Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-lan Structured version   Visualization version   GIF version

Definition df-lan 49602
Description: Definition of the (local) left Kan extension. Given a functor 𝐹:𝐶𝐷 and a functor 𝑋:𝐶𝐸, the set (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) consists of left Kan extensions of 𝑋 along 𝐹, which are universal pairs from 𝑋 to the pre-composition functor given by 𝐹 (lanval2 49622). See also § 3 of Chapter X in p. 240 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49622 (retrieved 3 Nov 2025).

A left Kan extension is in the form of 𝐿, 𝐴 where the first component is a functor 𝐿:𝐷𝐸 (lanrcl4 49629) and the second component is a natural transformation 𝐴:𝑋𝐿𝐹 (lanrcl5 49630) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of an "inverse" of pre-composition; the source category of 𝑋:𝐶𝐸 is "extended" along 𝐹:𝐶𝐷.

The left Kan extension is a generalization of many categorical concepts such as colimit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory".

This definition was chosen over the other version in the commented out section due to its better reverse closure property.

See df-ran 49603 for the dual concept.

(Contributed by Zhi Wang, 3-Nov-2025.)

Assertion
Ref Expression
df-lan Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)))
Distinct variable group:   𝑐,𝑑,𝑒,𝑓,𝑝,𝑥

Detailed syntax breakdown of Definition df-lan
StepHypRef Expression
1 clan 49600 . 2 class Lan
2 vp . . 3 setvar 𝑝
3 ve . . 3 setvar 𝑒
4 cvv 3436 . . . 4 class V
54, 4cxp 5617 . . 3 class (V × V)
6 vc . . . 4 setvar 𝑐
72cv 1539 . . . . 5 class 𝑝
8 c1st 7922 . . . . 5 class 1st
97, 8cfv 6482 . . . 4 class (1st𝑝)
10 vd . . . . 5 setvar 𝑑
11 c2nd 7923 . . . . . 6 class 2nd
127, 11cfv 6482 . . . . 5 class (2nd𝑝)
13 vf . . . . . 6 setvar 𝑓
14 vx . . . . . 6 setvar 𝑥
156cv 1539 . . . . . . 7 class 𝑐
1610cv 1539 . . . . . . 7 class 𝑑
17 cfunc 17761 . . . . . . 7 class Func
1815, 16, 17co 7349 . . . . . 6 class (𝑐 Func 𝑑)
193cv 1539 . . . . . . 7 class 𝑒
2015, 19, 17co 7349 . . . . . 6 class (𝑐 Func 𝑒)
2116, 19cop 4583 . . . . . . . 8 class 𝑑, 𝑒
2213cv 1539 . . . . . . . 8 class 𝑓
23 cprcof 49368 . . . . . . . 8 class −∘F
2421, 22, 23co 7349 . . . . . . 7 class (⟨𝑑, 𝑒⟩ −∘F 𝑓)
2514cv 1539 . . . . . . 7 class 𝑥
26 cfuc 17852 . . . . . . . . 9 class FuncCat
2716, 19, 26co 7349 . . . . . . . 8 class (𝑑 FuncCat 𝑒)
2815, 19, 26co 7349 . . . . . . . 8 class (𝑐 FuncCat 𝑒)
29 cup 49168 . . . . . . . 8 class UP
3027, 28, 29co 7349 . . . . . . 7 class ((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))
3124, 25, 30co 7349 . . . . . 6 class ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)
3213, 14, 18, 20, 31cmpo 7351 . . . . 5 class (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))
3310, 12, 32csb 3851 . . . 4 class (2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))
346, 9, 33csb 3851 . . 3 class (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))
352, 3, 5, 4, 34cmpo 7351 . 2 class (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)))
361, 35wceq 1540 1 wff Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  lanfn  49604  reldmlan  49606  lanfval  49608  rellan  49618
  Copyright terms: Public domain W3C validator