Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-lan Structured version   Visualization version   GIF version

Definition df-lan 49586
Description: Definition of the (local) left Kan extension. Given a functor 𝐹:𝐶𝐷 and a functor 𝑋:𝐶𝐸, the set (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) consists of left Kan extensions of 𝑋 along 𝐹, which are universal pairs from 𝑋 to the pre-composition functor given by 𝐹 (lanval2 49606). See also § 3 of Chapter X in p. 240 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49606 (retrieved 3 Nov 2025).

A left Kan extension is in the form of 𝐿, 𝐴 where the first component is a functor 𝐿:𝐷𝐸 (lanrcl4 49613) and the second component is a natural transformation 𝐴:𝑋𝐿𝐹 (lanrcl5 49614) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of an "inverse" of pre-composition; the source category of 𝑋:𝐶𝐸 is "extended" along 𝐹:𝐶𝐷.

The left Kan extension is a generalization of many categorical concepts such as colimit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory".

This definition was chosen over the other version in the commented out section due to its better reverse closure property.

See df-ran 49587 for the dual concept.

(Contributed by Zhi Wang, 3-Nov-2025.)

Assertion
Ref Expression
df-lan Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)))
Distinct variable group:   𝑐,𝑑,𝑒,𝑓,𝑝,𝑥

Detailed syntax breakdown of Definition df-lan
StepHypRef Expression
1 clan 49584 . 2 class Lan
2 vp . . 3 setvar 𝑝
3 ve . . 3 setvar 𝑒
4 cvv 3450 . . . 4 class V
54, 4cxp 5638 . . 3 class (V × V)
6 vc . . . 4 setvar 𝑐
72cv 1539 . . . . 5 class 𝑝
8 c1st 7968 . . . . 5 class 1st
97, 8cfv 6513 . . . 4 class (1st𝑝)
10 vd . . . . 5 setvar 𝑑
11 c2nd 7969 . . . . . 6 class 2nd
127, 11cfv 6513 . . . . 5 class (2nd𝑝)
13 vf . . . . . 6 setvar 𝑓
14 vx . . . . . 6 setvar 𝑥
156cv 1539 . . . . . . 7 class 𝑐
1610cv 1539 . . . . . . 7 class 𝑑
17 cfunc 17822 . . . . . . 7 class Func
1815, 16, 17co 7389 . . . . . 6 class (𝑐 Func 𝑑)
193cv 1539 . . . . . . 7 class 𝑒
2015, 19, 17co 7389 . . . . . 6 class (𝑐 Func 𝑒)
2116, 19cop 4597 . . . . . . . 8 class 𝑑, 𝑒
2213cv 1539 . . . . . . . 8 class 𝑓
23 cprcof 49352 . . . . . . . 8 class −∘F
2421, 22, 23co 7389 . . . . . . 7 class (⟨𝑑, 𝑒⟩ −∘F 𝑓)
2514cv 1539 . . . . . . 7 class 𝑥
26 cfuc 17913 . . . . . . . . 9 class FuncCat
2716, 19, 26co 7389 . . . . . . . 8 class (𝑑 FuncCat 𝑒)
2815, 19, 26co 7389 . . . . . . . 8 class (𝑐 FuncCat 𝑒)
29 cup 49152 . . . . . . . 8 class UP
3027, 28, 29co 7389 . . . . . . 7 class ((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))
3124, 25, 30co 7389 . . . . . 6 class ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)
3213, 14, 18, 20, 31cmpo 7391 . . . . 5 class (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))
3310, 12, 32csb 3864 . . . 4 class (2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))
346, 9, 33csb 3864 . . 3 class (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))
352, 3, 5, 4, 34cmpo 7391 . 2 class (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)))
361, 35wceq 1540 1 wff Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  lanfn  49588  reldmlan  49590  lanfval  49592  rellan  49602
  Copyright terms: Public domain W3C validator