![]() |
Metamath
Proof Explorer Theorem List (p. 89 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 0er 8801 | The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 1-May-2021.) |
⊢ ∅ Er ∅ | ||
Theorem | eceq1 8802 | Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) | ||
Theorem | eceq1d 8803 | Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) | ||
Theorem | eceq2 8804 | Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) | ||
Theorem | eceq2i 8805 | Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, inference version. (Contributed by Peter Mazsa, 11-May-2021.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ [𝐶]𝐴 = [𝐶]𝐵 | ||
Theorem | eceq2d 8806 | Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → [𝐶]𝐴 = [𝐶]𝐵) | ||
Theorem | elecg 8807 | Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | ||
Theorem | ecref 8808 | All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ [𝐴]𝑅) | ||
Theorem | elec 8809 | Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) | ||
Theorem | relelec 8810 | Membership in an equivalence class when 𝑅 is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.) |
⊢ (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | ||
Theorem | ecss 8811 | An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝜑 → 𝑅 Er 𝑋) ⇒ ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) | ||
Theorem | ecdmn0 8812 | A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅) | ||
Theorem | ereldm 8813 | Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) | ||
Theorem | erth 8814 | Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) | ||
Theorem | erth2 8815 | Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) | ||
Theorem | erthi 8816 | Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) | ||
Theorem | erdisj 8817 | Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝑅 Er 𝑋 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)) | ||
Theorem | ecidsn 8818 | An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004.) |
⊢ [𝐴] I = {𝐴} | ||
Theorem | qseq1 8819 | Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.) |
⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) | ||
Theorem | qseq2 8820 | Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.) |
⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) | ||
Theorem | qseq2i 8821 | Equality theorem for quotient set, inference form. (Contributed by Peter Mazsa, 3-Jun-2021.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 / 𝐴) = (𝐶 / 𝐵) | ||
Theorem | qseq1d 8822 | Equality theorem for quotient set, deduction form. (Contributed by Peter Mazsa, 27-May-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) | ||
Theorem | qseq2d 8823 | Equality theorem for quotient set, deduction form. (Contributed by Peter Mazsa, 27-May-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) | ||
Theorem | qseq12 8824 | Equality theorem for quotient set. (Contributed by Peter Mazsa, 17-Apr-2019.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷)) | ||
Theorem | 0qs 8825 | Quotient set with the empty set. (Contributed by Peter Mazsa, 14-Sep-2019.) |
⊢ (∅ / 𝑅) = ∅ | ||
Theorem | elqsg 8826* | Closed form of elqs 8827. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) | ||
Theorem | elqs 8827* | Membership in a quotient set. (Contributed by NM, 23-Jul-1995.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) | ||
Theorem | elqsi 8828* | Membership in a quotient set. (Contributed by NM, 23-Jul-1995.) |
⊢ (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) | ||
Theorem | elqsecl 8829* | Membership in a quotient set by an equivalence class according to ∼. (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.) |
⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) | ||
Theorem | ecelqsg 8830 | Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.) |
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) | ||
Theorem | ecelqsi 8831 | Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
⊢ 𝑅 ∈ V ⇒ ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) | ||
Theorem | ecopqsi 8832 | "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.) |
⊢ 𝑅 ∈ V & ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅) ⇒ ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) | ||
Theorem | qsexg 8833 | A quotient set exists. (Contributed by FL, 19-May-2007.) (Revised by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 / 𝑅) ∈ V) | ||
Theorem | qsex 8834 | A quotient set exists. (Contributed by NM, 14-Aug-1995.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 / 𝑅) ∈ V | ||
Theorem | uniqs 8835 | The union of a quotient set. (Contributed by NM, 9-Dec-2008.) |
⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) | ||
Theorem | qsss 8836 | A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝜑 → 𝑅 Er 𝐴) ⇒ ⊢ (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴) | ||
Theorem | uniqs2 8837 | The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.) |
⊢ (𝜑 → 𝑅 Er 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) | ||
Theorem | snec 8838 | The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) | ||
Theorem | ecqs 8839 | Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.) |
⊢ 𝑅 ∈ V ⇒ ⊢ [𝐴]𝑅 = ∪ ({𝐴} / 𝑅) | ||
Theorem | ecid 8840 | A set is equal to its coset under the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ [𝐴]◡ E = 𝐴 | ||
Theorem | qsid 8841 | A set is equal to its quotient set modulo the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝐴 / ◡ E ) = 𝐴 | ||
Theorem | ectocld 8842* | Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ 𝑆 = (𝐵 / 𝑅) & ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) ⇒ ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) | ||
Theorem | ectocl 8843* | Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
⊢ 𝑆 = (𝐵 / 𝑅) & ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝑆 → 𝜓) | ||
Theorem | elqsn0 8844 | A quotient set does not contain the empty set. (Contributed by NM, 24-Aug-1995.) |
⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅) | ||
Theorem | ecelqsdm 8845 | Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995.) |
⊢ ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵 ∈ 𝐴) | ||
Theorem | xpider 8846 | A Cartesian square is an equivalence relation (in general, it is not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝐴 × 𝐴) Er 𝐴 | ||
Theorem | iiner 8847* | The intersection of a nonempty family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵) | ||
Theorem | riiner 8848* | The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) | ||
Theorem | erinxp 8849 | A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝜑 → 𝑅 Er 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵) | ||
Theorem | ecinxp 8850 | Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.) |
⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴))) | ||
Theorem | qsinxp 8851 | Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) | ||
Theorem | qsdisj 8852 | Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) |
⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) ⇒ ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) | ||
Theorem | qsdisj2 8853* | A quotient set is a disjoint set. (Contributed by Mario Carneiro, 10-Dec-2016.) |
⊢ (𝑅 Er 𝑋 → Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥) | ||
Theorem | qsel 8854 | If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.) |
⊢ ((𝑅 Er 𝑋 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) | ||
Theorem | uniinqs 8855 | Class union distributes over the intersection of two subclasses of a quotient space. Compare uniin 4955. (Contributed by FL, 25-May-2007.) (Proof shortened by Mario Carneiro, 11-Jul-2014.) |
⊢ 𝑅 Er 𝑋 ⇒ ⊢ ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → ∪ (𝐵 ∩ 𝐶) = (∪ 𝐵 ∩ ∪ 𝐶)) | ||
Theorem | qliftlem 8856* | Lemma for theorems about a function lift. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) | ||
Theorem | qliftrel 8857* | 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ⊆ ((𝑋 / 𝑅) × 𝑌)) | ||
Theorem | qliftel 8858* | Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶𝑅𝑥 ∧ 𝐷 = 𝐴))) | ||
Theorem | qliftel1 8859* | Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅𝐹𝐴) | ||
Theorem | qliftfun 8860* | The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵))) | ||
Theorem | qliftfund 8861* | The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Fun 𝐹) | ||
Theorem | qliftfuns 8862* | The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) | ||
Theorem | qliftf 8863* | The domain and codomain of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) | ||
Theorem | qliftval 8864* | The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝑥 = 𝐶 → 𝐴 = 𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵) | ||
Theorem | ecoptocl 8865* | Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.) |
⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅) & ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝑆 → 𝜓) | ||
Theorem | 2ecoptocl 8866* | Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.) |
⊢ 𝑆 = ((𝐶 × 𝐷) / 𝑅) & ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝜒) | ||
Theorem | 3ecoptocl 8867* | Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.) |
⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅) & ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) | ||
Theorem | brecop 8868* | Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996.) |
⊢ ∼ ∈ V & ⊢ ∼ Er (𝐺 × 𝐺) & ⊢ 𝐻 = ((𝐺 × 𝐺) / ∼ ) & ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ∼ ∧ 𝑦 = [〈𝑣, 𝑢〉] ∼ ) ∧ 𝜑))} & ⊢ ((((𝑧 ∈ 𝐺 ∧ 𝑤 ∈ 𝐺) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺)) ∧ ((𝑣 ∈ 𝐺 ∧ 𝑢 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺))) → (([〈𝑧, 𝑤〉] ∼ = [〈𝐴, 𝐵〉] ∼ ∧ [〈𝑣, 𝑢〉] ∼ = [〈𝐶, 𝐷〉] ∼ ) → (𝜑 ↔ 𝜓))) ⇒ ⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → ([〈𝐴, 𝐵〉] ∼ ≤ [〈𝐶, 𝐷〉] ∼ ↔ 𝜓)) | ||
