MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf5 Structured version   Visualization version   GIF version

Theorem islindf5 21777
Description: A family is independent iff the linear combinations homomorphism is injective. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
islindf5.f 𝐹 = (𝑅 freeLMod 𝐼)
islindf5.b 𝐵 = (Base‘𝐹)
islindf5.c 𝐶 = (Base‘𝑇)
islindf5.v · = ( ·𝑠𝑇)
islindf5.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
islindf5.t (𝜑𝑇 ∈ LMod)
islindf5.i (𝜑𝐼𝑋)
islindf5.r (𝜑𝑅 = (Scalar‘𝑇))
islindf5.a (𝜑𝐴:𝐼𝐶)
Assertion
Ref Expression
islindf5 (𝜑 → (𝐴 LIndF 𝑇𝐸:𝐵1-1𝐶))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐼   𝑥,𝑅   𝑥,𝑇   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem islindf5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 islindf5.t . . . 4 (𝜑𝑇 ∈ LMod)
2 islindf5.i . . . 4 (𝜑𝐼𝑋)
3 islindf5.a . . . 4 (𝜑𝐴:𝐼𝐶)
4 islindf5.c . . . . 5 𝐶 = (Base‘𝑇)
5 eqid 2731 . . . . 5 (Scalar‘𝑇) = (Scalar‘𝑇)
6 islindf5.v . . . . 5 · = ( ·𝑠𝑇)
7 eqid 2731 . . . . 5 (0g𝑇) = (0g𝑇)
8 eqid 2731 . . . . 5 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
9 eqid 2731 . . . . 5 (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = (Base‘((Scalar‘𝑇) freeLMod 𝐼))
104, 5, 6, 7, 8, 9islindf4 21776 . . . 4 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → (𝐴 LIndF 𝑇 ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))))
111, 2, 3, 10syl3anc 1373 . . 3 (𝜑 → (𝐴 LIndF 𝑇 ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))))
12 oveq1 7353 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥f · 𝐴) = (𝑦f · 𝐴))
1312oveq2d 7362 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg (𝑦f · 𝐴)))
14 islindf5.e . . . . . . . . 9 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
15 ovex 7379 . . . . . . . . 9 (𝑇 Σg (𝑦f · 𝐴)) ∈ V
1613, 14, 15fvmpt 6929 . . . . . . . 8 (𝑦𝐵 → (𝐸𝑦) = (𝑇 Σg (𝑦f · 𝐴)))
1716adantl 481 . . . . . . 7 ((𝜑𝑦𝐵) → (𝐸𝑦) = (𝑇 Σg (𝑦f · 𝐴)))
1817eqeq1d 2733 . . . . . 6 ((𝜑𝑦𝐵) → ((𝐸𝑦) = (0g𝑇) ↔ (𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇)))
19 islindf5.r . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘𝑇))
205lmodring 20802 . . . . . . . . . . . 12 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
211, 20syl 17 . . . . . . . . . . 11 (𝜑 → (Scalar‘𝑇) ∈ Ring)
2219, 21eqeltrd 2831 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
23 islindf5.f . . . . . . . . . . 11 𝐹 = (𝑅 freeLMod 𝐼)
24 eqid 2731 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
2523, 24frlm0 21692 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → (𝐼 × {(0g𝑅)}) = (0g𝐹))
2622, 2, 25syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐼 × {(0g𝑅)}) = (0g𝐹))
2719fveq2d 6826 . . . . . . . . . . 11 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑇)))
