . . . 7 𝑥
4 nfcvf 2938 . . . . . . . . 9 (¬ ∀𝑦 𝑦 = 𝑥𝑦𝑥)
54adantl 481 . . . . . . . 8 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → 𝑦𝑥)
6 nfixp.1 . . . . . . . . 9 𝑦𝐴
76a1i 11 . . . . . . . 8 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → 𝑦𝐴)
85, 7nfeld 2920 . . . . . . 7 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦 𝑥𝐴)
93, 8nfabd2 2935 . . . . . 6 (⊤ → 𝑦{𝑥𝑥𝐴})
109mptru 1544 . . . . 5 𝑦{𝑥𝑥𝐴}
112, 10nffn 6678 . . . 4 𝑦 𝑧 Fn {𝑥𝑥𝐴}
12 df-ral 3068 . . . . 5 (∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
132a1i 11 . . . . . . . . . 10 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → 𝑦𝑧)
1413, 5nffvd 6932 . . . . . . . . 9 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → 𝑦(𝑧𝑥))
15 nfixp.2 . . . . . . . . . 10 𝑦𝐵
1615a1i 11 . . . . . . . . 9 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → 𝑦𝐵)
1714, 16nfeld 2920 . . . . . . . 8 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑧𝑥) ∈ 𝐵)
188, 17nfimd 1893 . . . . . . 7 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
193, 18nfald2 2453 . . . . . 6 (⊤ → Ⅎ𝑦𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
2019mptru 1544 . . . . 5 𝑦𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵)
2112, 20nfxfr 1851 . . . 4 𝑦𝑥𝐴 (𝑧𝑥) ∈ 𝐵
2211, 21nfan 1898 . . 3 𝑦(𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)
2322nfab 2914 . 2 𝑦{𝑧 ∣ (𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
241, 23nfcxfr 2906 1 𝑦X𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1535  wtru 1538  wnf 1781  wcel 2108  {cab 2717  wnfc 2893  wral 3067   Fn wfn 6568  cfv 6573  Xcixp 8955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-ixp 8956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator