Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-lan Structured version   Visualization version   GIF version

Definition df-lan 49718
Description: Definition of the (local) left Kan extension. Given a functor 𝐹:𝐶𝐷 and a functor 𝑋:𝐶𝐸, the set (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) consists of left Kan extensions of 𝑋 along 𝐹, which are universal pairs from 𝑋 to the pre-composition functor given by 𝐹 (lanval2 49738). See also § 3 of Chapter X in p. 240 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49738 (retrieved 3 Nov 2025).

A left Kan extension is in the form of 𝐿, 𝐴 where the first component is a functor 𝐿:𝐷𝐸 (lanrcl4 49745) and the second component is a natural transformation 𝐴:𝑋𝐿𝐹 (lanrcl5 49746) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of an "inverse" of pre-composition; the source category of 𝑋:𝐶𝐸 is "extended" along 𝐹:𝐶𝐷.

The left Kan extension is a generalization of many categorical concepts such as colimit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory".

This definition was chosen over the other version in the commented out section due to its better reverse closure property.

See df-ran 49719 for the dual concept.

(Contributed by Zhi Wang, 3-Nov-2025.)

Assertion
Ref Expression
df-lan Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)))
Distinct variable group:   𝑐,𝑑,𝑒,𝑓,𝑝,𝑥

Detailed syntax breakdown of Definition df-lan
StepHypRef Expression
1 clan 49716 . 2 class Lan
2 vp . . 3 setvar 𝑝
3 ve . . 3 setvar 𝑒
4 cvv 3436 . . . 4 class V
54, 4cxp 5612 . . 3 class (V × V)
6 vc . . . 4 setvar 𝑐
72cv 1540 . . . . 5 class 𝑝
8 c1st 7919 . . . . 5 class 1st
97, 8cfv 6481 . . . 4 class (1st𝑝)
10 vd . . . . 5 setvar 𝑑
11 c2nd 7920 . . . . . 6 class 2nd
127, 11cfv 6481 . . . . 5 class (2nd𝑝)
13 vf . . . . . 6 setvar 𝑓
14 vx . . . . . 6 setvar 𝑥
156cv 1540 . . . . . . 7 class 𝑐
1610cv 1540 . . . . . . 7 class 𝑑
17 cfunc 17761 . . . . . . 7 class Func
1815, 16, 17co 7346 . . . . . 6 class (𝑐 Func 𝑑)
193cv 1540 . . . . . . 7 class 𝑒
2015, 19, 17co 7346 . . . . . 6 class (𝑐 Func 𝑒)
2116, 19cop 4579 . . . . . . . 8 class 𝑑, 𝑒
2213cv 1540 . . . . . . . 8 class 𝑓
23 cprcof 49484 . . . . . . . 8 class −∘F
2421, 22, 23co 7346 . . . . . . 7 class (⟨𝑑, 𝑒⟩ −∘F 𝑓)
2514cv 1540 . . . . . . 7 class 𝑥
26 cfuc 17852 . . . . . . . . 9 class FuncCat
2716, 19, 26co 7346 . . . . . . . 8 class (𝑑 FuncCat 𝑒)
2815, 19, 26co 7346 . . . . . . . 8 class (𝑐 FuncCat 𝑒)
29 cup 49284 . . . . . . . 8 class UP
3027, 28, 29co 7346 . . . . . . 7 class ((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))
3124, 25, 30co 7346 . . . . . 6 class ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)
3213, 14, 18, 20, 31cmpo 7348 . . . . 5 class (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))
3310, 12, 32csb 3845 . . . 4 class (2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))
346, 9, 33csb 3845 . . 3 class (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))
352, 3, 5, 4, 34cmpo 7348 . 2 class (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)))
361, 35wceq 1541 1 wff Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  lanfn  49720  reldmlan  49722  lanfval  49724  rellan  49734
  Copyright terms: Public domain W3C validator