Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lanfn Structured version   Visualization version   GIF version

Theorem lanfn 49347
Description: Lan is a function on ((V × V) × V). (Contributed by Zhi Wang, 3-Nov-2025.)
Assertion
Ref Expression
lanfn Lan Fn ((V × V) × V)

Proof of Theorem lanfn
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lan 49345 . 2 Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒)UP(𝑐 FuncCat 𝑒))𝑥)))
2 ovex 7433 . . . . 5 (𝑐 Func 𝑑) ∈ V
3 ovex 7433 . . . . 5 (𝑐 Func 𝑒) ∈ V
42, 3mpoex 8073 . . . 4 (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒)UP(𝑐 FuncCat 𝑒))𝑥)) ∈ V
54csbex 5279 . . 3 (2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒)UP(𝑐 FuncCat 𝑒))𝑥)) ∈ V
65csbex 5279 . 2 (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒)UP(𝑐 FuncCat 𝑒))𝑥)) ∈ V
71, 6fnmpoi 8064 1 Lan Fn ((V × V) × V)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3457  csb 3872  cop 4605   × cxp 5650   Fn wfn 6523  cfv 6528  (class class class)co 7400  cmpo 7402  1st c1st 7981  2nd c2nd 7982   Func cfunc 17854   FuncCat cfuc 17945  UPcup 48974   −∘F cprcof 49147  Lanclan 49343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-lan 49345
This theorem is referenced by:  reldmlan2  49353  lanrcl  49357
  Copyright terms: Public domain W3C validator