MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf Structured version   Visualization version   GIF version

Theorem islindf 21849
Description: Property of an independent family of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
islindf.b 𝐵 = (Base‘𝑊)
islindf.v · = ( ·𝑠𝑊)
islindf.k 𝐾 = (LSpan‘𝑊)
islindf.s 𝑆 = (Scalar‘𝑊)
islindf.n 𝑁 = (Base‘𝑆)
islindf.z 0 = (0g𝑆)
Assertion
Ref Expression
islindf ((𝑊𝑌𝐹𝑋) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑁   𝑘,𝑊,𝑥   0 ,𝑘
Allowed substitution hints:   𝐵(𝑥,𝑘)   𝑆(𝑥,𝑘)   · (𝑥,𝑘)   𝐾(𝑥,𝑘)   𝑁(𝑥)   𝑋(𝑥,𝑘)   𝑌(𝑥,𝑘)   0 (𝑥)

Proof of Theorem islindf
Dummy variables 𝑓 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq1 6716 . . . . . 6 (𝑓 = 𝐹 → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝑓⟶(Base‘𝑤)))
21adantr 480 . . . . 5 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝑓⟶(Base‘𝑤)))
3 dmeq 5916 . . . . . . 7 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
43adantr 480 . . . . . 6 ((𝑓 = 𝐹𝑤 = 𝑊) → dom 𝑓 = dom 𝐹)
5 fveq2 6906 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
6 islindf.b . . . . . . . 8 𝐵 = (Base‘𝑊)
75, 6eqtr4di 2792 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
87adantl 481 . . . . . 6 ((𝑓 = 𝐹𝑤 = 𝑊) → (Base‘𝑤) = 𝐵)
94, 8feq23d 6731 . . . . 5 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝐹:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝐹𝐵))
102, 9bitrd 279 . . . 4 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝐹𝐵))
11 fvex 6919 . . . . . 6 (Scalar‘𝑤) ∈ V
12 fveq2 6906 . . . . . . . . 9 (𝑠 = (Scalar‘𝑤) → (Base‘𝑠) = (Base‘(Scalar‘𝑤)))
13 fveq2 6906 . . . . . . . . . 10 (𝑠 = (Scalar‘𝑤) → (0g𝑠) = (0g‘(Scalar‘𝑤)))
1413sneqd 4642 . . . . . . . . 9 (𝑠 = (Scalar‘𝑤) → {(0g𝑠)} = {(0g‘(Scalar‘𝑤))})
1512, 14difeq12d 4136 . . . . . . . 8 (𝑠 = (Scalar‘𝑤) → ((Base‘𝑠) ∖ {(0g𝑠)}) = ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}))
1615raleqdv 3323 . . . . . . 7 (𝑠 = (Scalar‘𝑤) → (∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))))
1716ralbidv 3175 . . . . . 6 (𝑠 = (Scalar‘𝑤) → (∀𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))))
1811, 17sbcie 3834 . . . . 5 ([(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))
19 fveq2 6906 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
20 islindf.s . . . . . . . . . . . 12 𝑆 = (Scalar‘𝑊)
2119, 20eqtr4di 2792 . . . . . . . . . . 11 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝑆)
2221fveq2d 6910 . . . . . . . . . 10 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝑆))
23 islindf.n . . . . . . . . . 10 𝑁 = (Base‘𝑆)
2422, 23eqtr4di 2792 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝑁)
2521fveq2d 6910 . . . . . . . . . . 11 (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = (0g𝑆))
26 islindf.z . . . . . . . . . . 11 0 = (0g𝑆)
2725, 26eqtr4di 2792 . . . . . . . . . 10 (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = 0 )
2827sneqd 4642 . . . . . . . . 9 (𝑤 = 𝑊 → {(0g‘(Scalar‘𝑤))} = { 0 })
2924, 28difeq12d 4136 . . . . . . . 8 (𝑤 = 𝑊 → ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) = (𝑁 ∖ { 0 }))
3029adantl 481 . . . . . . 7 ((𝑓 = 𝐹𝑤 = 𝑊) → ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) = (𝑁 ∖ { 0 }))
31 fveq2 6906 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
32 islindf.v . . . . . . . . . . . 12 · = ( ·𝑠𝑊)
3331, 32eqtr4di 2792 . . . . . . . . . . 11 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
3433adantl 481 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → ( ·𝑠𝑤) = · )
35 eqidd 2735 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → 𝑘 = 𝑘)
36 fveq1 6905 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
3736adantr 480 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑓𝑥) = (𝐹𝑥))
3834, 35, 37oveq123d 7451 . . . . . . . . 9 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑘( ·𝑠𝑤)(𝑓𝑥)) = (𝑘 · (𝐹𝑥)))
39 fveq2 6906 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊))
40 islindf.k . . . . . . . . . . . 12 𝐾 = (LSpan‘𝑊)
4139, 40eqtr4di 2792 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝐾)
4241adantl 481 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → (LSpan‘𝑤) = 𝐾)
43 imaeq1 6074 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝑓 ∖ {𝑥})))
443difeq1d 4134 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (dom 𝑓 ∖ {𝑥}) = (dom 𝐹 ∖ {𝑥}))
4544imaeq2d 6079 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝐹 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥})))
4643, 45eqtrd 2774 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥})))
4746adantr 480 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥})))
4842, 47fveq12d 6913 . . . . . . . . 9 ((𝑓 = 𝐹𝑤 = 𝑊) → ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) = (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))
4938, 48eleq12d 2832 . . . . . . . 8 ((𝑓 = 𝐹𝑤 = 𝑊) → ((𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5049notbid 318 . . . . . . 7 ((𝑓 = 𝐹𝑤 = 𝑊) → (¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5130, 50raleqbidv 3343 . . . . . 6 ((𝑓 = 𝐹𝑤 = 𝑊) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
524, 51raleqbidv 3343 . . . . 5 ((𝑓 = 𝐹𝑤 = 𝑊) → (∀𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5318, 52bitrid 283 . . . 4 ((𝑓 = 𝐹𝑤 = 𝑊) → ([(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5410, 53anbi12d 632 . . 3 ((𝑓 = 𝐹𝑤 = 𝑊) → ((𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))) ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
55 df-lindf 21843 . . 3 LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
5654, 55brabga 5543 . 2 ((𝐹𝑋𝑊𝑌) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
5756ancoms 458 1 ((𝑊𝑌𝐹𝑋) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  [wsbc 3790  cdif 3959  {csn 4630   class class class wbr 5147  dom cdm 5688  cima 5691  wf 6558  cfv 6562  (class class class)co 7430  Basecbs 17244  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17485  LSpanclspn 20986   LIndF clindf 21841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fv 6570  df-ov 7433  df-lindf 21843
This theorem is referenced by:  islinds2  21850  islindf2  21851  lindff  21852  lindfind  21853  f1lindf  21859  lsslindf  21867  lindfpropd  33389  matunitlindf  37604
  Copyright terms: Public domain W3C validator