| Step | Hyp | Ref
| Expression |
| 1 | | rel0 5776 |
. . 3
⊢ Rel
∅ |
| 2 | | releq 5753 |
. . 3
⊢ ((𝐹(𝑃Lan𝐸)𝑋) = ∅ → (Rel (𝐹(𝑃Lan𝐸)𝑋) ↔ Rel ∅)) |
| 3 | 1, 2 | mpbiri 258 |
. 2
⊢ ((𝐹(𝑃Lan𝐸)𝑋) = ∅ → Rel (𝐹(𝑃Lan𝐸)𝑋)) |
| 4 | | n0 4326 |
. . 3
⊢ ((𝐹(𝑃Lan𝐸)𝑋) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋)) |
| 5 | | relup 48983 |
. . . . 5
⊢ Rel
((〈(2nd ‘𝑃), 𝐸〉 −∘F
𝐹)(((2nd
‘𝑃) FuncCat 𝐸)UP((1st ‘𝑃) FuncCat 𝐸))𝑋) |
| 6 | | ne0i 4314 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (𝐹(𝑃Lan𝐸)𝑋) ≠ ∅) |
| 7 | | oveq 7406 |
. . . . . . . . . . . 12
⊢ ((𝑃Lan𝐸) = ∅ → (𝐹(𝑃Lan𝐸)𝑋) = (𝐹∅𝑋)) |
| 8 | | 0ov 7437 |
. . . . . . . . . . . 12
⊢ (𝐹∅𝑋) = ∅ |
| 9 | 7, 8 | eqtrdi 2785 |
. . . . . . . . . . 11
⊢ ((𝑃Lan𝐸) = ∅ → (𝐹(𝑃Lan𝐸)𝑋) = ∅) |
| 10 | 9 | necon3i 2963 |
. . . . . . . . . 10
⊢ ((𝐹(𝑃Lan𝐸)𝑋) ≠ ∅ → (𝑃Lan𝐸) ≠ ∅) |
| 11 | | n0 4326 |
. . . . . . . . . . 11
⊢ ((𝑃Lan𝐸) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑃Lan𝐸)) |
| 12 | | df-lan 49345 |
. . . . . . . . . . . . . 14
⊢ Lan =
(𝑝 ∈ (V × V),
𝑒 ∈ V ↦
⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd
‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F
𝑓)((𝑑 FuncCat 𝑒)UP(𝑐 FuncCat 𝑒))𝑥))) |
| 13 | 12 | elmpocl1 7644 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝑃Lan𝐸) → 𝑃 ∈ (V × V)) |
| 14 | | 1st2nd2 8022 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ (V × V) →
𝑃 = 〈(1st
‘𝑃), (2nd
‘𝑃)〉) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝑃Lan𝐸) → 𝑃 = 〈(1st ‘𝑃), (2nd ‘𝑃)〉) |
| 16 | 15 | exlimiv 1929 |
. . . . . . . . . . 11
⊢
(∃𝑥 𝑥 ∈ (𝑃Lan𝐸) → 𝑃 = 〈(1st ‘𝑃), (2nd ‘𝑃)〉) |
| 17 | 11, 16 | sylbi 217 |
. . . . . . . . . 10
⊢ ((𝑃Lan𝐸) ≠ ∅ → 𝑃 = 〈(1st ‘𝑃), (2nd ‘𝑃)〉) |
| 18 | 6, 10, 17 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → 𝑃 = 〈(1st ‘𝑃), (2nd ‘𝑃)〉) |
| 19 | 18 | oveq1d 7415 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (𝑃Lan𝐸) = (〈(1st ‘𝑃), (2nd ‘𝑃)〉Lan𝐸)) |
| 20 | 19 | oveqd 7417 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (𝐹(𝑃Lan𝐸)𝑋) = (𝐹(〈(1st ‘𝑃), (2nd ‘𝑃)〉Lan𝐸)𝑋)) |
| 21 | | eqid 2734 |
. . . . . . . 8
⊢
((2nd ‘𝑃) FuncCat 𝐸) = ((2nd ‘𝑃) FuncCat 𝐸) |
| 22 | | eqid 2734 |
. . . . . . . 8
⊢
((1st ‘𝑃) FuncCat 𝐸) = ((1st ‘𝑃) FuncCat 𝐸) |
| 23 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → 𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋)) |
| 24 | 23, 20 | eleqtrd 2835 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → 𝑥 ∈ (𝐹(〈(1st ‘𝑃), (2nd ‘𝑃)〉Lan𝐸)𝑋)) |
| 25 | | lanrcl 49357 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐹(〈(1st ‘𝑃), (2nd ‘𝑃)〉Lan𝐸)𝑋) → (𝐹 ∈ ((1st ‘𝑃) Func (2nd
‘𝑃)) ∧ 𝑋 ∈ ((1st
‘𝑃) Func 𝐸))) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (𝐹 ∈ ((1st ‘𝑃) Func (2nd
‘𝑃)) ∧ 𝑋 ∈ ((1st
‘𝑃) Func 𝐸))) |
| 27 | 26 | simpld 494 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → 𝐹 ∈ ((1st ‘𝑃) Func (2nd
‘𝑃))) |
| 28 | 26 | simprd 495 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → 𝑋 ∈ ((1st ‘𝑃) Func 𝐸)) |
| 29 | | eqidd 2735 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (〈(2nd ‘𝑃), 𝐸〉 −∘F
𝐹) = (〈(2nd
‘𝑃), 𝐸〉
−∘F 𝐹)) |
| 30 | 21, 22, 27, 28, 29 | lanval 49355 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (𝐹(〈(1st ‘𝑃), (2nd ‘𝑃)〉Lan𝐸)𝑋) = ((〈(2nd ‘𝑃), 𝐸〉 −∘F
𝐹)(((2nd
‘𝑃) FuncCat 𝐸)UP((1st ‘𝑃) FuncCat 𝐸))𝑋)) |
| 31 | 20, 30 | eqtrd 2769 |
. . . . . 6
⊢ (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (𝐹(𝑃Lan𝐸)𝑋) = ((〈(2nd ‘𝑃), 𝐸〉 −∘F
𝐹)(((2nd
‘𝑃) FuncCat 𝐸)UP((1st ‘𝑃) FuncCat 𝐸))𝑋)) |
| 32 | 31 | releqd 5755 |
. . . . 5
⊢ (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (Rel (𝐹(𝑃Lan𝐸)𝑋) ↔ Rel ((〈(2nd
‘𝑃), 𝐸〉
−∘F 𝐹)(((2nd ‘𝑃) FuncCat 𝐸)UP((1st ‘𝑃) FuncCat 𝐸))𝑋))) |
| 33 | 5, 32 | mpbiri 258 |
. . . 4
⊢ (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → Rel (𝐹(𝑃Lan𝐸)𝑋)) |
| 34 | 33 | exlimiv 1929 |
. . 3
⊢
(∃𝑥 𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → Rel (𝐹(𝑃Lan𝐸)𝑋)) |
| 35 | 4, 34 | sylbi 217 |
. 2
⊢ ((𝐹(𝑃Lan𝐸)𝑋) ≠ ∅ → Rel (𝐹(𝑃Lan𝐸)𝑋)) |
| 36 | 3, 35 | pm2.61ine 3014 |
1
⊢ Rel
(𝐹(𝑃Lan𝐸)𝑋) |