| Metamath
Proof Explorer Theorem List (p. 89 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | pmsspw 8801 | Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | ||
| Theorem | mapsspw 8802 | Set exponentiation is a subset of the power set of the Cartesian product of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | ||
| Theorem | mapfvd 8803 | The value of a function that maps from 𝐵 to 𝐴. (Contributed by AV, 2-Feb-2023.) |
| ⊢ 𝑀 = (𝐴 ↑m 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐴) | ||
| Theorem | elmapresaun 8804 | fresaun 6694 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) ∈ (𝐶 ↑m (𝐴 ∪ 𝐵))) | ||
| Theorem | fvmptmap 8805* | Special case of fvmpt 6929 for operator theorems. (Contributed by NM, 27-Nov-2007.) |
| ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝑅 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) & ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑m 𝐷) ↦ 𝐵) ⇒ ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) | ||
| Theorem | map0e 8806 | Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 14-Jul-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ∅) = 1o) | ||
| Theorem | map0b 8807 | Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅) | ||
| Theorem | map0g 8808 | Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) | ||
| Theorem | 0map0sn0 8809 | The set of mappings of the empty set to the empty set is the singleton containing the empty set. (Contributed by AV, 31-Mar-2024.) |
| ⊢ (∅ ↑m ∅) = {∅} | ||
| Theorem | mapsnd 8810* | The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 ↑m {𝐵}) = {𝑓 ∣ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}}) | ||
| Theorem | map0 8811 | Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ↑m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)) | ||
| Theorem | mapsn 8812* | The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Proof shortened by AV, 17-Jul-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ↑m {𝐵}) = {𝑓 ∣ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}} | ||
| Theorem | mapss 8813 | Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) | ||
| Theorem | fdiagfn 8814* | Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑m 𝐼)) | ||
| Theorem | fvdiagfn 8815* | Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (𝐼 × {𝑋})) | ||
| Theorem | mapsnconst 8816 | Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| ⊢ 𝑆 = {𝑋} & ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V ⇒ ⊢ (𝐹 ∈ (𝐵 ↑m 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) | ||
| Theorem | mapsncnv 8817* | Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| ⊢ 𝑆 = {𝑋} & ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) ⇒ ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) | ||
| Theorem | mapsnf1o2 8818* | Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| ⊢ 𝑆 = {𝑋} & ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) ⇒ ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 | ||
| Theorem | mapsnf1o3 8819* | Explicit bijection in the reverse of mapsnf1o2 8818. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
| ⊢ 𝑆 = {𝑋} & ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) ⇒ ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑m 𝑆) | ||
| Theorem | ralxpmap 8820* | Quantification over functions in terms of quantification over values and punctured functions. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ (𝑓 = (𝑔 ∪ {〈𝐽, 𝑦〉}) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐽 ∈ 𝑇 → (∀𝑓 ∈ (𝑆 ↑m 𝑇)𝜑 ↔ ∀𝑦 ∈ 𝑆 ∀𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽}))𝜓)) | ||
| Syntax | cixp 8821 | Extend class notation to include infinite Cartesian products. |
| class X𝑥 ∈ 𝐴 𝐵 | ||
| Definition | df-ixp 8822* | Definition of infinite Cartesian product of [Enderton] p. 54. Enderton uses a bold "X" with 𝑥 ∈ 𝐴 written underneath or as a subscript, as does Stoll p. 47. Some books use a capital pi, but we will reserve that notation for products of numbers. Usually 𝐵 represents a class expression containing 𝑥 free and thus can be thought of as 𝐵(𝑥). Normally, 𝑥 is not free in 𝐴, although this is not a requirement of the definition. (Contributed by NM, 28-Sep-2006.) |
| ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | ||
| Theorem | dfixp 8823* | Eliminate the expression {𝑥 ∣ 𝑥 ∈ 𝐴} in df-ixp 8822, under the assumption that 𝐴 and 𝑥 are disjoint. This way, we can say that 𝑥 is bound in X𝑥 ∈ 𝐴𝐵 even if it appears free in 𝐴. (Contributed by Mario Carneiro, 12-Aug-2016.) |
| ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | ||
| Theorem | ixpsnval 8824* | The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.) |
| ⊢ (𝑋 ∈ 𝑉 → X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) | ||
| Theorem | elixp2 8825* | Membership in an infinite Cartesian product. See df-ixp 8822 for discussion of the notation. (Contributed by NM, 28-Sep-2006.) |
| ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | ||
| Theorem | fvixp 8826* | Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐷) | ||
| Theorem | ixpfn 8827* | A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.) |
| ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) | ||
| Theorem | elixp 8828* | Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | ||
| Theorem | elixpconst 8829* | Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by NM, 12-Apr-2008.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵) | ||
| Theorem | ixpconstg 8830* | Infinite Cartesian product of a constant 𝐵. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴)) | ||
| Theorem | ixpconst 8831* | Infinite Cartesian product of a constant 𝐵. (Contributed by NM, 28-Sep-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴) | ||
| Theorem | ixpeq1 8832* | Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) |
| ⊢ (𝐴 = 𝐵 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) | ||
| Theorem | ixpeq1d 8833* | Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) | ||
| Theorem | ss2ixp 8834 | Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | ixpeq2 8835 | Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | ixpeq2dva 8836* | Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | ixpeq2dv 8837* | Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | cbvixp 8838* | Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 | ||
| Theorem | cbvixpv 8839* | Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 | ||
| Theorem | nfixpw 8840* | Bound-variable hypothesis builder for indexed Cartesian product. Version of nfixp 8841 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 15-Oct-2016.) Avoid ax-13 2372. (Revised by GG, 26-Jan-2024.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 | ||
| Theorem | nfixp 8841 | Bound-variable hypothesis builder for indexed Cartesian product. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfixpw 8840 when possible. (Contributed by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 | ||
| Theorem | nfixp1 8842 | The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 | ||
| Theorem | ixpprc 8843* | A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.) |
| ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) | ||
| Theorem | ixpf 8844* | A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.) |
| ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | uniixp 8845* | The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | ixpexg 8846* | The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 25-Jan-2015.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
| Theorem | ixpin 8847* | The intersection of two infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ X𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (X𝑥 ∈ 𝐴 𝐵 ∩ X𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | ixpiin 8848* | The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) |
| ⊢ (𝐵 ≠ ∅ → X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | ixpint 8849* | The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ (𝐵 ≠ ∅ → X𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) | ||
| Theorem | ixp0x 8850 | An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.) |
| ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} | ||
| Theorem | ixpssmap2g 8851* | An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 8852 avoids ax-rep 5217. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) | ||
| Theorem | ixpssmapg 8852* | An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) | ||
| Theorem | 0elixp 8853 | Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.) |
| ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 | ||
| Theorem | ixpn0 8854 | The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10371. (Contributed by Mario Carneiro, 22-Jun-2016.) |
| ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) | ||
| Theorem | ixp0 8855 | The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10371. (Contributed by NM, 1-Oct-2006.) (Proof shortened by Mario Carneiro, 22-Jun-2016.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) | ||
| Theorem | ixpssmap 8856* | An infinite Cartesian product is a subset of set exponentiation. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) | ||
| Theorem | resixp 8857* | Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.) |
| ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) | ||
| Theorem | undifixp 8858* | Union of two projections of a cartesian product. (Contributed by FL, 7-Nov-2011.) |
| ⊢ ((𝐹 ∈ X𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ∪ 𝐺) ∈ X𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | mptelixpg 8859* | Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.) |
| ⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑥 ∈ 𝐼 𝐾 ↔ ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) | ||
| Theorem | resixpfo 8860* | Restriction of elements of an infinite Cartesian product creates a surjection, if the original Cartesian product is nonempty. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ 𝐹 = (𝑓 ∈ X𝑥 ∈ 𝐴 𝐶 ↦ (𝑓 ↾ 𝐵)) ⇒ ⊢ ((𝐵 ⊆ 𝐴 ∧ X𝑥 ∈ 𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥 ∈ 𝐴 𝐶–onto→X𝑥 ∈ 𝐵 𝐶) | ||
| Theorem | elixpsn 8861* | Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝐴, 𝑦〉})) | ||
| Theorem | ixpsnf1o 8862* | A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) | ||
| Theorem | mapsnf1o 8863* | A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑m {𝐼})) | ||
| Theorem | boxriin 8864* | A rectangular subset of a rectangular set can be recovered as the relative intersection of single-axis restrictions. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (∀𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → X𝑥 ∈ 𝐼 𝐴 = (X𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))) | ||
| Theorem | boxcutc 8865* | The relative complement of a box set restricted on one axis. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵) → (X𝑘 ∈ 𝐴 𝐵 ∖ X𝑘 ∈ 𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵)) = X𝑘 ∈ 𝐴 if(𝑘 = 𝑋, (𝐵 ∖ 𝐶), 𝐵)) | ||
| Syntax | cen 8866 | Extend class definition to include the equinumerosity relation ("approximately equals" symbol) |
