Step | Hyp | Ref
| Expression |
1 | | feq1 6565 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝑓⟶(Base‘𝑤))) |
2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝑓⟶(Base‘𝑤))) |
3 | | dmeq 5801 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) |
4 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → dom 𝑓 = dom 𝐹) |
5 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
6 | | islindf.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑊) |
7 | 5, 6 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
8 | 7 | adantl 481 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (Base‘𝑤) = 𝐵) |
9 | 4, 8 | feq23d 6579 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (𝐹:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝐹⟶𝐵)) |
10 | 2, 9 | bitrd 278 |
. . . 4
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (𝑓:dom 𝑓⟶(Base‘𝑤) ↔ 𝐹:dom 𝐹⟶𝐵)) |
11 | | fvex 6769 |
. . . . . 6
⊢
(Scalar‘𝑤)
∈ V |
12 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑠 = (Scalar‘𝑤) → (Base‘𝑠) =
(Base‘(Scalar‘𝑤))) |
13 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑠 = (Scalar‘𝑤) →
(0g‘𝑠) =
(0g‘(Scalar‘𝑤))) |
14 | 13 | sneqd 4570 |
. . . . . . . . 9
⊢ (𝑠 = (Scalar‘𝑤) →
{(0g‘𝑠)} =
{(0g‘(Scalar‘𝑤))}) |
15 | 12, 14 | difeq12d 4054 |
. . . . . . . 8
⊢ (𝑠 = (Scalar‘𝑤) → ((Base‘𝑠) ∖
{(0g‘𝑠)})
= ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))})) |
16 | 15 | raleqdv 3339 |
. . . . . . 7
⊢ (𝑠 = (Scalar‘𝑤) → (∀𝑘 ∈ ((Base‘𝑠) ∖
{(0g‘𝑠)})
¬ (𝑘(
·𝑠 ‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))) |
17 | 16 | ralbidv 3120 |
. . . . . 6
⊢ (𝑠 = (Scalar‘𝑤) → (∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))) |
18 | 11, 17 | sbcie 3754 |
. . . . 5
⊢
([(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))) |
19 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) |
20 | | islindf.s |
. . . . . . . . . . . 12
⊢ 𝑆 = (Scalar‘𝑊) |
21 | 19, 20 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝑆) |
22 | 21 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝑆)) |
23 | | islindf.n |
. . . . . . . . . 10
⊢ 𝑁 = (Base‘𝑆) |
24 | 22, 23 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝑁) |
25 | 21 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 →
(0g‘(Scalar‘𝑤)) = (0g‘𝑆)) |
26 | | islindf.z |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑆) |
27 | 25, 26 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 →
(0g‘(Scalar‘𝑤)) = 0 ) |
28 | 27 | sneqd 4570 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 →
{(0g‘(Scalar‘𝑤))} = { 0 }) |
29 | 24, 28 | difeq12d 4054 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))}) = (𝑁 ∖ { 0 })) |
30 | 29 | adantl 481 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))}) = (𝑁 ∖ { 0 })) |
31 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝑊)) |
32 | | islindf.v |
. . . . . . . . . . . 12
⊢ · = (
·𝑠 ‘𝑊) |
33 | 31, 32 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = · ) |
34 | 33 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (
·𝑠 ‘𝑤) = · ) |
35 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → 𝑘 = 𝑘) |
36 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
37 | 36 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
38 | 34, 35, 37 | oveq123d 7276 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) = (𝑘 · (𝐹‘𝑥))) |
39 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊)) |
40 | | islindf.k |
. . . . . . . . . . . 12
⊢ 𝐾 = (LSpan‘𝑊) |
41 | 39, 40 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝐾) |
42 | 41 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (LSpan‘𝑤) = 𝐾) |
43 | | imaeq1 5953 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝑓 ∖ {𝑥}))) |
44 | 3 | difeq1d 4052 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (dom 𝑓 ∖ {𝑥}) = (dom 𝐹 ∖ {𝑥})) |
45 | 44 | imaeq2d 5958 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝐹 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥}))) |
46 | 43, 45 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥}))) |
47 | 46 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (𝑓 “ (dom 𝑓 ∖ {𝑥})) = (𝐹 “ (dom 𝐹 ∖ {𝑥}))) |
48 | 42, 47 | fveq12d 6763 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) = (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))) |
49 | 38, 48 | eleq12d 2833 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → ((𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
50 | 49 | notbid 317 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
51 | 30, 50 | raleqbidv 3327 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
52 | 4, 51 | raleqbidv 3327 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → (∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘(Scalar‘𝑤)) ∖
{(0g‘(Scalar‘𝑤))}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
53 | 18, 52 | syl5bb 282 |
. . . 4
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → ([(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
54 | 10, 53 | anbi12d 630 |
. . 3
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝑊) → ((𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))) ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
55 | | df-lindf 20923 |
. . 3
⊢ LIndF =
{〈𝑓, 𝑤〉 ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))} |
56 | 54, 55 | brabga 5440 |
. 2
⊢ ((𝐹 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
57 | 56 | ancoms 458 |
1
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐹 ∈ 𝑋) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |