| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islindf5 | Structured version Visualization version GIF version | ||
| Description: A family is independent iff the linear combinations homomorphism is injective. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| islindf5.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| islindf5.b | ⊢ 𝐵 = (Base‘𝐹) |
| islindf5.c | ⊢ 𝐶 = (Base‘𝑇) |
| islindf5.v | ⊢ · = ( ·𝑠 ‘𝑇) |
| islindf5.e | ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) |
| islindf5.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
| islindf5.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| islindf5.r | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
| islindf5.a | ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
| Ref | Expression |
|---|---|
| islindf5 | ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islindf5.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
| 2 | islindf5.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 3 | islindf5.a | . . . 4 ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) | |
| 4 | islindf5.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑇) | |
| 5 | eqid 2730 | . . . . 5 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 6 | islindf5.v | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑇) | |
| 7 | eqid 2730 | . . . . 5 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 8 | eqid 2730 | . . . . 5 ⊢ (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇)) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = (Base‘((Scalar‘𝑇) freeLMod 𝐼)) | |
| 10 | 4, 5, 6, 7, 8, 9 | islindf4 21754 | . . . 4 ⊢ ((𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴:𝐼⟶𝐶) → (𝐴 LIndF 𝑇 ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
| 11 | 1, 2, 3, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
| 12 | oveq1 7397 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 ∘f · 𝐴) = (𝑦 ∘f · 𝐴)) | |
| 13 | 12 | oveq2d 7406 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑇 Σg (𝑥 ∘f · 𝐴)) = (𝑇 Σg (𝑦 ∘f · 𝐴))) |
| 14 | islindf5.e | . . . . . . . . 9 ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) | |
| 15 | ovex 7423 | . . . . . . . . 9 ⊢ (𝑇 Σg (𝑦 ∘f · 𝐴)) ∈ V | |
| 16 | 13, 14, 15 | fvmpt 6971 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐵 → (𝐸‘𝑦) = (𝑇 Σg (𝑦 ∘f · 𝐴))) |
| 17 | 16 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐸‘𝑦) = (𝑇 Σg (𝑦 ∘f · 𝐴))) |
| 18 | 17 | eqeq1d 2732 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝐸‘𝑦) = (0g‘𝑇) ↔ (𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇))) |
| 19 | islindf5.r | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) | |
| 20 | 5 | lmodring 20781 | . . . . . . . . . . . 12 ⊢ (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring) |
| 21 | 1, 20 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (Scalar‘𝑇) ∈ Ring) |
| 22 | 19, 21 | eqeltrd 2829 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 23 | islindf5.f | . . . . . . . . . . 11 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 24 | eqid 2730 | . . . . . . . . . . 11 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 25 | 23, 24 | frlm0 21670 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → (𝐼 × {(0g‘𝑅)}) = (0g‘𝐹)) |
| 26 | 22, 2, 25 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 × {(0g‘𝑅)}) = (0g‘𝐹)) |
| 27 | 19 | fveq2d 6865 | . . . . . . . . . . 11 ⊢ (𝜑 → (0g‘𝑅) = (0g‘(Scalar‘𝑇))) |
| 28 | 27 | sneqd 4604 | . . . . . . . . . 10 ⊢ (𝜑 → {(0g‘𝑅)} = {(0g‘(Scalar‘𝑇))}) |
| 29 | 28 | xpeq2d 5671 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 × {(0g‘𝑅)}) = (𝐼 × {(0g‘(Scalar‘𝑇))})) |
| 30 | 26, 29 | eqtr3d 2767 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝐹) = (𝐼 × {(0g‘(Scalar‘𝑇))})) |
| 31 | 30 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (0g‘𝐹) = (𝐼 × {(0g‘(Scalar‘𝑇))})) |
| 32 | 31 | eqeq2d 2741 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 = (0g‘𝐹) ↔ 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))) |
| 33 | 18, 32 | imbi12d 344 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)) ↔ ((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
| 34 | 33 | ralbidva 3155 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)) ↔ ∀𝑦 ∈ 𝐵 ((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
| 35 | 19 | eqcomd 2736 | . . . . . . . . 9 ⊢ (𝜑 → (Scalar‘𝑇) = 𝑅) |
| 36 | 35 | oveq1d 7405 | . . . . . . . 8 ⊢ (𝜑 → ((Scalar‘𝑇) freeLMod 𝐼) = (𝑅 freeLMod 𝐼)) |
| 37 | 36, 23 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝜑 → ((Scalar‘𝑇) freeLMod 𝐼) = 𝐹) |
| 38 | 37 | fveq2d 6865 | . . . . . 6 ⊢ (𝜑 → (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = (Base‘𝐹)) |
| 39 | islindf5.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐹) | |
| 40 | 38, 39 | eqtr4di 2783 | . . . . 5 ⊢ (𝜑 → (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = 𝐵) |
| 41 | 40 | raleqdv 3301 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})) ↔ ∀𝑦 ∈ 𝐵 ((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
| 42 | 34, 41 | bitr4d 282 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)) ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
| 43 | 11, 42 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ ∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)))) |
| 44 | 23, 39, 4, 6, 14, 1, 2, 19, 3 | frlmup1 21714 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |
| 45 | lmghm 20945 | . . 3 ⊢ (𝐸 ∈ (𝐹 LMHom 𝑇) → 𝐸 ∈ (𝐹 GrpHom 𝑇)) | |
| 46 | eqid 2730 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 47 | 39, 4, 46, 7 | ghmf1 19185 | . . 3 ⊢ (𝐸 ∈ (𝐹 GrpHom 𝑇) → (𝐸:𝐵–1-1→𝐶 ↔ ∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)))) |
| 48 | 44, 45, 47 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐸:𝐵–1-1→𝐶 ↔ ∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)))) |
| 49 | 43, 48 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {csn 4592 class class class wbr 5110 ↦ cmpt 5191 × cxp 5639 ⟶wf 6510 –1-1→wf1 6511 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17409 Σg cgsu 17410 GrpHom cghm 19151 Ringcrg 20149 LModclmod 20773 LMHom clmhm 20933 freeLMod cfrlm 21662 LIndF clindf 21720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-nzr 20429 df-subrg 20486 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lmhm 20936 df-lbs 20989 df-sra 21087 df-rgmod 21088 df-dsmm 21648 df-frlm 21663 df-uvc 21699 df-lindf 21722 |
| This theorem is referenced by: indlcim 21756 |
| Copyright terms: Public domain | W3C validator |