| class ≈ | ||
| Syntax | cdom 8867 | Extend class definition to include the dominance relation (curly "less than or equal to") |
| class ≼ | ||
| Syntax | csdm 8868 | Extend class definition to include the strict dominance relation (curly less-than) |
| class ≺ | ||
| Syntax | cfn 8869 | Extend class definition to include the class of all finite sets. |
| class Fin | ||
| Definition | df-en 8870* | Define the equinumerosity relation. Definition of [Enderton] p. 129. We define ≈ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 8879. (Contributed by NM, 28-Mar-1998.) |
| ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | ||
| Definition | df-dom 8871* | Define the dominance relation. For an alternate definition see dfdom2 8900. Compare Definition of [Enderton] p. 145. Typical textbook definitions are derived as brdom 8883 and domen 8884. (Contributed by NM, 28-Mar-1998.) |
| ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | ||
| Definition | df-sdom 8872 | Define the strict dominance relation. Alternate possible definitions are derived as brsdom 8897 and brsdom2 9014. Definition 3 of [Suppes] p. 97. (Contributed by NM, 31-Mar-1998.) |
| ⊢ ≺ = ( ≼ ∖ ≈ ) | ||
| Definition | df-fin 8873* | Define the (proper) class of all finite sets. Similar to Definition 10.29 of [TakeutiZaring] p. 91, whose "Fin(a)" corresponds to our "𝑎 ∈ Fin". This definition is meaningful whether or not we accept the Axiom of Infinity ax-inf2 9531. If we accept Infinity, we can also express 𝐴 ∈ Fin by 𝐴 ≺ ω (Theorem isfinite 9542.) (Contributed by NM, 22-Aug-2008.) |
| ⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} | ||
| Theorem | relen 8874 | Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
| ⊢ Rel ≈ | ||
| Theorem | reldom 8875 | Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
| ⊢ Rel ≼ | ||
| Theorem | relsdom 8876 | Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.) |
| ⊢ Rel ≺ | ||
| Theorem | encv 8877 | If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | breng 8878* | Equinumerosity relation. This variation of bren 8879 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of bren 8879. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | ||
| Theorem | bren 8879* | Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) Extract breng 8878 as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | ||
| Theorem | brdom2g 8880* | Dominance relation. This variation of brdomg 8881 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of brdomg 8881. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | ||
| Theorem | brdomg 8881* | Dominance relation. (Contributed by NM, 15-Jun-1998.) Extract brdom2g 8880 as an intermediate result. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | ||
| Theorem | brdomi 8882* | Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.) Avoid ax-un 7668. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) | ||
| Theorem | brdom 8883* | Dominance relation. (Contributed by NM, 15-Jun-1998.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) | ||
| Theorem | domen 8884* | Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) | ||
| Theorem | domeng 8885* | Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) | ||
| Theorem | ctex 8886 | A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
| ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | ||
| Theorem | f1oen4g 8887 | The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 8893 does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.) |
| ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1dom4g 8888 | The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 8894 does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.) |
| ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
| Theorem | f1oen3g 8889 | The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 8893 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1dom3g 8890 | The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 8894 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by BTernaryTau, 9-Sep-2024.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
| Theorem | f1oen2g 8891 | The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 8893 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1dom2g 8892 | The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 8894 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.) (Proof shortened by BTernaryTau, 25-Sep-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
| Theorem | f1oeng 8893 | The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1domg 8894 | The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) | ||
| Theorem | f1oen 8895 | The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) | ||
| Theorem | f1dom 8896 | The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 19-Jun-1998.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵) | ||
| Theorem | brsdom 8897 | Strict dominance relation, meaning "𝐵 is strictly greater in size than 𝐴". Definition of [Mendelson] p. 255. (Contributed by NM, 25-Jun-1998.) |
| ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | ||
| Theorem | isfi 8898* | Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.) |
| ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | ||
| Theorem | enssdom 8899 | Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.) |
| ⊢ ≈ ⊆ ≼ | ||
| Theorem | dfdom2 8900 | Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.) |
| ⊢ ≼ = ( ≺ ∪ ≈ ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |