Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-lan Structured version   Visualization version   GIF version

Definition df-lan 49345
Description: Definition of the (local) left Kan extension. Given a functor 𝐹:𝐶𝐷 and a functor 𝑋:𝐶𝐸, the set (𝐹(⟨𝐶, 𝐷⟩Lan𝐸)𝑋) consists of left Kan extensions of 𝑋 along 𝐹, which are universal pairs from 𝑋 to the pre-composition functor given by 𝐹 (lanval2 49363). See also § 3 of Chapter X in p. 240 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49363 (retrieved 3 Nov 2025).

A left Kan extension is in the form of 𝐿, 𝐴 where the first component is a functor 𝐿:𝐷𝐸 (lanrcl4 49369) and the second component is a natural transformation 𝐴:𝑋𝐿𝐹 (lanrcl5 49370) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of a "inverse" of pre-composition; the source category is "extended" along 𝐶𝐷.

The left Kan extension is a generalization of many categorical concepts such as colimit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory".

This definition was chosen over the other version in the commented out section due to its better reverse closure property.

See df-ran 49346 for the dual concept.

(Contributed by Zhi Wang, 3-Nov-2025.)

Assertion
Ref Expression
df-lan Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒)UP(𝑐 FuncCat 𝑒))𝑥)))
Distinct variable group:   𝑐,𝑑,𝑒,𝑓,𝑝,𝑥

Detailed syntax breakdown of Definition df-lan
StepHypRef Expression
1 clan 49343 . 2 class Lan
2 vp . . 3 setvar 𝑝
3 ve . . 3 setvar 𝑒
4 cvv 3457 . . . 4 class V
54, 4cxp 5650 . . 3 class (V × V)
6 vc . . . 4 setvar 𝑐
72cv 1538 . . . . 5 class 𝑝
8 c1st 7981 . . . . 5 class 1st
97, 8cfv 6528 . . . 4 class (1st𝑝)
10 vd . . . . 5 setvar 𝑑
11 c2nd 7982 . . . . . 6 class 2nd
127, 11cfv 6528 . . . . 5 class (2nd𝑝)
13 vf . . . . . 6 setvar 𝑓
14 vx . . . . . 6 setvar 𝑥
156cv 1538 . . . . . . 7 class 𝑐
1610cv 1538 . . . . . . 7 class 𝑑
17 cfunc 17854 . . . . . . 7 class Func
1815, 16, 17co 7400 . . . . . 6 class (𝑐 Func 𝑑)
193cv 1538 . . . . . . 7 class 𝑒
2015, 19, 17co 7400 . . . . . 6 class (𝑐 Func 𝑒)
2116, 19cop 4605 . . . . . . . 8 class 𝑑, 𝑒
2213cv 1538 . . . . . . . 8 class 𝑓
23 cprcof 49147 . . . . . . . 8 class −∘F
2421, 22, 23co 7400 . . . . . . 7 class (⟨𝑑, 𝑒⟩ −∘F 𝑓)
2514cv 1538 . . . . . . 7 class 𝑥
26 cfuc 17945 . . . . . . . . 9 class FuncCat
2716, 19, 26co 7400 . . . . . . . 8 class (𝑑 FuncCat 𝑒)
2815, 19, 26co 7400 . . . . . . . 8 class (𝑐 FuncCat 𝑒)
29 cup 48974 . . . . . . . 8 class UP
3027, 28, 29co 7400 . . . . . . 7 class ((𝑑 FuncCat 𝑒)UP(𝑐 FuncCat 𝑒))
3124, 25, 30co 7400 . . . . . 6 class ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒)UP(𝑐 FuncCat 𝑒))𝑥)
3213, 14, 18, 20, 31cmpo 7402 . . . . 5 class (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒)UP(𝑐 FuncCat 𝑒))𝑥))
3310, 12, 32csb 3872 . . . 4 class (2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒)UP(𝑐 FuncCat 𝑒))𝑥))
346, 9, 33csb 3872 . . 3 class (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒)UP(𝑐 FuncCat 𝑒))𝑥))
352, 3, 5, 4, 34cmpo 7402 . 2 class (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒)UP(𝑐 FuncCat 𝑒))𝑥)))
361, 35wceq 1539 1 wff Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒)UP(𝑐 FuncCat 𝑒))𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  lanfn  49347  reldmlan  49349  lanfval  49351  rellan  49359
  Copyright terms: Public domain W3C validator