| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-lan | Structured version Visualization version GIF version | ||
| Description: Definition of the (local) left Kan extension. Given a functor
𝐹:𝐶⟶𝐷 and a functor 𝑋:𝐶⟶𝐸, the set
(𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) consists of left Kan extensions of
𝑋 along 𝐹, which are universal pairs from 𝑋 to the
pre-composition functor given by 𝐹 (lanval2 49609). See also
§
3 of Chapter X in p. 240 of Mac Lane, Saunders,
Categories for the Working Mathematician, 2nd Edition, Springer
Science+Business Media, New York, (1998) [QA169.M33 1998]; available at
https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49609 (retrieved
3 Nov 2025).
A left Kan extension is in the form of 〈𝐿, 𝐴〉 where the first component is a functor 𝐿:𝐷⟶𝐸 (lanrcl4 49616) and the second component is a natural transformation 𝐴:𝑋⟶𝐿𝐹 (lanrcl5 49617) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of an "inverse" of pre-composition; the source category of 𝑋:𝐶⟶𝐸 is "extended" along 𝐹:𝐶⟶𝐷. The left Kan extension is a generalization of many categorical concepts such as colimit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory". This definition was chosen over the other version in the commented out section due to its better reverse closure property. See df-ran 49590 for the dual concept. (Contributed by Zhi Wang, 3-Nov-2025.) |
| Ref | Expression |
|---|---|
| df-lan | ⊢ Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clan 49587 | . 2 class Lan | |
| 2 | vp | . . 3 setvar 𝑝 | |
| 3 | ve | . . 3 setvar 𝑒 | |
| 4 | cvv 3444 | . . . 4 class V | |
| 5 | 4, 4 | cxp 5629 | . . 3 class (V × V) |
| 6 | vc | . . . 4 setvar 𝑐 | |
| 7 | 2 | cv 1539 | . . . . 5 class 𝑝 |
| 8 | c1st 7945 | . . . . 5 class 1st | |
| 9 | 7, 8 | cfv 6499 | . . . 4 class (1st ‘𝑝) |
| 10 | vd | . . . . 5 setvar 𝑑 | |
| 11 | c2nd 7946 | . . . . . 6 class 2nd | |
| 12 | 7, 11 | cfv 6499 | . . . . 5 class (2nd ‘𝑝) |
| 13 | vf | . . . . . 6 setvar 𝑓 | |
| 14 | vx | . . . . . 6 setvar 𝑥 | |
| 15 | 6 | cv 1539 | . . . . . . 7 class 𝑐 |
| 16 | 10 | cv 1539 | . . . . . . 7 class 𝑑 |
| 17 | cfunc 17796 | . . . . . . 7 class Func | |
| 18 | 15, 16, 17 | co 7369 | . . . . . 6 class (𝑐 Func 𝑑) |
| 19 | 3 | cv 1539 | . . . . . . 7 class 𝑒 |
| 20 | 15, 19, 17 | co 7369 | . . . . . 6 class (𝑐 Func 𝑒) |
| 21 | 16, 19 | cop 4591 | . . . . . . . 8 class 〈𝑑, 𝑒〉 |
| 22 | 13 | cv 1539 | . . . . . . . 8 class 𝑓 |
| 23 | cprcof 49355 | . . . . . . . 8 class −∘F | |
| 24 | 21, 22, 23 | co 7369 | . . . . . . 7 class (〈𝑑, 𝑒〉 −∘F 𝑓) |
| 25 | 14 | cv 1539 | . . . . . . 7 class 𝑥 |
| 26 | cfuc 17887 | . . . . . . . . 9 class FuncCat | |
| 27 | 16, 19, 26 | co 7369 | . . . . . . . 8 class (𝑑 FuncCat 𝑒) |
| 28 | 15, 19, 26 | co 7369 | . . . . . . . 8 class (𝑐 FuncCat 𝑒) |
| 29 | cup 49155 | . . . . . . . 8 class UP | |
| 30 | 27, 28, 29 | co 7369 | . . . . . . 7 class ((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒)) |
| 31 | 24, 25, 30 | co 7369 | . . . . . 6 class ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥) |
| 32 | 13, 14, 18, 20, 31 | cmpo 7371 | . . . . 5 class (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)) |
| 33 | 10, 12, 32 | csb 3859 | . . . 4 class ⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)) |
| 34 | 6, 9, 33 | csb 3859 | . . 3 class ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)) |
| 35 | 2, 3, 5, 4, 34 | cmpo 7371 | . 2 class (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))) |
| 36 | 1, 35 | wceq 1540 | 1 wff Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: lanfn 49591 reldmlan 49593 lanfval 49595 rellan 49605 |
| Copyright terms: Public domain | W3C validator |