MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf Structured version   Visualization version   GIF version

Theorem islindf 20929
Description: Property of an independent family of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
islindf.b 𝐵 = (Base‘𝑊)
islindf.v · = ( ·𝑠𝑊)
islindf.k 𝐾 = (LSpan‘𝑊)
islindf.s 𝑆 = (Scalar‘𝑊)
islindf.n 𝑁 = (Base‘𝑆)
islindf.z 0 = (0g𝑆)
Assertion
Ref Expression
islindf ((𝑊𝑌𝐹𝑋) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑁   𝑘,𝑊,𝑥   0 ,𝑘
Allowed substitution hints:   𝐵(𝑥,𝑘)   𝑆(𝑥,𝑘)   · (𝑥,𝑘)   𝐾(𝑥,𝑘)   𝑁(𝑥)   𝑋(𝑥,𝑘)   𝑌(𝑥,𝑘)   0 (𝑥)

Proof of Theorem islindf
Dummy variables 𝑓 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq1 6565 . . . . . 6 (𝑓 = 𝐹 → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝑓⟶(Base‘𝑤)))
21adantr 480 . . . . 5 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝑓⟶(Base‘𝑤)))
3 dmeq 5801 . . . . . . 7 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
43adantr 480 . . . . . 6 ((𝑓 = 𝐹𝑤 = 𝑊) → dom 𝑓 = dom 𝐹)
5 fveq2 6756 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
6 islindf.b . . . . . . . 8 𝐵 = (Base‘𝑊)
75, 6eqtr4di 2797 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
87adantl 481 . . . . . 6 ((𝑓 = 𝐹𝑤 = 𝑊) → (Base‘𝑤) = 𝐵)
94, 8feq23d 6579 . . . . 5 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝐹:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝐹𝐵))
102, 9bitrd 278 . . . 4 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝐹𝐵))
11 fvex 6769 . . . . . 6 (Scalar‘𝑤) ∈ V
12 fveq2 6756 . . . . . . . . 9 (𝑠 = (Scalar‘𝑤) → (Base‘𝑠) = (Base‘(Scalar‘𝑤)))
13 fveq2 6756 . . . . . . . . . 10 (𝑠 = (Scalar‘𝑤) → (0g𝑠) = (0g‘(Scalar‘𝑤)))
1413sneqd 4570 . . . . . . . . 9 (𝑠 = (Scalar‘𝑤) → {(0g𝑠)} = {(0g‘(Scalar‘𝑤))})
1512, 14difeq12d 4054 . . . . . . . 8 (𝑠 = (Scalar‘𝑤) → ((Base‘𝑠) ∖ {(0g𝑠)}) = ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}))
1615raleqdv 3339 . . . . . . 7 (𝑠 = (Scalar‘𝑤) → (∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))))
1716ralbidv 3120 . . . . . 6 (𝑠 = (Scalar‘𝑤) → (∀𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))))
1811, 17sbcie 3754 . . . . 5 ([(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))
19 fveq2 6756 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
20 islindf.s . . . . . . . . . . . 12 𝑆 = (Scalar‘𝑊)
2119, 20eqtr4di 2797 . . . . . . . . . . 11 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝑆)
2221fveq2d 6760 . . . . . . . . . 10 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝑆))
23 islindf.n . . . . . . . . . 10 𝑁 = (Base‘𝑆)
2422, 23eqtr4di 2797 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝑁)
2521fveq2d 6760 . . . . . . . . . . 11 (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = (0g𝑆))
26 islindf.z . . . . . . . . . . 11 0 = (0g𝑆)
2725, 26eqtr4di 2797 . . . . . . . . . 10 (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = 0 )
2827sneqd 4570 . . . . . . . . 9 (𝑤 = 𝑊 → {(0g‘(Scalar‘𝑤))} = { 0 })
2924, 28difeq12d 4054 . . . . . . . 8 (𝑤 = 𝑊 → ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) = (𝑁 ∖ { 0 }))
3029adantl 481 . . . . . . 7 ((𝑓 = 𝐹𝑤 = 𝑊) → ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) = (𝑁 ∖ { 0 }))
31 fveq2 6756 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
32 islindf.v . . . . . . . . . . . 12 · = ( ·𝑠𝑊)
3331, 32eqtr4di 2797 . . . . . . . . . . 11 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
3433adantl 481 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → ( ·𝑠𝑤) = · )
35 eqidd 2739 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → 𝑘 = 𝑘)
36 fveq1 6755 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
3736adantr 480 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑓𝑥) = (𝐹𝑥))
3834, 35, 37oveq123d 7276 . . . . . . . . 9 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑘( ·𝑠𝑤)(𝑓𝑥)) = (𝑘 · (𝐹𝑥)))
39 fveq2 6756 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊))
40 islindf.k . . . . . . . . . . . 12 𝐾 = (LSpan‘𝑊)
4139, 40eqtr4di 2797 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝐾)
4241adantl 481 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → (LSpan‘𝑤) = 𝐾)
43 imaeq1 5953 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝑓 ∖ {𝑥})))
443difeq1d 4052 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (dom 𝑓 ∖ {𝑥}) = (dom 𝐹 ∖ {𝑥}))
4544imaeq2d 5958 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝐹 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥})))
4643, 45eqtrd 2778 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥})))
4746adantr 480 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝑊) → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥})))
4842, 47fveq12d 6763 . . . . . . . . 9 ((𝑓 = 𝐹𝑤 = 𝑊) → ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) = (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))
4938, 48eleq12d 2833 . . . . . . . 8 ((𝑓 = 𝐹𝑤 = 𝑊) → ((𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5049notbid 317 . . . . . . 7 ((𝑓 = 𝐹𝑤 = 𝑊) → (¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5130, 50raleqbidv 3327 . . . . . 6 ((𝑓 = 𝐹𝑤 = 𝑊) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
524, 51raleqbidv 3327 . . . . 5 ((𝑓 = 𝐹𝑤 = 𝑊) → (∀𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖ {(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5318, 52syl5bb 282 . . . 4 ((𝑓 = 𝐹𝑤 = 𝑊) → ([(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5410, 53anbi12d 630 . . 3 ((𝑓 = 𝐹𝑤 = 𝑊) → ((𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))) ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
55 df-lindf 20923 . . 3 LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
5654, 55brabga 5440 . 2 ((𝐹𝑋𝑊𝑌) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
5756ancoms 458 1 ((𝑊𝑌𝐹𝑋) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  [wsbc 3711  cdif 3880  {csn 4558   class class class wbr 5070  dom cdm 5580  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LSpanclspn 20148   LIndF clindf 20921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-lindf 20923
This theorem is referenced by:  islinds2  20930  islindf2  20931  lindff  20932  lindfind  20933  f1lindf  20939  lsslindf  20947  lindfpropd  31478  matunitlindf  35702
  Copyright terms: Public domain W3C validator