| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islindf5 | Structured version Visualization version GIF version | ||
| Description: A family is independent iff the linear combinations homomorphism is injective. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| islindf5.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| islindf5.b | ⊢ 𝐵 = (Base‘𝐹) |
| islindf5.c | ⊢ 𝐶 = (Base‘𝑇) |
| islindf5.v | ⊢ · = ( ·𝑠 ‘𝑇) |
| islindf5.e | ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) |
| islindf5.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
| islindf5.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| islindf5.r | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
| islindf5.a | ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
| Ref | Expression |
|---|---|
| islindf5 | ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islindf5.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
| 2 | islindf5.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 3 | islindf5.a | . . . 4 ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) | |
| 4 | islindf5.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑇) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 6 | islindf5.v | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑇) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇)) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = (Base‘((Scalar‘𝑇) freeLMod 𝐼)) | |
| 10 | 4, 5, 6, 7, 8, 9 | islindf4 21763 | . . . 4 ⊢ ((𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴:𝐼⟶𝐶) → (𝐴 LIndF 𝑇 ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
| 11 | 1, 2, 3, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
| 12 | oveq1 7360 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 ∘f · 𝐴) = (𝑦 ∘f · 𝐴)) | |
| 13 | 12 | oveq2d 7369 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑇 Σg (𝑥 ∘f · 𝐴)) = (𝑇 Σg (𝑦 ∘f · 𝐴))) |
| 14 | islindf5.e | . . . . . . . . 9 ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) | |
| 15 | ovex 7386 | . . . . . . . . 9 ⊢ (𝑇 Σg (𝑦 ∘f · 𝐴)) ∈ V | |
| 16 | 13, 14, 15 | fvmpt 6934 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐵 → (𝐸‘𝑦) = (𝑇 Σg (𝑦 ∘f · 𝐴))) |
| 17 | 16 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐸‘𝑦) = (𝑇 Σg (𝑦 ∘f · 𝐴))) |
| 18 | 17 | eqeq1d 2731 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝐸‘𝑦) = (0g‘𝑇) ↔ (𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇))) |
| 19 | islindf5.r | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) | |
| 20 | 5 | lmodring 20789 | . . . . . . . . . . . 12 ⊢ (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring) |
| 21 | 1, 20 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (Scalar‘𝑇) ∈ Ring) |
| 22 | 19, 21 | eqeltrd 2828 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 23 | islindf5.f | . . . . . . . . . . 11 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 24 | eqid 2729 | . . . . . . . . . . 11 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 25 | 23, 24 | frlm0 21679 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → (𝐼 × {(0g‘𝑅)}) = (0g‘𝐹)) |
| 26 | 22, 2, 25 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 × {(0g‘𝑅)}) = (0g‘𝐹)) |
| 27 | 19 | fveq2d 6830 | . . . . . . . . . . 11 ⊢ (𝜑 → (0g‘𝑅) = (0g‘(Scalar‘𝑇))) |
| 28 | 27 | sneqd 4591 | . . . . . . . . . 10 ⊢ (𝜑 → {(0g‘𝑅)} = {(0g‘(Scalar‘𝑇))}) |
| 29 | 28 | xpeq2d 5653 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 × {(0g‘𝑅)}) = (𝐼 × {(0g‘(Scalar‘𝑇))})) |
| 30 | 26, 29 | eqtr3d 2766 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝐹) = (𝐼 × {(0g‘(Scalar‘𝑇))})) |
| 31 | 30 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (0g‘𝐹) = (𝐼 × {(0g‘(Scalar‘𝑇))})) |
| 32 | 31 | eqeq2d 2740 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 = (0g‘𝐹) ↔ 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))) |
| 33 | 18, 32 | imbi12d 344 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)) ↔ ((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
| 34 | 33 | ralbidva 3150 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)) ↔ ∀𝑦 ∈ 𝐵 ((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
| 35 | 19 | eqcomd 2735 | . . . . . . . . 9 ⊢ (𝜑 → (Scalar‘𝑇) = 𝑅) |
| 36 | 35 | oveq1d 7368 | . . . . . . . 8 ⊢ (𝜑 → ((Scalar‘𝑇) freeLMod 𝐼) = (𝑅 freeLMod 𝐼)) |
| 37 | 36, 23 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝜑 → ((Scalar‘𝑇) freeLMod 𝐼) = 𝐹) |
| 38 | 37 | fveq2d 6830 | . . . . . 6 ⊢ (𝜑 → (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = (Base‘𝐹)) |
| 39 | islindf5.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐹) | |
| 40 | 38, 39 | eqtr4di 2782 | . . . . 5 ⊢ (𝜑 → (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = 𝐵) |
| 41 | 40 | raleqdv 3290 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})) ↔ ∀𝑦 ∈ 𝐵 ((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
| 42 | 34, 41 | bitr4d 282 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)) ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦 ∘f · 𝐴)) = (0g‘𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))) |
| 43 | 11, 42 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ ∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)))) |
| 44 | 23, 39, 4, 6, 14, 1, 2, 19, 3 | frlmup1 21723 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |
| 45 | lmghm 20953 | . . 3 ⊢ (𝐸 ∈ (𝐹 LMHom 𝑇) → 𝐸 ∈ (𝐹 GrpHom 𝑇)) | |
| 46 | eqid 2729 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 47 | 39, 4, 46, 7 | ghmf1 19143 | . . 3 ⊢ (𝐸 ∈ (𝐹 GrpHom 𝑇) → (𝐸:𝐵–1-1→𝐶 ↔ ∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)))) |
| 48 | 44, 45, 47 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐸:𝐵–1-1→𝐶 ↔ ∀𝑦 ∈ 𝐵 ((𝐸‘𝑦) = (0g‘𝑇) → 𝑦 = (0g‘𝐹)))) |
| 49 | 43, 48 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {csn 4579 class class class wbr 5095 ↦ cmpt 5176 × cxp 5621 ⟶wf 6482 –1-1→wf1 6483 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 Basecbs 17138 Scalarcsca 17182 ·𝑠 cvsca 17183 0gc0g 17361 Σg cgsu 17362 GrpHom cghm 19109 Ringcrg 20136 LModclmod 20781 LMHom clmhm 20941 freeLMod cfrlm 21671 LIndF clindf 21729 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-nzr 20416 df-subrg 20473 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lmhm 20944 df-lbs 20997 df-sra 21095 df-rgmod 21096 df-dsmm 21657 df-frlm 21672 df-uvc 21708 df-lindf 21731 |
| This theorem is referenced by: indlcim 21765 |
| Copyright terms: Public domain | W3C validator |