Theorem | brecop2 8869 | Binary relation on a quotient set. Lemma for real number construction. Eliminates antecedent from last hypothesis. (Contributed by NM, 13-Feb-1996.) (Revised by AV, 12-Jul-2022.) |
⊢ dom ∼ = (𝐺 × 𝐺) & ⊢ 𝐻 = ((𝐺 × 𝐺) / ∼ ) & ⊢ 𝑅 ⊆ (𝐻 × 𝐻) & ⊢ ≤ ⊆ (𝐺 × 𝐺) & ⊢ ¬ ∅ ∈ 𝐺 & ⊢ dom + = (𝐺 × 𝐺) & ⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → ([〈𝐴, 𝐵〉] ∼ 𝑅[〈𝐶, 𝐷〉] ∼ ↔ (𝐴 + 𝐷) ≤ (𝐵 + 𝐶))) ⇒ ⊢ ([〈𝐴, 𝐵〉] ∼ 𝑅[〈𝐶, 𝐷〉] ∼ ↔ (𝐴 + 𝐷) ≤ (𝐵 + 𝐶)) | ||
Theorem | eroveu 8870* | Lemma for erov 8872 and eroprf 8873. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.) |
⊢ 𝐽 = (𝐴 / 𝑅) & ⊢ 𝐾 = (𝐵 / 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑍) & ⊢ (𝜑 → 𝑅 Er 𝑈) & ⊢ (𝜑 → 𝑆 Er 𝑉) & ⊢ (𝜑 → 𝑇 Er 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝑉) & ⊢ (𝜑 → 𝐶 ⊆ 𝑊) & ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶) & ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾)) → ∃!𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑋 = [𝑝]𝑅 ∧ 𝑌 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) | ||
Theorem | erovlem 8871* | Lemma for erov 8872 and eroprf 8873. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
⊢ 𝐽 = (𝐴 / 𝑅) & ⊢ 𝐾 = (𝐵 / 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑍) & ⊢ (𝜑 → 𝑅 Er 𝑈) & ⊢ (𝜑 → 𝑆 Er 𝑉) & ⊢ (𝜑 → 𝑇 Er 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝑉) & ⊢ (𝜑 → 𝐶 ⊆ 𝑊) & ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶) & ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) & ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} ⇒ ⊢ (𝜑 → ⨣ = (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))) | ||
Theorem | erov 8872* | The value of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
⊢ 𝐽 = (𝐴 / 𝑅) & ⊢ 𝐾 = (𝐵 / 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑍) & ⊢ (𝜑 → 𝑅 Er 𝑈) & ⊢ (𝜑 → 𝑆 Er 𝑉) & ⊢ (𝜑 → 𝑇 Er 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝑉) & ⊢ (𝜑 → 𝐶 ⊆ 𝑊) & ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶) & ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) & ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵) → ([𝑃]𝑅 ⨣ [𝑄]𝑆) = [(𝑃 + 𝑄)]𝑇) | ||
Theorem | eroprf 8873* | Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
⊢ 𝐽 = (𝐴 / 𝑅) & ⊢ 𝐾 = (𝐵 / 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑍) & ⊢ (𝜑 → 𝑅 Er 𝑈) & ⊢ (𝜑 → 𝑆 Er 𝑉) & ⊢ (𝜑 → 𝑇 Er 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝑉) & ⊢ (𝜑 → 𝐶 ⊆ 𝑊) & ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶) & ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) & ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ 𝐿 = (𝐶 / 𝑇) ⇒ ⊢ (𝜑 → ⨣ :(𝐽 × 𝐾)⟶𝐿) | ||
Theorem | erov2 8874* | The value of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐽 = (𝐴 / ∼ ) & ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} & ⊢ (𝜑 → ∼ ∈ 𝑋) & ⊢ (𝜑 → ∼ Er 𝑈) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈) & ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) & ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ([𝑃] ∼ ⨣ [𝑄] ∼ ) = [(𝑃 + 𝑄)] ∼ ) | ||
Theorem | eroprf2 8875* | Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐽 = (𝐴 / ∼ ) & ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} & ⊢ (𝜑 → ∼ ∈ 𝑋) & ⊢ (𝜑 → ∼ Er 𝑈) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈) & ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) & ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) ⇒ ⊢ (𝜑 → ⨣ :(𝐽 × 𝐽)⟶𝐽) | ||
Theorem | ecopoveq 8876* | This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation ∼ (specified by the hypothesis) in terms of its operation 𝐹. (Contributed by NM, 16-Aug-1995.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⇒ ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (〈𝐴, 𝐵〉 ∼ 〈𝐶, 𝐷〉 ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) | ||
Theorem | ecopovsym 8877* | Assuming the operation 𝐹 is commutative, show that the relation ∼, specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) ⇒ ⊢ (𝐴 ∼ 𝐵 → 𝐵 ∼ 𝐴) | ||
Theorem | ecopovtrn 8878* | Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation ∼, specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶) → 𝐴 ∼ 𝐶) | ||
Theorem | ecopover 8879* | Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation ∼, specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ∼ Er (𝑆 × 𝑆) | ||
Theorem | eceqoveq 8880* | Equality of equivalence relation in terms of an operation. (Contributed by NM, 15-Feb-1996.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) |
⊢ ∼ Er (𝑆 × 𝑆) & ⊢ dom + = (𝑆 × 𝑆) & ⊢ ¬ ∅ ∈ 𝑆 & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (〈𝐴, 𝐵〉 ∼ 〈𝐶, 𝐷〉 ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ([〈𝐴, 𝐵〉] ∼ = [〈𝐶, 𝐷〉] ∼ ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) | ||
Theorem | ecovcom 8881* | Lemma used to transfer a commutative law via an equivalence relation. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ 𝐷 = 𝐻 & ⊢ 𝐺 = 𝐽 ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
Theorem | ecovass 8882* | Lemma used to transfer an associative law via an equivalence relation. (Contributed by NM, 31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐺, 𝐻〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑁, 𝑄〉] ∼ ) & ⊢ (((𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝐺, 𝐻〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝐽, 𝐾〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑁, 𝑄〉] ∼ ) = [〈𝐿, 𝑀〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) & ⊢ 𝐽 = 𝐿 & ⊢ 𝐾 = 𝑀 ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
Theorem | ecovdi 8883* | Lemma used to transfer a distributive law via an equivalence relation. (Contributed by NM, 2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑀, 𝑁〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) = [〈𝑊, 𝑋〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ ) = [〈𝑌, 𝑍〉] ∼ ) & ⊢ (((𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) → ([〈𝑊, 𝑋〉] ∼ + [〈𝑌, 𝑍〉] ∼ ) = [〈𝐾, 𝐿〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) & ⊢ 𝐻 = 𝐾 & ⊢ 𝐽 = 𝐿 ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
Syntax | cmap 8884 | Extend the definition of a class to include the mapping operation. (Read for 𝐴 ↑m 𝐵, "the set of all functions that map from 𝐵 to 𝐴.) |
class ↑m | ||
Syntax | cpm 8885 | Extend the definition of a class to include the partial mapping operation. (Read for 𝐴 ↑pm 𝐵, "the set of all partial functions that map from 𝐵 to 𝐴.) |
class ↑pm | ||
Definition | df-map 8886* | Define the mapping operation or set exponentiation. The set of all functions that map from 𝐵 to 𝐴 is written (𝐴 ↑m 𝐵) (see mapval 8896). Many authors write 𝐴 followed by 𝐵 as a superscript for this operation and rely on context to avoid confusion other exponentiation operations (e.g., Definition 10.42 of [TakeutiZaring] p. 95). Other authors show 𝐵 as a prefixed superscript, which is read "𝐴 pre 𝐵 " (e.g., definition of [Enderton] p. 52). Definition 8.21 of [Eisenberg] p. 125 uses the notation Map(𝐵, 𝐴) for our (𝐴 ↑m 𝐵). The up-arrow is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976). We adopt the first case of his notation (simple exponentiation) and subscript it with m to distinguish it from other kinds of exponentiation. (Contributed by NM, 8-Dec-2003.) |
⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | ||
Definition | df-pm 8887* | Define the partial mapping operation. A partial function from 𝐵 to 𝐴 is a function from a subset of 𝐵 to 𝐴. The set of all partial functions from 𝐵 to 𝐴 is written (𝐴 ↑pm 𝐵) (see pmvalg 8895). A notation for this operation apparently does not appear in the literature. We use ↑pm to distinguish it from the less general set exponentiation operation ↑m (df-map 8886). See mapsspm 8934 for its relationship to set exponentiation. (Contributed by NM, 15-Nov-2007.) |
⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) | ||
Theorem | mapprc 8888* | When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.) |
⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) | ||
Theorem | pmex 8889* | The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐴 × 𝐵))} ∈ V) | ||
Theorem | mapexOLD 8890* | Obsolete version of mapex 7979 as of 17-Jun-2025. (Contributed by Raph Levien, 4-Dec-2003.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | ||
Theorem | fnmap 8891 | Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ ↑m Fn (V × V) | ||
Theorem | fnpm 8892 | Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013.) |
⊢ ↑pm Fn (V × V) | ||
Theorem | reldmmap 8893 | Set exponentiation is a well-behaved binary operator. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
⊢ Rel dom ↑m | ||
Theorem | mapvalg 8894* | The value of set exponentiation. (𝐴 ↑m 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) | ||
Theorem | pmvalg 8895* | The value of the partial mapping operation. (𝐴 ↑pm 𝐵) is the set of all partial functions that map from 𝐵 to 𝐴. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}) | ||
Theorem | mapval 8896* | The value of set exponentiation (inference version). (𝐴 ↑m 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴} | ||
Theorem | elmapg 8897 | Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑m 𝐵) ↔ 𝐶:𝐵⟶𝐴)) | ||
Theorem | elmapd 8898 | Deduction form of elmapg 8897. (Contributed by BJ, 11-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑m 𝐵) ↔ 𝐶:𝐵⟶𝐴)) | ||
Theorem | elmapdd 8899 | Deduction associated with elmapd 8898. (Contributed by SN, 29-Jul-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶:𝐵⟶𝐴) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑m 𝐵)) | ||
Theorem | mapdm0 8900 | The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.) |
⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑m ∅) = {∅}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |