MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf4 Structured version   Visualization version   GIF version

Theorem islindf4 21881
Description: A family is independent iff it has no nontrivial representations of zero. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
islindf4.b 𝐵 = (Base‘𝑊)
islindf4.r 𝑅 = (Scalar‘𝑊)
islindf4.t · = ( ·𝑠𝑊)
islindf4.z 0 = (0g𝑊)
islindf4.y 𝑌 = (0g𝑅)
islindf4.l 𝐿 = (Base‘(𝑅 freeLMod 𝐼))
Assertion
Ref Expression
islindf4 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌}))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐼   𝑥,𝐿   𝑥,𝑅   𝑥, ·   𝑥,𝑊   𝑥,𝑋   𝑥,𝑌   𝑥, 0

Proof of Theorem islindf4
Dummy variables 𝑗 𝑘 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raldifsni 4820 . . . . 5 (∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑙 ∈ (Base‘𝑅)((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌))
2 simpll1 1212 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑊 ∈ LMod)
3 simprll 778 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑙 ∈ (Base‘𝑅))
4 ffvelcdm 7115 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐼𝐵𝑗𝐼) → (𝐹𝑗) ∈ 𝐵)
543ad2antl3 1187 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (𝐹𝑗) ∈ 𝐵)
65adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝐹𝑗) ∈ 𝐵)
7 islindf4.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝑊)
8 islindf4.r . . . . . . . . . . . . . . . . 17 𝑅 = (Scalar‘𝑊)
9 islindf4.t . . . . . . . . . . . . . . . . 17 · = ( ·𝑠𝑊)
10 eqid 2740 . . . . . . . . . . . . . . . . 17 (invg𝑊) = (invg𝑊)
11 eqid 2740 . . . . . . . . . . . . . . . . 17 (invg𝑅) = (invg𝑅)
12 eqid 2740 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
137, 8, 9, 10, 11, 12lmodvsinv 21058 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑙 ∈ (Base‘𝑅) ∧ (𝐹𝑗) ∈ 𝐵) → (((invg𝑅)‘𝑙) · (𝐹𝑗)) = ((invg𝑊)‘(𝑙 · (𝐹𝑗))))
142, 3, 6, 13syl3anc 1371 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((invg𝑅)‘𝑙) · (𝐹𝑗)) = ((invg𝑊)‘(𝑙 · (𝐹𝑗))))
1514eqeq1d 2742 . . . . . . . . . . . . . 14 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ↔ ((invg𝑊)‘(𝑙 · (𝐹𝑗))) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))))
16 lmodgrp 20887 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
172, 16syl 17 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑊 ∈ Grp)
187, 8, 9, 12lmodvscl 20898 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑙 ∈ (Base‘𝑅) ∧ (𝐹𝑗) ∈ 𝐵) → (𝑙 · (𝐹𝑗)) ∈ 𝐵)
192, 3, 6, 18syl3anc 1371 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑙 · (𝐹𝑗)) ∈ 𝐵)
20 islindf4.z . . . . . . . . . . . . . . . 16 0 = (0g𝑊)
21 lmodcmn 20930 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LMod → 𝑊 ∈ CMnd)
222, 21syl 17 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑊 ∈ CMnd)
23 simpll2 1213 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐼𝑋)
24 difexg 5347 . . . . . . . . . . . . . . . . 17 (𝐼𝑋 → (𝐼 ∖ {𝑗}) ∈ V)
2523, 24syl 17 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝐼 ∖ {𝑗}) ∈ V)
26 simprlr 779 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))
27 elmapi 8907 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})) → 𝑦:(𝐼 ∖ {𝑗})⟶(Base‘𝑅))
2826, 27syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑦:(𝐼 ∖ {𝑗})⟶(Base‘𝑅))
29 simpll3 1214 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐹:𝐼𝐵)
30 difss 4159 . . . . . . . . . . . . . . . . . 18 (𝐼 ∖ {𝑗}) ⊆ 𝐼
31 fssres 6787 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐼𝐵 ∧ (𝐼 ∖ {𝑗}) ⊆ 𝐼) → (𝐹 ↾ (𝐼 ∖ {𝑗})):(𝐼 ∖ {𝑗})⟶𝐵)
3229, 30, 31sylancl 585 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝐹 ↾ (𝐼 ∖ {𝑗})):(𝐼 ∖ {𝑗})⟶𝐵)
338, 12, 9, 7, 2, 28, 32, 25lcomf 20921 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))):(𝐼 ∖ {𝑗})⟶𝐵)
34 islindf4.y . . . . . . . . . . . . . . . . 17 𝑌 = (0g𝑅)
