MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf5 Structured version   Visualization version   GIF version

Theorem islindf5 20975
Description: A family is independent iff the linear combinations homomorphism is injective. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
islindf5.f 𝐹 = (𝑅 freeLMod 𝐼)
islindf5.b 𝐵 = (Base‘𝐹)
islindf5.c 𝐶 = (Base‘𝑇)
islindf5.v · = ( ·𝑠𝑇)
islindf5.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
islindf5.t (𝜑𝑇 ∈ LMod)
islindf5.i (𝜑𝐼𝑋)
islindf5.r (𝜑𝑅 = (Scalar‘𝑇))
islindf5.a (𝜑𝐴:𝐼𝐶)
Assertion
Ref Expression
islindf5 (𝜑 → (𝐴 LIndF 𝑇𝐸:𝐵1-1𝐶))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐼   𝑥,𝑅   𝑥,𝑇   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem islindf5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 islindf5.t . . . 4 (𝜑𝑇 ∈ LMod)
2 islindf5.i . . . 4 (𝜑𝐼𝑋)
3 islindf5.a . . . 4 (𝜑𝐴:𝐼𝐶)
4 islindf5.c . . . . 5 𝐶 = (Base‘𝑇)
5 eqid 2819 . . . . 5 (Scalar‘𝑇) = (Scalar‘𝑇)
6 islindf5.v . . . . 5 · = ( ·𝑠𝑇)
7 eqid 2819 . . . . 5 (0g𝑇) = (0g𝑇)
8 eqid 2819 . . . . 5 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
9 eqid 2819 . . . . 5 (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = (Base‘((Scalar‘𝑇) freeLMod 𝐼))
104, 5, 6, 7, 8, 9islindf4 20974 . . . 4 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → (𝐴 LIndF 𝑇 ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))))
111, 2, 3, 10syl3anc 1365 . . 3 (𝜑 → (𝐴 LIndF 𝑇 ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))))
12 oveq1 7155 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥f · 𝐴) = (𝑦f · 𝐴))
1312oveq2d 7164 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg (𝑦f · 𝐴)))
14 islindf5.e . . . . . . . . 9 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
15 ovex 7181 . . . . . . . . 9 (𝑇 Σg (𝑦f · 𝐴)) ∈ V
1613, 14, 15fvmpt 6761 . . . . . . . 8 (𝑦𝐵 → (𝐸𝑦) = (𝑇 Σg (𝑦f · 𝐴)))
1716adantl 484 . . . . . . 7 ((𝜑𝑦𝐵) → (𝐸𝑦) = (𝑇 Σg (𝑦f · 𝐴)))
1817eqeq1d 2821 . . . . . 6 ((𝜑𝑦𝐵) → ((𝐸𝑦) = (0g𝑇) ↔ (𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇)))
19 islindf5.r . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘𝑇))
205lmodring 19634 . . . . . . . . . . . 12 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
211, 20syl 17 . . . . . . . . . . 11 (𝜑 → (Scalar‘𝑇) ∈ Ring)
2219, 21eqeltrd 2911 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
23 islindf5.f . . . . . . . . . . 11 𝐹 = (𝑅 freeLMod 𝐼)
24 eqid 2819 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
2523, 24frlm0 20890 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → (𝐼 × {(0g𝑅)}) = (0g𝐹))
2622, 2, 25syl2anc 586 . . . . . . . . 9 (𝜑 → (𝐼 × {(0g𝑅)}) = (0g𝐹))
2719fveq2d 6667 . . . . . . . . . . 11 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑇)))
2827sneqd 4571 . . . . . . . . . 10 (𝜑 → {(0g𝑅)} = {(0g‘(Scalar‘𝑇))})
2928xpeq2d 5578 . . . . . . . . 9 (𝜑 → (𝐼 × {(0g𝑅)}) = (𝐼 × {(0g‘(Scalar‘𝑇))}))
3026, 29eqtr3d 2856 . . . . . . . 8 (𝜑 → (0g𝐹) = (𝐼 × {(0g‘(Scalar‘𝑇))}))
3130adantr 483 . . . . . . 7 ((𝜑𝑦𝐵) → (0g𝐹) = (𝐼 × {(0g‘(Scalar‘𝑇))}))
3231eqeq2d 2830 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦 = (0g𝐹) ↔ 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))
3318, 32imbi12d 347 . . . . 5 ((𝜑𝑦𝐵) → (((𝐸𝑦) = (0g𝑇) → 𝑦 = (0g𝐹)) ↔ ((𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))))
3433ralbidva 3194 . . . 4 (𝜑 → (∀𝑦𝐵 ((𝐸𝑦) = (0g𝑇) → 𝑦 = (0g𝐹)) ↔ ∀𝑦𝐵 ((𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))))
3519eqcomd 2825 . . . . . . . . 9 (𝜑 → (Scalar‘𝑇) = 𝑅)
3635oveq1d 7163 . . . . . . . 8 (𝜑 → ((Scalar‘𝑇) freeLMod 𝐼) = (𝑅 freeLMod 𝐼))
3736, 23syl6eqr 2872 . . . . . . 7 (𝜑 → ((Scalar‘𝑇) freeLMod 𝐼) = 𝐹)
3837fveq2d 6667 . . . . . 6 (𝜑 → (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = (Base‘𝐹))
39 islindf5.b . . . . . 6 𝐵 = (Base‘𝐹)
4038, 39syl6eqr 2872 . . . . 5 (𝜑 → (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = 𝐵)
4140raleqdv 3414 . . . 4 (𝜑 → (∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})) ↔ ∀𝑦𝐵 ((𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))))
4234, 41bitr4d 284 . . 3 (𝜑 → (∀𝑦𝐵 ((𝐸𝑦) = (0g𝑇) → 𝑦 = (0g𝐹)) ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))))
4311, 42bitr4d 284 . 2 (𝜑 → (𝐴 LIndF 𝑇 ↔ ∀𝑦𝐵 ((𝐸𝑦) = (0g𝑇) → 𝑦 = (0g𝐹))))
4423, 39, 4, 6, 14, 1, 2, 19, 3frlmup1 20934 . . 3 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
45 lmghm 19795 . . 3 (𝐸 ∈ (𝐹 LMHom 𝑇) → 𝐸 ∈ (𝐹 GrpHom 𝑇))
46 eqid 2819 . . . 4 (0g𝐹) = (0g𝐹)
4739, 4, 46, 7ghmf1 18379 . . 3 (𝐸 ∈ (𝐹 GrpHom 𝑇) → (𝐸:𝐵1-1𝐶 ↔ ∀𝑦𝐵 ((𝐸𝑦) = (0g𝑇) → 𝑦 = (0g𝐹))))
4844, 45, 473syl 18 . 2 (𝜑 → (𝐸:𝐵1-1𝐶 ↔ ∀𝑦𝐵 ((𝐸𝑦) = (0g𝑇) → 𝑦 = (0g𝐹))))
4943, 48bitr4d 284 1 (𝜑 → (𝐴 LIndF 𝑇𝐸:𝐵1-1𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107  wral 3136  {csn 4559   class class class wbr 5057  cmpt 5137   × cxp 5546  wf 6344  1-1wf1 6345  cfv 6348  (class class class)co 7148  f cof 7399  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706   GrpHom cghm 18347  Ringcrg 19289  LModclmod 19626   LMHom clmhm 19783   freeLMod cfrlm 20882   LIndF clindf 20940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-subrg 19525  df-lmod 19628  df-lss 19696  df-lsp 19736  df-lmhm 19786  df-lbs 19839  df-sra 19936  df-rgmod 19937  df-nzr 20023  df-dsmm 20868  df-frlm 20883  df-uvc 20919  df-lindf 20942
This theorem is referenced by:  indlcim  20976
  Copyright terms: Public domain W3C validator