Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rellan Structured version   Visualization version   GIF version

Theorem rellan 49602
Description: The set of left Kan extensions is a relation. (Contributed by Zhi Wang, 3-Nov-2025.)
Assertion
Ref Expression
rellan Rel (𝐹(𝑃 Lan 𝐸)𝑋)

Proof of Theorem rellan
Dummy variables 𝑓 𝑥 𝑐 𝑑 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 5764 . . 3 Rel ∅
2 releq 5741 . . 3 ((𝐹(𝑃 Lan 𝐸)𝑋) = ∅ → (Rel (𝐹(𝑃 Lan 𝐸)𝑋) ↔ Rel ∅))
31, 2mpbiri 258 . 2 ((𝐹(𝑃 Lan 𝐸)𝑋) = ∅ → Rel (𝐹(𝑃 Lan 𝐸)𝑋))
4 n0 4318 . . 3 ((𝐹(𝑃 Lan 𝐸)𝑋) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋))
5 relup 49162 . . . . 5 Rel ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑋)
6 ne0i 4306 . . . . . . . . . 10 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹(𝑃 Lan 𝐸)𝑋) ≠ ∅)
7 oveq 7395 . . . . . . . . . . . 12 ((𝑃 Lan 𝐸) = ∅ → (𝐹(𝑃 Lan 𝐸)𝑋) = (𝐹𝑋))
8 0ov 7426 . . . . . . . . . . . 12 (𝐹𝑋) = ∅
97, 8eqtrdi 2781 . . . . . . . . . . 11 ((𝑃 Lan 𝐸) = ∅ → (𝐹(𝑃 Lan 𝐸)𝑋) = ∅)
109necon3i 2958 . . . . . . . . . 10 ((𝐹(𝑃 Lan 𝐸)𝑋) ≠ ∅ → (𝑃 Lan 𝐸) ≠ ∅)
11 n0 4318 . . . . . . . . . . 11 ((𝑃 Lan 𝐸) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑃 Lan 𝐸))
12 df-lan 49586 . . . . . . . . . . . . . 14 Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)))
1312elmpocl1 7633 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑃 Lan 𝐸) → 𝑃 ∈ (V × V))
14 1st2nd2 8009 . . . . . . . . . . . . 13 (𝑃 ∈ (V × V) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1513, 14syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑃 Lan 𝐸) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1615exlimiv 1930 . . . . . . . . . . 11 (∃𝑥 𝑥 ∈ (𝑃 Lan 𝐸) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1711, 16sylbi 217 . . . . . . . . . 10 ((𝑃 Lan 𝐸) ≠ ∅ → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
186, 10, 173syl 18 . . . . . . . . 9 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1918oveq1d 7404 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝑃 Lan 𝐸) = (⟨(1st𝑃), (2nd𝑃)⟩ Lan 𝐸))
2019oveqd 7406 . . . . . . 7 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹(𝑃 Lan 𝐸)𝑋) = (𝐹(⟨(1st𝑃), (2nd𝑃)⟩ Lan 𝐸)𝑋))
21 eqid 2730 . . . . . . . 8 ((2nd𝑃) FuncCat 𝐸) = ((2nd𝑃) FuncCat 𝐸)
22 eqid 2730 . . . . . . . 8 ((1st𝑃) FuncCat 𝐸) = ((1st𝑃) FuncCat 𝐸)
23 id 22 . . . . . . . . . . 11 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋))
2423, 20eleqtrd 2831 . . . . . . . . . 10 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝑥 ∈ (𝐹(⟨(1st𝑃), (2nd𝑃)⟩ Lan 𝐸)𝑋))
25 lanrcl 49600 . . . . . . . . . 10 (𝑥 ∈ (𝐹(⟨(1st𝑃), (2nd𝑃)⟩ Lan 𝐸)𝑋) → (𝐹 ∈ ((1st𝑃) Func (2nd𝑃)) ∧ 𝑋 ∈ ((1st𝑃) Func 𝐸)))
2624, 25syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹 ∈ ((1st𝑃) Func (2nd𝑃)) ∧ 𝑋 ∈ ((1st𝑃) Func 𝐸)))
2726simpld 494 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝐹 ∈ ((1st𝑃) Func (2nd𝑃)))
2826simprd 495 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝑋 ∈ ((1st𝑃) Func 𝐸))
29 eqidd 2731 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹) = (⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹))
3021, 22, 27, 28, 29lanval 49598 . . . . . . 7 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹(⟨(1st𝑃), (2nd𝑃)⟩ Lan 𝐸)𝑋) = ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑋))
3120, 30eqtrd 2765 . . . . . 6 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹(𝑃 Lan 𝐸)𝑋) = ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑋))
3231releqd 5743 . . . . 5 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (Rel (𝐹(𝑃 Lan 𝐸)𝑋) ↔ Rel ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑋)))
335, 32mpbiri 258 . . . 4 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → Rel (𝐹(𝑃 Lan 𝐸)𝑋))
3433exlimiv 1930 . . 3 (∃𝑥 𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → Rel (𝐹(𝑃 Lan 𝐸)𝑋))
354, 34sylbi 217 . 2 ((𝐹(𝑃 Lan 𝐸)𝑋) ≠ ∅ → Rel (𝐹(𝑃 Lan 𝐸)𝑋))
363, 35pm2.61ine 3009 1 Rel (𝐹(𝑃 Lan 𝐸)𝑋)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  Vcvv 3450  csb 3864  c0 4298  cop 4597   × cxp 5638  Rel wrel 5645  cfv 6513  (class class class)co 7389  cmpo 7391  1st c1st 7968  2nd c2nd 7969   Func cfunc 17822   FuncCat cfuc 17913   UP cup 49152   −∘F cprcof 49352   Lan clan 49584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-func 17826  df-up 49153  df-lan 49586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator