| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmlan | Structured version Visualization version GIF version | ||
| Description: The domain of Lan is a relation. (Contributed by Zhi Wang, 3-Nov-2025.) |
| Ref | Expression |
|---|---|
| reldmlan | ⊢ Rel dom Lan |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lan 49586 | . 2 ⊢ Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))) | |
| 2 | 1 | reldmmpo 7525 | 1 ⊢ Rel dom Lan |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3450 ⦋csb 3864 〈cop 4597 × cxp 5638 dom cdm 5640 Rel wrel 5645 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 1st c1st 7968 2nd c2nd 7969 Func cfunc 17822 FuncCat cfuc 17913 UP cup 49152 −∘F cprcof 49352 Lan clan 49584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-dm 5650 df-oprab 7393 df-mpo 7394 df-lan 49586 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |