| Step | Hyp | Ref
| Expression |
| 1 | | feq1 6691 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝑓⟶(Base‘𝑤))) |
| 2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝑓⟶(Base‘𝑤))) |
| 3 | | dmeq 5888 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) |
| 4 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → dom 𝑓 = dom 𝐹) |
| 5 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
| 6 | | islindf.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑊) |
| 7 | 5, 6 | eqtr4di 2789 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
| 8 | 7 | adantl 481 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (Base‘𝑤) = 𝐵) |
| 9 | 4, 8 | feq23d 6706 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (𝐹:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝐹⟶𝐵)) |
| 10 | 2, 9 | bitrd 279 |
. . . 4
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝐹⟶𝐵)) |
| 11 | | fvex 6894 |
. . . . . 6
⊢
(Scalar‘𝑤)
∈ V |
| 12 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑠 = (Scalar‘𝑤) → (Base‘𝑠) =
(Base‘(Scalar‘𝑤))) |
| 13 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑠 = (Scalar‘𝑤) →
(0g‘𝑠) =
(0g‘(Scalar‘𝑤))) |
| 14 | 13 | sneqd 4618 |
. . . . . . . . 9
⊢ (𝑠 = (Scalar‘𝑤) →
{(0g‘𝑠)} =
{(0g‘(Scalar‘𝑤))}) |
| 15 | 12, 14 | difeq12d 4107 |
. . . . . . . 8
⊢ (𝑠 = (Scalar‘𝑤) → ((Base‘𝑠) ∖
{(0g‘𝑠)})
= ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))})) |
| 16 | 15 | raleqdv 3309 |
. . . . . . 7
⊢ (𝑠 = (Scalar‘𝑤) → (∀𝑘 ∈ ((Base‘𝑠) ∖
{(0g‘𝑠)})
¬ (𝑘(
·𝑠 ‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))) |
| 17 | 16 | ralbidv 3164 |
. . . . . 6
⊢ (𝑠 = (Scalar‘𝑤) → (∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))) |
| 18 | 11, 17 | sbcie 3812 |
. . . . 5
⊢
([(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))) |
| 19 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) |
| 20 | | islindf.s |
. . . . . . . . . . . 12
⊢ 𝑆 = (Scalar‘𝑊) |
| 21 | 19, 20 | eqtr4di 2789 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝑆) |
| 22 | 21 | fveq2d 6885 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝑆)) |
| 23 | | islindf.n |
. . . . . . . . . 10
⊢ 𝑁 = (Base‘𝑆) |
| 24 | 22, 23 | eqtr4di 2789 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝑁) |
| 25 | 21 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 →
(0g‘(Scalar‘𝑤)) = (0g‘𝑆)) |
| 26 | | islindf.z |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑆) |
| 27 | 25, 26 | eqtr4di 2789 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 →
(0g‘(Scalar‘𝑤)) = 0 ) |
| 28 | 27 | sneqd 4618 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 →
{(0g‘(Scalar‘𝑤))} = { 0 }) |
| 29 | 24, 28 | difeq12d 4107 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))}) = (𝑁 ∖ { 0 })) |
| 30 | 29 | adantl 481 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))}) = (𝑁 ∖ { 0 })) |
| 31 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝑊)) |
| 32 | | islindf.v |
. . . . . . . . . . . 12
⊢ · = (
·𝑠 ‘𝑊) |
| 33 | 31, 32 | eqtr4di 2789 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = · ) |
| 34 | 33 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (
·𝑠 ‘𝑤) = · ) |
| 35 | | eqidd 2737 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → 𝑘 = 𝑘) |
| 36 | | fveq1 6880 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
| 37 | 36 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
| 38 | 34, 35, 37 | oveq123d 7431 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) = (𝑘 · (𝐹‘𝑥))) |
| 39 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊)) |
| 40 | | islindf.k |
. . . . . . . . . . . 12
⊢ 𝐾 = (LSpan‘𝑊) |
| 41 | 39, 40 | eqtr4di 2789 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝐾) |
| 42 | 41 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (LSpan‘𝑤) = 𝐾) |
| 43 | | imaeq1 6047 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝑓 ∖ {𝑥}))) |
| 44 | 3 | difeq1d 4105 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (dom 𝑓 ∖ {𝑥}) = (dom 𝐹 ∖ {𝑥})) |
| 45 | 44 | imaeq2d 6052 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝐹 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥}))) |
| 46 | 43, 45 | eqtrd 2771 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥}))) |
| 47 | 46 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥}))) |
| 48 | 42, 47 | fveq12d 6888 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) = (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))) |
| 49 | 38, 48 | eleq12d 2829 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → ((𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
| 50 | 49 | notbid 318 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
| 51 | 30, 50 | raleqbidv 3329 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
| 52 | 4, 51 | raleqbidv 3329 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
| 53 | 18, 52 | bitrid 283 |
. . . 4
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → ([(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
| 54 | 10, 53 | anbi12d 632 |
. . 3
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → ((𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))) ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
| 55 | | df-lindf 21771 |
. . 3
⊢ LIndF =
{〈𝑓, 𝑤〉 ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))} |
| 56 | 54, 55 | brabga 5514 |
. 2
⊢ ((𝐹 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
| 57 | 56 | ancoms 458 |
1
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐹 ∈ 𝑋) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |