| Step | Hyp | Ref
| Expression |
| 1 | | rel0 5764 |
. . 3
⊢ Rel
∅ |
| 2 | | releq 5741 |
. . 3
⊢ ((𝐹(𝑃 Lan 𝐸)𝑋) = ∅ → (Rel (𝐹(𝑃 Lan 𝐸)𝑋) ↔ Rel ∅)) |
| 3 | 1, 2 | mpbiri 258 |
. 2
⊢ ((𝐹(𝑃 Lan 𝐸)𝑋) = ∅ → Rel (𝐹(𝑃 Lan 𝐸)𝑋)) |
| 4 | | n0 4318 |
. . 3
⊢ ((𝐹(𝑃 Lan 𝐸)𝑋) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋)) |
| 5 | | relup 49162 |
. . . . 5
⊢ Rel
((〈(2nd ‘𝑃), 𝐸〉 −∘F
𝐹)(((2nd
‘𝑃) FuncCat 𝐸) UP ((1st
‘𝑃) FuncCat 𝐸))𝑋) |
| 6 | | ne0i 4306 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹(𝑃 Lan 𝐸)𝑋) ≠ ∅) |
| 7 | | oveq 7395 |
. . . . . . . . . . . 12
⊢ ((𝑃 Lan 𝐸) = ∅ → (𝐹(𝑃 Lan 𝐸)𝑋) = (𝐹∅𝑋)) |
| 8 | | 0ov 7426 |
. . . . . . . . . . . 12
⊢ (𝐹∅𝑋) = ∅ |
| 9 | 7, 8 | eqtrdi 2781 |
. . . . . . . . . . 11
⊢ ((𝑃 Lan 𝐸) = ∅ → (𝐹(𝑃 Lan 𝐸)𝑋) = ∅) |
| 10 | 9 | necon3i 2958 |
. . . . . . . . . 10
⊢ ((𝐹(𝑃 Lan 𝐸)𝑋) ≠ ∅ → (𝑃 Lan 𝐸) ≠ ∅) |
| 11 | | n0 4318 |
. . . . . . . . . . 11
⊢ ((𝑃 Lan 𝐸) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑃 Lan 𝐸)) |
| 12 | | df-lan 49586 |
. . . . . . . . . . . . . 14
⊢ Lan =
(𝑝 ∈ (V × V),
𝑒 ∈ V ↦
⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd
‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F
𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))) |
| 13 | 12 | elmpocl1 7633 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝑃 Lan 𝐸) → 𝑃 ∈ (V × V)) |
| 14 | | 1st2nd2 8009 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ (V × V) →
𝑃 = 〈(1st
‘𝑃), (2nd
‘𝑃)〉) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝑃 Lan 𝐸) → 𝑃 = 〈(1st ‘𝑃), (2nd ‘𝑃)〉) |
| 16 | 15 | exlimiv 1930 |
. . . . . . . . . . 11
⊢
(∃𝑥 𝑥 ∈ (𝑃 Lan 𝐸) → 𝑃 = 〈(1st ‘𝑃), (2nd ‘𝑃)〉) |
| 17 | 11, 16 | sylbi 217 |
. . . . . . . . . 10
⊢ ((𝑃 Lan 𝐸) ≠ ∅ → 𝑃 = 〈(1st ‘𝑃), (2nd ‘𝑃)〉) |
| 18 | 6, 10, 17 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝑃 = 〈(1st ‘𝑃), (2nd ‘𝑃)〉) |
| 19 | 18 | oveq1d 7404 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝑃 Lan 𝐸) = (〈(1st ‘𝑃), (2nd ‘𝑃)〉 Lan 𝐸)) |
| 20 | 19 | oveqd 7406 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹(𝑃 Lan 𝐸)𝑋) = (𝐹(〈(1st ‘𝑃), (2nd ‘𝑃)〉 Lan 𝐸)𝑋)) |
| 21 | | eqid 2730 |
. . . . . . . 8
⊢
((2nd ‘𝑃) FuncCat 𝐸) = ((2nd ‘𝑃) FuncCat 𝐸) |
| 22 | | eqid 2730 |
. . . . . . . 8
⊢
((1st ‘𝑃) FuncCat 𝐸) = ((1st ‘𝑃) FuncCat 𝐸) |
| 23 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋)) |
| 24 | 23, 20 | eleqtrd 2831 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝑥 ∈ (𝐹(〈(1st ‘𝑃), (2nd ‘𝑃)〉 Lan 𝐸)𝑋)) |
| 25 | | lanrcl 49600 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐹(〈(1st ‘𝑃), (2nd ‘𝑃)〉 Lan 𝐸)𝑋) → (𝐹 ∈ ((1st ‘𝑃) Func (2nd
‘𝑃)) ∧ 𝑋 ∈ ((1st
‘𝑃) Func 𝐸))) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹 ∈ ((1st ‘𝑃) Func (2nd
‘𝑃)) ∧ 𝑋 ∈ ((1st
‘𝑃) Func 𝐸))) |
| 27 | 26 | simpld 494 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝐹 ∈ ((1st ‘𝑃) Func (2nd
‘𝑃))) |
| 28 | 26 | simprd 495 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝑋 ∈ ((1st ‘𝑃) Func 𝐸)) |
| 29 | | eqidd 2731 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (〈(2nd ‘𝑃), 𝐸〉 −∘F
𝐹) = (〈(2nd
‘𝑃), 𝐸〉
−∘F 𝐹)) |
| 30 | 21, 22, 27, 28, 29 | lanval 49598 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹(〈(1st ‘𝑃), (2nd ‘𝑃)〉 Lan 𝐸)𝑋) = ((〈(2nd ‘𝑃), 𝐸〉 −∘F
𝐹)(((2nd
‘𝑃) FuncCat 𝐸) UP ((1st
‘𝑃) FuncCat 𝐸))𝑋)) |
| 31 | 20, 30 | eqtrd 2765 |
. . . . . 6
⊢ (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹(𝑃 Lan 𝐸)𝑋) = ((〈(2nd ‘𝑃), 𝐸〉 −∘F
𝐹)(((2nd
‘𝑃) FuncCat 𝐸) UP ((1st
‘𝑃) FuncCat 𝐸))𝑋)) |
| 32 | 31 | releqd 5743 |
. . . . 5
⊢ (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (Rel (𝐹(𝑃 Lan 𝐸)𝑋) ↔ Rel ((〈(2nd
‘𝑃), 𝐸〉
−∘F 𝐹)(((2nd ‘𝑃) FuncCat 𝐸) UP ((1st ‘𝑃) FuncCat 𝐸))𝑋))) |
| 33 | 5, 32 | mpbiri 258 |
. . . 4
⊢ (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → Rel (𝐹(𝑃 Lan 𝐸)𝑋)) |
| 34 | 33 | exlimiv 1930 |
. . 3
⊢
(∃𝑥 𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → Rel (𝐹(𝑃 Lan 𝐸)𝑋)) |
| 35 | 4, 34 | sylbi 217 |
. 2
⊢ ((𝐹(𝑃 Lan 𝐸)𝑋) ≠ ∅ → Rel (𝐹(𝑃 Lan 𝐸)𝑋)) |
| 36 | 3, 35 | pm2.61ine 3009 |
1
⊢ Rel
(𝐹(𝑃 Lan 𝐸)𝑋) |