Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rellan Structured version   Visualization version   GIF version

Theorem rellan 49734
Description: The set of left Kan extensions is a relation. (Contributed by Zhi Wang, 3-Nov-2025.)
Assertion
Ref Expression
rellan Rel (𝐹(𝑃 Lan 𝐸)𝑋)

Proof of Theorem rellan
Dummy variables 𝑓 𝑥 𝑐 𝑑 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 5738 . . 3 Rel ∅
2 releq 5716 . . 3 ((𝐹(𝑃 Lan 𝐸)𝑋) = ∅ → (Rel (𝐹(𝑃 Lan 𝐸)𝑋) ↔ Rel ∅))
31, 2mpbiri 258 . 2 ((𝐹(𝑃 Lan 𝐸)𝑋) = ∅ → Rel (𝐹(𝑃 Lan 𝐸)𝑋))
4 n0 4300 . . 3 ((𝐹(𝑃 Lan 𝐸)𝑋) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋))
5 relup 49294 . . . . 5 Rel ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑋)
6 ne0i 4288 . . . . . . . . . 10 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹(𝑃 Lan 𝐸)𝑋) ≠ ∅)
7 oveq 7352 . . . . . . . . . . . 12 ((𝑃 Lan 𝐸) = ∅ → (𝐹(𝑃 Lan 𝐸)𝑋) = (𝐹𝑋))
8 0ov 7383 . . . . . . . . . . . 12 (𝐹𝑋) = ∅
97, 8eqtrdi 2782 . . . . . . . . . . 11 ((𝑃 Lan 𝐸) = ∅ → (𝐹(𝑃 Lan 𝐸)𝑋) = ∅)
109necon3i 2960 . . . . . . . . . 10 ((𝐹(𝑃 Lan 𝐸)𝑋) ≠ ∅ → (𝑃 Lan 𝐸) ≠ ∅)
11 n0 4300 . . . . . . . . . . 11 ((𝑃 Lan 𝐸) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑃 Lan 𝐸))
12 df-lan 49718 . . . . . . . . . . . . . 14 Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥)))
1312elmpocl1 7588 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑃 Lan 𝐸) → 𝑃 ∈ (V × V))
14 1st2nd2 7960 . . . . . . . . . . . . 13 (𝑃 ∈ (V × V) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1513, 14syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑃 Lan 𝐸) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1615exlimiv 1931 . . . . . . . . . . 11 (∃𝑥 𝑥 ∈ (𝑃 Lan 𝐸) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1711, 16sylbi 217 . . . . . . . . . 10 ((𝑃 Lan 𝐸) ≠ ∅ → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
186, 10, 173syl 18 . . . . . . . . 9 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1918oveq1d 7361 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝑃 Lan 𝐸) = (⟨(1st𝑃), (2nd𝑃)⟩ Lan 𝐸))
2019oveqd 7363 . . . . . . 7 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹(𝑃 Lan 𝐸)𝑋) = (𝐹(⟨(1st𝑃), (2nd𝑃)⟩ Lan 𝐸)𝑋))
21 eqid 2731 . . . . . . . 8 ((2nd𝑃) FuncCat 𝐸) = ((2nd𝑃) FuncCat 𝐸)
22 eqid 2731 . . . . . . . 8 ((1st𝑃) FuncCat 𝐸) = ((1st𝑃) FuncCat 𝐸)
23 id 22 . . . . . . . . . . 11 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋))
2423, 20eleqtrd 2833 . . . . . . . . . 10 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝑥 ∈ (𝐹(⟨(1st𝑃), (2nd𝑃)⟩ Lan 𝐸)𝑋))
25 lanrcl 49732 . . . . . . . . . 10 (𝑥 ∈ (𝐹(⟨(1st𝑃), (2nd𝑃)⟩ Lan 𝐸)𝑋) → (𝐹 ∈ ((1st𝑃) Func (2nd𝑃)) ∧ 𝑋 ∈ ((1st𝑃) Func 𝐸)))
2624, 25syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹 ∈ ((1st𝑃) Func (2nd𝑃)) ∧ 𝑋 ∈ ((1st𝑃) Func 𝐸)))
2726simpld 494 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝐹 ∈ ((1st𝑃) Func (2nd𝑃)))
2826simprd 495 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → 𝑋 ∈ ((1st𝑃) Func 𝐸))
29 eqidd 2732 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹) = (⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹))
3021, 22, 27, 28, 29lanval 49730 . . . . . . 7 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹(⟨(1st𝑃), (2nd𝑃)⟩ Lan 𝐸)𝑋) = ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑋))
3120, 30eqtrd 2766 . . . . . 6 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (𝐹(𝑃 Lan 𝐸)𝑋) = ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑋))
3231releqd 5718 . . . . 5 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → (Rel (𝐹(𝑃 Lan 𝐸)𝑋) ↔ Rel ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑋)))
335, 32mpbiri 258 . . . 4 (𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → Rel (𝐹(𝑃 Lan 𝐸)𝑋))
3433exlimiv 1931 . . 3 (∃𝑥 𝑥 ∈ (𝐹(𝑃 Lan 𝐸)𝑋) → Rel (𝐹(𝑃 Lan 𝐸)𝑋))
354, 34sylbi 217 . 2 ((𝐹(𝑃 Lan 𝐸)𝑋) ≠ ∅ → Rel (𝐹(𝑃 Lan 𝐸)𝑋))
363, 35pm2.61ine 3011 1 Rel (𝐹(𝑃 Lan 𝐸)𝑋)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  Vcvv 3436  csb 3845  c0 4280  cop 4579   × cxp 5612  Rel wrel 5619  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920   Func cfunc 17761   FuncCat cfuc 17852   UP cup 49284   −∘F cprcof 49484   Lan clan 49716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-func 17765  df-up 49285  df-lan 49718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator