Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islindf5 | Structured version Visualization version GIF version |
Description: A family is independent iff the linear combinations homomorphism is injective. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
islindf5.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
islindf5.b | ⊢ 𝐵 = (Base‘𝐹) |
islindf5.c | ⊢ 𝐶 = (Base‘𝑇) |
islindf5.v | ⊢ · = ( ·𝑠 ‘𝑇) |
islindf5.e | ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) |
islindf5.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
islindf5.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
islindf5.r | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
islindf5.a | ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
Ref | Expression |
---|---|
islindf5 | ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islindf5.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
2 | islindf5.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
3 | islindf5.a | . . . 4 ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) | |
4 | islindf5.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑇) | |
5 | eqid 2738 | . . . . 5 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
6 | islindf5.v | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑇) | |
7 | eqid 2738 | . . . . 5 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
8 | eqid 2738 | . . . . 5 ⊢ (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇)) | |
9 | eqid 2738 | . . . . 5 ⊢ (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = (Base‘((Scalar‘𝑇) freeLMod 𝐼)) | |
10 | 4, 5, 6, 7, 8, 9 | islindf4 20955 | . . . 4 ⊢ ((𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴:𝐼⟶𝐶) → (𝐴 LIndF 𝑇 ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
11 | 1, 2, 3, 10 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
12 | oveq1 7262 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 ∘f · 𝐴) = (𝑦 ∘f · 𝐴)) | |
13 | 12 | oveq2d 7271 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑇 Σg (𝑥 ∘f · 𝐴)) = (𝑇 Σg (𝑦 ∘f · 𝐴))) |
14 | islindf5.e | . . . . . . . . 9 ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) | |
15 | ovex 7288 | . . . . . . . . 9 ⊢ (𝑇 Σg (𝑦 ∘f · 𝐴)) ∈ V | |
16 | 13, 14, 15 | fvmpt 6857 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐵 → (𝐸‘𝑦) = (𝑇 Σg (𝑦 ∘f · 𝐴))) |
17 | 16 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐸‘𝑦) = (𝑇 Σg (𝑦 ∘f · 𝐴))) |
18 | 17 | eqeq1d 2740 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝐸‘𝑦) = (0g‘𝑇) ↔ (𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇))) |
19 | islindf5.r | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) | |
20 | 5 | lmodring 20046 | . . . . . . . . . . . 12 ⊢ (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring) |
21 | 1, 20 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (Scalar‘𝑇) ∈ Ring) |
22 | 19, 21 | eqeltrd 2839 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ Ring) |
23 | islindf5.f | . . . . . . . . . . 11 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
24 | eqid 2738 | . . . . . . . . . . 11 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
25 | 23, 24 | frlm0 20871 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → (𝐼 × {(0g‘𝑅)}) = (0g‘𝐹)) |
26 | 22, 2, 25 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 × {(0g‘𝑅)}) = (0g‘𝐹)) |
27 | 19 | fveq2d 6760 | . . . . . . . . . . 11 ⊢ (𝜑 → (0g‘𝑅) = (0g‘(Scalar‘𝑇))) |
28 | 27 | sneqd 4570 | . . . . . . . . . 10 ⊢ (𝜑 → {(0g‘𝑅)} = {(0g‘(Scalar‘𝑇))}) |
29 | 28 | xpeq2d 5610 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 × {(0g‘𝑅)}) = (𝐼 × {(0g‘(Scalar‘𝑇))})) |
30 | 26, 29 | eqtr3d 2780 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝐹) = (𝐼 × {(0g‘(Scalar‘𝑇))})) |
31 | 30 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (0g‘𝐹) = (𝐼 × {(0g‘(Scalar‘𝑇))})) |
32 | 31 | eqeq2d 2749 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 = (0g‘𝐹) ↔ 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))) |
33 | 18, 32 | imbi12d 344 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)) ↔ ((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
34 | 33 | ralbidva 3119 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)) ↔ ∀𝑦 ∈ 𝐵 ((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
35 | 19 | eqcomd 2744 | . . . . . . . . 9 ⊢ (𝜑 → (Scalar‘𝑇) = 𝑅) |
36 | 35 | oveq1d 7270 | . . . . . . . 8 ⊢ (𝜑 → ((Scalar‘𝑇) freeLMod 𝐼) = (𝑅 freeLMod 𝐼)) |
37 | 36, 23 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝜑 → ((Scalar‘𝑇) freeLMod 𝐼) = 𝐹) |
38 | 37 | fveq2d 6760 | . . . . . 6 ⊢ (𝜑 → (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = (Base‘𝐹)) |
39 | islindf5.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐹) | |
40 | 38, 39 | eqtr4di 2797 | . . . . 5 ⊢ (𝜑 → (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = 𝐵) |
41 | 40 | raleqdv 3339 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})) ↔ ∀𝑦 ∈ 𝐵 ((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
42 | 34, 41 | bitr4d 281 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)) ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
43 | 11, 42 | bitr4d 281 | . 2 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ ∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)))) |
44 | 23, 39, 4, 6, 14, 1, 2, 19, 3 | frlmup1 20915 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |
45 | lmghm 20208 | . . 3 ⊢ (𝐸 ∈ (𝐹 LMHom 𝑇) → 𝐸 ∈ (𝐹 GrpHom 𝑇)) | |
46 | eqid 2738 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
47 | 39, 4, 46, 7 | ghmf1 18778 | . . 3 ⊢ (𝐸 ∈ (𝐹 GrpHom 𝑇) → (𝐸:𝐵–1-1→𝐶 ↔ ∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)))) |
48 | 44, 45, 47 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐸:𝐵–1-1→𝐶 ↔ ∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)))) |
49 | 43, 48 | bitr4d 281 | 1 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {csn 4558 class class class wbr 5070 ↦ cmpt 5153 × cxp 5578 ⟶wf 6414 –1-1→wf1 6415 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 Σg cgsu 17068 GrpHom cghm 18746 Ringcrg 19698 LModclmod 20038 LMHom clmhm 20196 freeLMod cfrlm 20863 LIndF clindf 20921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lmhm 20199 df-lbs 20252 df-sra 20349 df-rgmod 20350 df-nzr 20442 df-dsmm 20849 df-frlm 20864 df-uvc 20900 df-lindf 20923 |
This theorem is referenced by: indlcim 20957 |
Copyright terms: Public domain | W3C validator |