2827sneqd 4588 . . . . . . . . . 10 (𝜑 → {(0g𝑅)} = {(0g‘(Scalar‘𝑇))})
2928xpeq2d 5646 . . . . . . . . 9 (𝜑 → (𝐼 × {(0g𝑅)}) = (𝐼 × {(0g‘(Scalar‘𝑇))}))
3026, 29eqtr3d 2768 . . . . . . . 8 (𝜑 → (0g𝐹) = (𝐼 × {(0g‘(Scalar‘𝑇))}))
3130adantr 480 . . . . . . 7 ((𝜑𝑦𝐵) → (0g𝐹) = (𝐼 × {(0g‘(Scalar‘𝑇))}))
3231eqeq2d 2742 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦 = (0g𝐹) ↔ 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})))
3318, 32imbi12d 344 . . . . 5 ((𝜑𝑦𝐵) → (((𝐸𝑦) = (0g𝑇) → 𝑦 = (0g𝐹)) ↔ ((𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))))
3433ralbidva 3153 . . . 4 (𝜑 → (∀𝑦𝐵 ((𝐸𝑦) = (0g𝑇) → 𝑦 = (0g𝐹)) ↔ ∀𝑦𝐵 ((𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))))
3519eqcomd 2737 . . . . . . . . 9 (𝜑 → (Scalar‘𝑇) = 𝑅)
3635oveq1d 7361 . . . . . . . 8 (𝜑 → ((Scalar‘𝑇) freeLMod 𝐼) = (𝑅 freeLMod 𝐼))
3736, 23eqtr4di 2784 . . . . . . 7 (𝜑 → ((Scalar‘𝑇) freeLMod 𝐼) = 𝐹)
3837fveq2d 6826 . . . . . 6 (𝜑 → (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = (Base‘𝐹))
39 islindf5.b . . . . . 6 𝐵 = (Base‘𝐹)
4038, 39eqtr4di 2784 . . . . 5 (𝜑 → (Base‘((Scalar‘𝑇) freeLMod 𝐼)) = 𝐵)
4140raleqdv 3292 . . . 4 (𝜑 → (∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))})) ↔ ∀𝑦𝐵 ((𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))))
4234, 41bitr4d 282 . . 3 (𝜑 → (∀𝑦𝐵 ((𝐸𝑦) = (0g𝑇) → 𝑦 = (0g𝐹)) ↔ ∀𝑦 ∈ (Base‘((Scalar‘𝑇) freeLMod 𝐼))((𝑇 Σg (𝑦f · 𝐴)) = (0g𝑇) → 𝑦 = (𝐼 × {(0g‘(Scalar‘𝑇))}))))
4311, 42bitr4d 282 . 2 (𝜑 → (𝐴 LIndF 𝑇 ↔ ∀𝑦𝐵 ((𝐸𝑦) = (0g𝑇) → 𝑦 = (0g𝐹))))
4423, 39, 4, 6, 14, 1, 2, 19, 3frlmup1 21736 . . 3 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
45 lmghm 20966 . . 3 (𝐸 ∈ (𝐹 LMHom 𝑇) → 𝐸 ∈ (𝐹 GrpHom 𝑇))
46 eqid 2731 . . . 4 (0g𝐹) = (0g𝐹)
4739, 4, 46, 7ghmf1 19159 . . 3 (𝐸 ∈ (𝐹 GrpHom 𝑇) → (𝐸:𝐵1-1𝐶 ↔ ∀𝑦𝐵 ((𝐸𝑦) = (0g𝑇) → 𝑦 = (0g𝐹))))
4844, 45, 473syl 18 . 2 (𝜑 → (𝐸:𝐵1-1𝐶 ↔ ∀𝑦𝐵 ((𝐸𝑦) = (0g𝑇) → 𝑦 = (0g𝐹))))
4943, 48bitr4d 282 1 (𝜑 → (𝐴 LIndF 𝑇𝐸:𝐵1-1𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {csn 4576   class class class wbr 5091  cmpt 5172   × cxp 5614  wf 6477  1-1wf1 6478  cfv 6481  (class class class)co 7346  f cof 7608  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344   GrpHom cghm 19125  Ringcrg 20152  LModclmod 20794   LMHom clmhm 20954   freeLMod cfrlm 21684   LIndF clindf 21742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19126  df-cntz 19230  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-nzr 20429  df-subrg 20486  df-lmod 20796  df-lss 20866  df-lsp 20906  df-lmhm 20957  df-lbs 21010  df-sra 21108  df-rgmod 21109  df-dsmm 21670  df-frlm 21685  df-uvc 21721  df-lindf 21744
This theorem is referenced by:  indlcim  21778
  Copyright terms: Public domain W3C validator