Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lanfval Structured version   Visualization version   GIF version

Theorem lanfval 49608
Description: Value of the function generating the set of left Kan extensions. (Contributed by Zhi Wang, 3-Nov-2025.)
Hypotheses
Ref Expression
lanfval.r 𝑅 = (𝐷 FuncCat 𝐸)
lanfval.s 𝑆 = (𝐶 FuncCat 𝐸)
lanfval.c (𝜑𝐶𝑈)
lanfval.d (𝜑𝐷𝑉)
lanfval.e (𝜑𝐸𝑊)
Assertion
Ref Expression
lanfval (𝜑 → (⟨𝐶, 𝐷⟩ Lan 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)(𝑅 UP 𝑆)𝑥)))
Distinct variable groups:   𝐶,𝑓,𝑥   𝐷,𝑓,𝑥   𝑓,𝐸,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑓)   𝑆(𝑥,𝑓)   𝑈(𝑥,𝑓)   𝑉(𝑥,𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem lanfval
Dummy variables 𝑐 𝑑 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lan 49602 . . 3 Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)))
21a1i 11 . 2 (𝜑 → Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))))
3 fvexd 6837 . . 3 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st𝑝) ∈ V)
4 simprl 770 . . . . 5 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → 𝑝 = ⟨𝐶, 𝐷⟩)
54fveq2d 6826 . . . 4 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st𝑝) = (1st ‘⟨𝐶, 𝐷⟩))
6 lanfval.c . . . . . 6 (𝜑𝐶𝑈)
7 lanfval.d . . . . . 6 (𝜑𝐷𝑉)
8 op1stg 7936 . . . . . 6 ((𝐶𝑈𝐷𝑉) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
96, 7, 8syl2anc 584 . . . . 5 (𝜑 → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
109adantr 480 . . . 4 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
115, 10eqtrd 2764 . . 3 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st𝑝) = 𝐶)
12 fvexd 6837 . . . 4 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) ∈ V)
13 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → 𝑝 = ⟨𝐶, 𝐷⟩)
1413fveq2d 6826 . . . . 5 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) = (2nd ‘⟨𝐶, 𝐷⟩))
15 op2ndg 7937 . . . . . . 7 ((𝐶𝑈𝐷𝑉) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
166, 7, 15syl2anc 584 . . . . . 6 (𝜑 → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1716ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1814, 17eqtrd 2764 . . . 4 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) = 𝐷)
19 simplr 768 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶)
20 simpr 484 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
2119, 20oveq12d 7367 . . . . 5 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑐 Func 𝑑) = (𝐶 Func 𝐷))
22 simpllr 775 . . . . . . 7 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸))
2322simprd 495 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑒 = 𝐸)
2419, 23oveq12d 7367 . . . . 5 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑐 Func 𝑒) = (𝐶 Func 𝐸))
2520, 23oveq12d 7367 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑑 FuncCat 𝑒) = (𝐷 FuncCat 𝐸))
26 lanfval.r . . . . . . . 8 𝑅 = (𝐷 FuncCat 𝐸)
2725, 26eqtr4di 2782 . . . . . . 7 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑑 FuncCat 𝑒) = 𝑅)
2819, 23oveq12d 7367 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑐 FuncCat 𝑒) = (𝐶 FuncCat 𝐸))
29 lanfval.s . . . . . . . 8 𝑆 = (𝐶 FuncCat 𝐸)
3028, 29eqtr4di 2782 . . . . . . 7 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑐 FuncCat 𝑒) = 𝑆)
3127, 30oveq12d 7367 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒)) = (𝑅 UP 𝑆))
3220, 23opeq12d 4832 . . . . . . 7 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ⟨𝑑, 𝑒⟩ = ⟨𝐷, 𝐸⟩)
3332oveq1d 7364 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (⟨𝑑, 𝑒⟩ −∘F 𝑓) = (⟨𝐷, 𝐸⟩ −∘F 𝑓))
34 eqidd 2730 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑥 = 𝑥)
3531, 33, 34oveq123d 7370 . . . . 5 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥) = ((⟨𝐷, 𝐸⟩ −∘F 𝑓)(𝑅 UP 𝑆)𝑥))
3621, 24, 35mpoeq123dv 7424 . . . 4 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)(𝑅 UP 𝑆)𝑥)))
3712, 18, 36csbied2 3888 . . 3 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)(𝑅 UP 𝑆)𝑥)))
383, 11, 37csbied2 3888 . 2 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)(𝑅 UP 𝑆)𝑥)))
396elexd 3460 . . 3 (𝜑𝐶 ∈ V)
407elexd 3460 . . 3 (𝜑𝐷 ∈ V)
4139, 40opelxpd 5658 . 2 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (V × V))
42 lanfval.e . . 3 (𝜑𝐸𝑊)
4342elexd 3460 . 2 (𝜑𝐸 ∈ V)
44 ovex 7382 . . . 4 (𝐶 Func 𝐷) ∈ V
45 ovex 7382 . . . 4 (𝐶 Func 𝐸) ∈ V
4644, 45mpoex 8014 . . 3 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)(𝑅 UP 𝑆)𝑥)) ∈ V
4746a1i 11 . 2 (𝜑 → (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)(𝑅 UP 𝑆)𝑥)) ∈ V)
482, 38, 41, 43, 47ovmpod 7501 1 (𝜑 → (⟨𝐶, 𝐷⟩ Lan 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)(𝑅 UP 𝑆)𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  csb 3851  cop 4583   × cxp 5617  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923   Func cfunc 17761   FuncCat cfuc 17852   UP cup 49168   −∘F cprcof 49368   Lan clan 49600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-lan 49602
This theorem is referenced by:  lanpropd  49610  reldmlan2  49612  lanval  49614  lanrcl  49616
  Copyright terms: Public domain W3C validator