Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rellan Structured version   Visualization version   GIF version

Theorem rellan 49359
Description: The set of left Kan extensions is a relation. (Contributed by Zhi Wang, 3-Nov-2025.)
Assertion
Ref Expression
rellan Rel (𝐹(𝑃Lan𝐸)𝑋)

Proof of Theorem rellan
Dummy variables 𝑓 𝑥 𝑐 𝑑 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 5776 . . 3 Rel ∅
2 releq 5753 . . 3 ((𝐹(𝑃Lan𝐸)𝑋) = ∅ → (Rel (𝐹(𝑃Lan𝐸)𝑋) ↔ Rel ∅))
31, 2mpbiri 258 . 2 ((𝐹(𝑃Lan𝐸)𝑋) = ∅ → Rel (𝐹(𝑃Lan𝐸)𝑋))
4 n0 4326 . . 3 ((𝐹(𝑃Lan𝐸)𝑋) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋))
5 relup 48983 . . . . 5 Rel ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)(((2nd𝑃) FuncCat 𝐸)UP((1st𝑃) FuncCat 𝐸))𝑋)
6 ne0i 4314 . . . . . . . . . 10 (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (𝐹(𝑃Lan𝐸)𝑋) ≠ ∅)
7 oveq 7406 . . . . . . . . . . . 12 ((𝑃Lan𝐸) = ∅ → (𝐹(𝑃Lan𝐸)𝑋) = (𝐹𝑋))
8 0ov 7437 . . . . . . . . . . . 12 (𝐹𝑋) = ∅
97, 8eqtrdi 2785 . . . . . . . . . . 11 ((𝑃Lan𝐸) = ∅ → (𝐹(𝑃Lan𝐸)𝑋) = ∅)
109necon3i 2963 . . . . . . . . . 10 ((𝐹(𝑃Lan𝐸)𝑋) ≠ ∅ → (𝑃Lan𝐸) ≠ ∅)
11 n0 4326 . . . . . . . . . . 11 ((𝑃Lan𝐸) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑃Lan𝐸))
12 df-lan 49345 . . . . . . . . . . . . . 14 Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((⟨𝑑, 𝑒⟩ −∘F 𝑓)((𝑑 FuncCat 𝑒)UP(𝑐 FuncCat 𝑒))𝑥)))
1312elmpocl1 7644 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑃Lan𝐸) → 𝑃 ∈ (V × V))
14 1st2nd2 8022 . . . . . . . . . . . . 13 (𝑃 ∈ (V × V) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1513, 14syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑃Lan𝐸) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1615exlimiv 1929 . . . . . . . . . . 11 (∃𝑥 𝑥 ∈ (𝑃Lan𝐸) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1711, 16sylbi 217 . . . . . . . . . 10 ((𝑃Lan𝐸) ≠ ∅ → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
186, 10, 173syl 18 . . . . . . . . 9 (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1918oveq1d 7415 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (𝑃Lan𝐸) = (⟨(1st𝑃), (2nd𝑃)⟩Lan𝐸))
2019oveqd 7417 . . . . . . 7 (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (𝐹(𝑃Lan𝐸)𝑋) = (𝐹(⟨(1st𝑃), (2nd𝑃)⟩Lan𝐸)𝑋))
21 eqid 2734 . . . . . . . 8 ((2nd𝑃) FuncCat 𝐸) = ((2nd𝑃) FuncCat 𝐸)
22 eqid 2734 . . . . . . . 8 ((1st𝑃) FuncCat 𝐸) = ((1st𝑃) FuncCat 𝐸)
23 id 22 . . . . . . . . . . 11 (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → 𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋))
2423, 20eleqtrd 2835 . . . . . . . . . 10 (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → 𝑥 ∈ (𝐹(⟨(1st𝑃), (2nd𝑃)⟩Lan𝐸)𝑋))
25 lanrcl 49357 . . . . . . . . . 10 (𝑥 ∈ (𝐹(⟨(1st𝑃), (2nd𝑃)⟩Lan𝐸)𝑋) → (𝐹 ∈ ((1st𝑃) Func (2nd𝑃)) ∧ 𝑋 ∈ ((1st𝑃) Func 𝐸)))
2624, 25syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (𝐹 ∈ ((1st𝑃) Func (2nd𝑃)) ∧ 𝑋 ∈ ((1st𝑃) Func 𝐸)))
2726simpld 494 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → 𝐹 ∈ ((1st𝑃) Func (2nd𝑃)))
2826simprd 495 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → 𝑋 ∈ ((1st𝑃) Func 𝐸))
29 eqidd 2735 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹) = (⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹))
3021, 22, 27, 28, 29lanval 49355 . . . . . . 7 (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (𝐹(⟨(1st𝑃), (2nd𝑃)⟩Lan𝐸)𝑋) = ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)(((2nd𝑃) FuncCat 𝐸)UP((1st𝑃) FuncCat 𝐸))𝑋))
3120, 30eqtrd 2769 . . . . . 6 (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (𝐹(𝑃Lan𝐸)𝑋) = ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)(((2nd𝑃) FuncCat 𝐸)UP((1st𝑃) FuncCat 𝐸))𝑋))
3231releqd 5755 . . . . 5 (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → (Rel (𝐹(𝑃Lan𝐸)𝑋) ↔ Rel ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)(((2nd𝑃) FuncCat 𝐸)UP((1st𝑃) FuncCat 𝐸))𝑋)))
335, 32mpbiri 258 . . . 4 (𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → Rel (𝐹(𝑃Lan𝐸)𝑋))
3433exlimiv 1929 . . 3 (∃𝑥 𝑥 ∈ (𝐹(𝑃Lan𝐸)𝑋) → Rel (𝐹(𝑃Lan𝐸)𝑋))
354, 34sylbi 217 . 2 ((𝐹(𝑃Lan𝐸)𝑋) ≠ ∅ → Rel (𝐹(𝑃Lan𝐸)𝑋))
363, 35pm2.61ine 3014 1 Rel (𝐹(𝑃Lan𝐸)𝑋)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  Vcvv 3457  csb 3872  c0 4306  cop 4605   × cxp 5650  Rel wrel 5657  cfv 6528  (class class class)co 7400  cmpo 7402  1st c1st 7981  2nd c2nd 7982   Func cfunc 17854   FuncCat cfuc 17945  UPcup 48974   −∘F cprcof 49147  Lanclan 49343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-func 17858  df-up 48975  df-lan 49345
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator