MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf Structured version   Visualization version   GIF version

Theorem islindf 20673
Description: Property of an independent family of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
islindf.b 𝐵 = (Base‘𝑊)
islindf.v · = ( ·𝑠𝑊)
islindf.k 𝐾 = (LSpan‘𝑊)
islindf.s 𝑆 = (Scalar‘𝑊)
islindf.n 𝑁 = (Base‘𝑆)
islindf.z 0 = (0g𝑆)
Assertion
Ref Expression
islindf ((𝑊𝑌𝐹𝑋) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑁   𝑘,𝑊,𝑥   0 ,𝑘
Allowed substitution hints:   𝐵(𝑥,𝑘)   𝑆(𝑥,𝑘)   · (𝑥,𝑘)   𝐾(𝑥,𝑘)   𝑁(𝑥)   𝑋(𝑥,𝑘)   𝑌(𝑥,𝑘)   0 (𝑥)

Proof of Theorem islindf
Dummy variables 𝑓 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq1 6330 . . . . . 6 (𝑓 = 𝐹 → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝑓⟶(Base‘𝑤)))
21adantr 473 . . . . 5 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝑓⟶(Base‘𝑤)))
3 dmeq 5626 . . . . . . 7 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
43adantr 473 . . . . . 6 ((𝑓 = 𝐹𝑤 = 𝑊) → dom 𝑓 = dom 𝐹)
5 fveq2 6504 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
6 islindf.b . . . . . . . 8 𝐵 = (Base‘𝑊)
75, 6syl6eqr 2834 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
87adantl 474 . . . . . 6 ((𝑓 = 𝐹𝑤 = 𝑊) → (Base‘𝑤) = 𝐵)
94, 8feq23d 6344 . . . . 5 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝐹:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝐹𝐵))
102, 9bitrd 271 . . . 4 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝐹𝐵))
11 fvex 6517 . . . . . 6 (Scalar‘𝑤) ∈ V
12 fveq2 6504 . . . . . . . . 9 (𝑠 = (Scalar‘𝑤) → (Base‘𝑠) = (Base‘(Scalar‘𝑤)))
13 fveq2 6504 . . . . . . . . . 10 (𝑠 = (Scalar‘𝑤) → (0g𝑠) = (0g‘(Scalar‘𝑤)))
1413sneqd 4456 . . . . . . . . 9 (𝑠 = (Scalar‘𝑤) → {(0g𝑠)} = {(0g‘(Scalar‘𝑤))})
1512, 14difeq12d 3992 . . . . . . . 8 (𝑠 = (Scalar‘𝑤) → ((Base‘𝑠) ∖ {(0g𝑠)}) = ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}))
1615raleqdv 3357 . . . . . . 7 (𝑠 = (Scalar‘𝑤) → (∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))))
1716ralbidv 3149 . . . . . 6 (𝑠 = (Scalar‘𝑤) → (∀𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))))
1811, 17sbcie 3718 . . . . 5 ([(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))
19 fveq2 6504 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
20 islindf.s . . . . . . . . . . . 12 𝑆 = (Scalar‘𝑊)
2119, 20syl6eqr 2834 . . . . . . . . . . 11 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝑆)
2221fveq2d 6508 . . . . . . . . . 10 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝑆))
23 islindf.n . . . . . . . . . 10 𝑁 = (Base‘𝑆)
2422, 23syl6eqr 2834 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝑁)
2521fveq2d 6508 . . . . . . . . . . 11 (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = (0g𝑆))
26 islindf.z . . . . . . . . . . 11 0 = (0g𝑆)
2725, 26syl6eqr 2834 . . . . . . . . . 10 (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = 0 )
2827sneqd 4456 . . . . . . . . 9 (𝑤 = 𝑊 → {(0g‘(Scalar‘𝑤))} = { 0 })
2924, 28difeq12d 3992 . . . . . . . 8 (𝑤 = 𝑊 → ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) = (𝑁 ∖ { 0 }))
3029adantl 474 . . . . . . 7 ((𝑓 = 𝐹𝑤 = 𝑊) → ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) = (𝑁 ∖ { 0 }))
31 fveq2 6504 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
32 islindf.v . . . . . . . . . . . 12 · = ( ·𝑠𝑊)
3331, 32syl6eqr 2834 . . . . . . . . . . 11 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
3433adantl 474 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → ( ·𝑠𝑤) = · )
35 eqidd 2781 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → 𝑘 = 𝑘)
36 fveq1 6503 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
3736adantr 473 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑓𝑥) = (𝐹𝑥))
3834, 35, 37oveq123d 7003 . . . . . . . . 9 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑘( ·𝑠𝑤)(𝑓𝑥)) = (𝑘 · (𝐹𝑥)))
39 fveq2 6504 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊))
40 islindf.k . . . . . . . . . . . 12 𝐾 = (LSpan‘𝑊)
4139, 40syl6eqr 2834 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝐾)
4241adantl 474 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → (LSpan‘𝑤) = 𝐾)
43 imaeq1 5770 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝑓 ∖ {𝑥})))
443difeq1d 3990 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (dom 𝑓 ∖ {𝑥}) = (dom 𝐹 ∖ {𝑥}))
4544imaeq2d 5775 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝐹 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥})))
4643, 45eqtrd 2816 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥})))
4746adantr 473 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥})))
4842, 47fveq12d 6511 . . . . . . . . 9 ((𝑓 = 𝐹𝑤 = 𝑊) → ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) = (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))
4938, 48eleq12d 2862 . . . . . . . 8 ((𝑓 = 𝐹𝑤 = 𝑊) → ((𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5049notbid 310 . . . . . . 7 ((𝑓 = 𝐹𝑤 = 𝑊) → (¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5130, 50raleqbidv 3343 . . . . . 6 ((𝑓 = 𝐹𝑤 = 𝑊) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
524, 51raleqbidv 3343 . . . . 5 ((𝑓 = 𝐹𝑤 = 𝑊) → (∀𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5318, 52syl5bb 275 . . . 4 ((𝑓 = 𝐹𝑤 = 𝑊) → ([(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5410, 53anbi12d 622 . . 3 ((𝑓 = 𝐹𝑤 = 𝑊) → ((𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))) ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
55 df-lindf 20667 . . 3 LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
5654, 55brabga 5279 . 2 ((𝐹𝑋𝑊𝑌) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
5756ancoms 451 1 ((𝑊𝑌𝐹𝑋) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  wral 3090  [wsbc 3683  cdif 3828  {csn 4444   class class class wbr 4934  dom cdm 5411  cima 5414  wf 6189  cfv 6193  (class class class)co 6982  Basecbs 16345  Scalarcsca 16430   ·𝑠 cvsca 16431  0gc0g 16575  LSpanclspn 19477   LIndF clindf 20665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pr 5190
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3419  df-sbc 3684  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-if 4354  df-sn 4445  df-pr 4447  df-op 4451  df-uni 4718  df-br 4935  df-opab 4997  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-fv 6201  df-ov 6985  df-lindf 20667
This theorem is referenced by:  islinds2  20674  islindf2  20675  lindff  20676  lindfind  20677  f1lindf  20683  lsslindf  20691  lindfpropd  30645  matunitlindf  34371
  Copyright terms: Public domain W3C validator