| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-lan | Structured version Visualization version GIF version | ||
| Description: Definition of the (local) left Kan extension. Given a functor
𝐹:𝐶⟶𝐷 and a functor 𝑋:𝐶⟶𝐸, the set
(𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) consists of left Kan extensions of
𝑋 along 𝐹, which are universal pairs from 𝑋 to the
pre-composition functor given by 𝐹 (lanval2 49622). See also
§
3 of Chapter X in p. 240 of Mac Lane, Saunders,
Categories for the Working Mathematician, 2nd Edition, Springer
Science+Business Media, New York, (1998) [QA169.M33 1998]; available at
https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49622 (retrieved
3 Nov 2025).
A left Kan extension is in the form of 〈𝐿, 𝐴〉 where the first component is a functor 𝐿:𝐷⟶𝐸 (lanrcl4 49629) and the second component is a natural transformation 𝐴:𝑋⟶𝐿𝐹 (lanrcl5 49630) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of an "inverse" of pre-composition; the source category of 𝑋:𝐶⟶𝐸 is "extended" along 𝐹:𝐶⟶𝐷. The left Kan extension is a generalization of many categorical concepts such as colimit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory". This definition was chosen over the other version in the commented out section due to its better reverse closure property. See df-ran 49603 for the dual concept. (Contributed by Zhi Wang, 3-Nov-2025.) |
| Ref | Expression |
|---|---|
| df-lan | ⊢ Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clan 49600 | . 2 class Lan | |
| 2 | vp | . . 3 setvar 𝑝 | |
| 3 | ve | . . 3 setvar 𝑒 | |
| 4 | cvv 3436 | . . . 4 class V | |
| 5 | 4, 4 | cxp 5617 | . . 3 class (V × V) |
| 6 | vc | . . . 4 setvar 𝑐 | |
| 7 | 2 | cv 1539 | . . . . 5 class 𝑝 |
| 8 | c1st 7922 | . . . . 5 class 1st | |
| 9 | 7, 8 | cfv 6482 | . . . 4 class (1st ‘𝑝) |
| 10 | vd | . . . . 5 setvar 𝑑 | |
| 11 | c2nd 7923 | . . . . . 6 class 2nd | |
| 12 | 7, 11 | cfv 6482 | . . . . 5 class (2nd ‘𝑝) |
| 13 | vf | . . . . . 6 setvar 𝑓 | |
| 14 | vx | . . . . . 6 setvar 𝑥 | |
| 15 | 6 | cv 1539 | . . . . . . 7 class 𝑐 |
| 16 | 10 | cv 1539 | . . . . . . 7 class 𝑑 |
| 17 | cfunc 17761 | . . . . . . 7 class Func | |
| 18 | 15, 16, 17 | co 7349 | . . . . . 6 class (𝑐 Func 𝑑) |
| 19 | 3 | cv 1539 | . . . . . . 7 class 𝑒 |
| 20 | 15, 19, 17 | co 7349 | . . . . . 6 class (𝑐 Func 𝑒) |
| 21 | 16, 19 | cop 4583 | . . . . . . . 8 class 〈𝑑, 𝑒〉 |
| 22 | 13 | cv 1539 | . . . . . . . 8 class 𝑓 |
| 23 | cprcof 49368 | . . . . . . . 8 class −∘F | |
| 24 | 21, 22, 23 | co 7349 | . . . . . . 7 class (〈𝑑, 𝑒〉 −∘F 𝑓) |
| 25 | 14 | cv 1539 | . . . . . . 7 class 𝑥 |
| 26 | cfuc 17852 | . . . . . . . . 9 class FuncCat | |
| 27 | 16, 19, 26 | co 7349 | . . . . . . . 8 class (𝑑 FuncCat 𝑒) |
| 28 | 15, 19, 26 | co 7349 | . . . . . . . 8 class (𝑐 FuncCat 𝑒) |
| 29 | cup 49168 | . . . . . . . 8 class UP | |
| 30 | 27, 28, 29 | co 7349 | . . . . . . 7 class ((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒)) |
| 31 | 24, 25, 30 | co 7349 | . . . . . 6 class ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥) |
| 32 | 13, 14, 18, 20, 31 | cmpo 7351 | . . . . 5 class (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)) |
| 33 | 10, 12, 32 | csb 3851 | . . . 4 class ⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)) |
| 34 | 6, 9, 33 | csb 3851 | . . 3 class ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)) |
| 35 | 2, 3, 5, 4, 34 | cmpo 7351 | . 2 class (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))) |
| 36 | 1, 35 | wceq 1540 | 1 wff Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: lanfn 49604 reldmlan 49606 lanfval 49608 rellan 49618 |
| Copyright terms: Public domain | W3C validator |