35 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑦 finSupp 𝑌)
368, 12, 9, 7, 2, 28, 32, 25, 20, 34, 35lcomfsupp 20922 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))) finSupp 0 )
377, 20, 22, 25, 33, 36gsumcl 19957 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ∈ 𝐵)
38 eqid 2740 . . . . . . . . . . . . . . . 16 (+g𝑊) = (+g𝑊)
397, 38, 20, 10grpinvid2 19032 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Grp ∧ (𝑙 · (𝐹𝑗)) ∈ 𝐵 ∧ (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ∈ 𝐵) → (((invg𝑊)‘(𝑙 · (𝐹𝑗))) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ↔ ((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))) = 0 ))
4017, 19, 37, 39syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((invg𝑊)‘(𝑙 · (𝐹𝑗))) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ↔ ((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))) = 0 ))
41 simplr 768 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑗𝐼)
42 fsnunf2 7220 . . . . . . . . . . . . . . . . . . 19 ((𝑦:(𝐼 ∖ {𝑗})⟶(Base‘𝑅) ∧ 𝑗𝐼𝑙 ∈ (Base‘𝑅)) → (𝑦 ∪ {⟨𝑗, 𝑙⟩}):𝐼⟶(Base‘𝑅))
4328, 41, 3, 42syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦 ∪ {⟨𝑗, 𝑙⟩}):𝐼⟶(Base‘𝑅))
448, 12, 9, 7, 2, 43, 29, 23lcomf 20921 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹):𝐼𝐵)
45 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝑗𝐼)
46 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) → 𝑙 ∈ (Base‘𝑅))
4745, 46anim12i 612 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (𝑗𝐼𝑙 ∈ (Base‘𝑅)))
48 elmapfun 8924 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})) → Fun 𝑦)
49 fdm 6756 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦:(𝐼 ∖ {𝑗})⟶(Base‘𝑅) → dom 𝑦 = (𝐼 ∖ {𝑗}))
50 neldifsnd 4818 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (dom 𝑦 = (𝐼 ∖ {𝑗}) → ¬ 𝑗 ∈ (𝐼 ∖ {𝑗}))
51 df-nel 3053 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∉ dom 𝑦 ↔ ¬ 𝑗 ∈ dom 𝑦)
52 eleq2 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑦 = (𝐼 ∖ {𝑗}) → (𝑗 ∈ dom 𝑦𝑗 ∈ (𝐼 ∖ {𝑗})))
5352notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (dom 𝑦 = (𝐼 ∖ {𝑗}) → (¬ 𝑗 ∈ dom 𝑦 ↔ ¬ 𝑗 ∈ (𝐼 ∖ {𝑗})))
5451, 53bitrid 283 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (dom 𝑦 = (𝐼 ∖ {𝑗}) → (𝑗 ∉ dom 𝑦 ↔ ¬ 𝑗 ∈ (𝐼 ∖ {𝑗})))
5550, 54mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑦 = (𝐼 ∖ {𝑗}) → 𝑗 ∉ dom 𝑦)
5627, 49, 553syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})) → 𝑗 ∉ dom 𝑦)
5748, 56jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})) → (Fun 𝑦𝑗 ∉ dom 𝑦))
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) → (Fun 𝑦𝑗 ∉ dom 𝑦))
5958adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (Fun 𝑦𝑗 ∉ dom 𝑦))
6047, 59jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → ((𝑗𝐼𝑙 ∈ (Base‘𝑅)) ∧ (Fun 𝑦𝑗 ∉ dom 𝑦)))
61 funsnfsupp 9461 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑗𝐼𝑙 ∈ (Base‘𝑅)) ∧ (Fun 𝑦𝑗 ∉ dom 𝑦)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌𝑦 finSupp 𝑌))
6261bicomd 223 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗𝐼𝑙 ∈ (Base‘𝑅)) ∧ (Fun 𝑦𝑗 ∉ dom 𝑦)) → (𝑦 finSupp 𝑌 ↔ (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌))
6360, 62syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (𝑦 finSupp 𝑌 ↔ (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌))
6463biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (𝑦 finSupp 𝑌 → (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌))
6564impr 454 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌)
668, 12, 9, 7, 2, 43, 29, 23, 20, 34, 65lcomfsupp 20922 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) finSupp 0 )
67 disjdifr 4496 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∖ {𝑗}) ∩ {𝑗}) = ∅
6867a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝐼 ∖ {𝑗}) ∩ {𝑗}) = ∅)
69 difsnid 4835 . . . . . . . . . . . . . . . . . . 19 (𝑗𝐼 → ((𝐼 ∖ {𝑗}) ∪ {𝑗}) = 𝐼)
7069eqcomd 2746 . . . . . . . . . . . . . . . . . 18 (𝑗𝐼𝐼 = ((𝐼 ∖ {𝑗}) ∪ {𝑗}))
7141, 70syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐼 = ((𝐼 ∖ {𝑗}) ∪ {𝑗}))
727, 20, 38, 22, 23, 44, 66, 68, 71gsumsplit 19970 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = ((𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})))(+g𝑊)(𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}))))
73 vex 3492 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
74 snex 5451 . . . . . . . . . . . . . . . . . . . . 21 {⟨𝑗, 𝑙⟩} ∈ V
7573, 74unex 7779 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∈ V
76 simpl3 1193 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝐹:𝐼𝐵)
77 simpl2 1192 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝐼𝑋)
7876, 77fexd 7264 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝐹 ∈ V)
7978adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐹 ∈ V)
80 offres 8024 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∈ V ∧ 𝐹 ∈ V) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})) = (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) ∘f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))
8175, 79, 80sylancr 586 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})) = (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) ∘f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))
8228ffnd 6748 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑦 Fn (𝐼 ∖ {𝑗}))
83 neldifsn 4817 . . . . . . . . . . . . . . . . . . . . 21 ¬ 𝑗 ∈ (𝐼 ∖ {𝑗})
84 fsnunres 7222 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 Fn (𝐼 ∖ {𝑗}) ∧ ¬ 𝑗 ∈ (𝐼 ∖ {𝑗})) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) = 𝑦)
8582, 83, 84sylancl 585 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) = 𝑦)
8685oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) ∘f · (𝐹 ↾ (𝐼 ∖ {𝑗}))) = (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))
8781, 86eqtrd 2780 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})) = (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))
8887oveq2d 7464 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗}))) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))))
8944ffnd 6748 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) Fn 𝐼)
90 fnressn 7192 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) Fn 𝐼𝑗𝐼) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}) = {⟨𝑗, (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗)⟩})
9189, 41, 90syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}) = {⟨𝑗, (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗)⟩})
9243ffnd 6748 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦 ∪ {⟨𝑗, 𝑙⟩}) Fn 𝐼)
9329ffnd 6748 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐹 Fn 𝐼)
94 fnfvof 7731 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∪ {⟨𝑗, 𝑙⟩}) Fn 𝐼𝐹 Fn 𝐼) ∧ (𝐼𝑋𝑗𝐼)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗) = (((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) · (𝐹𝑗)))
9592, 93, 23, 41, 94syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗) = (((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) · (𝐹𝑗)))
96 fndm 6682 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 Fn (𝐼 ∖ {𝑗}) → dom 𝑦 = (𝐼 ∖ {𝑗}))
9796eleq2d 2830 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 Fn (𝐼 ∖ {𝑗}) → (𝑗 ∈ dom 𝑦𝑗 ∈ (𝐼 ∖ {𝑗})))
9883, 97mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 Fn (𝐼 ∖ {𝑗}) → ¬ 𝑗 ∈ dom 𝑦)
99 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑗 ∈ V
100 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑙 ∈ V
101 fsnunfv 7221 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ V ∧ 𝑙 ∈ V ∧ ¬ 𝑗 ∈ dom 𝑦) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑙)
10299, 100, 101mp3an12 1451 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑗 ∈ dom 𝑦 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑙)
10382, 98, 1023syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑙)
104103oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) · (𝐹𝑗)) = (𝑙 · (𝐹𝑗)))
10595, 104eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗) = (𝑙 · (𝐹𝑗)))
106105opeq2d 4904 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ⟨𝑗, (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗)⟩ = ⟨𝑗, (𝑙 · (𝐹𝑗))⟩)
107106sneqd 4660 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → {⟨𝑗, (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗)⟩} = {⟨𝑗, (𝑙 · (𝐹𝑗))⟩})
108 ovex 7481 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 · (𝐹𝑗)) ∈ V
109 fmptsn 7201 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ V ∧ (𝑙 · (𝐹𝑗)) ∈ V) → {⟨𝑗, (𝑙 · (𝐹𝑗))⟩} = (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗))))
11099, 108, 109mp2an 691 . . . . . . . . . . . . . . . . . . . . 21 {⟨𝑗, (𝑙 · (𝐹𝑗))⟩} = (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗)))
111110a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → {⟨𝑗, (𝑙 · (𝐹𝑗))⟩} = (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗))))
11291, 107, 1113eqtrd 2784 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}) = (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗))))
113112oveq2d 7464 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗})) = (𝑊 Σg (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗)))))
114 cmnmnd 19839 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ CMnd → 𝑊 ∈ Mnd)
1152, 21, 1143syl 18 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑊 ∈ Mnd)
11699a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑗 ∈ V)
117 eqidd 2741 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑗 → (𝑙 · (𝐹𝑗)) = (𝑙 · (𝐹𝑗)))
1187, 117gsumsn 19996 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Mnd ∧ 𝑗 ∈ V ∧ (𝑙 · (𝐹𝑗)) ∈ 𝐵) → (𝑊 Σg (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗)))) = (𝑙 · (𝐹𝑗)))
119115, 116, 19, 118syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗)))) = (𝑙 · (𝐹𝑗)))
120113, 119eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗})) = (𝑙 · (𝐹𝑗)))
12188, 120oveq12d 7466 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})))(+g𝑊)(𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}))) = ((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))))
12272, 121eqtr2d 2781 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))) = (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)))
123122eqeq1d 2742 . . . . . . . . . . . . . 14 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))) = 0 ↔ (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 ))
12415, 40, 1233bitrd 305 . . . . . . . . . . . . 13 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ↔ (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 ))
125103eqcomd 2746 . . . . . . . . . . . . . 14 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑙 = ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗))
126125eqeq1d 2742 . . . . . . . . . . . . 13 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑙 = 𝑌 ↔ ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))
127124, 126imbi12d 344 . . . . . . . . . . . 12 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌) ↔ ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌)))
128127anassrs 467 . . . . . . . . . . 11 (((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) ∧ 𝑦 finSupp 𝑌) → (((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌) ↔ ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌)))
129128pm5.74da 803 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → ((𝑦 finSupp 𝑌 → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌)) ↔ (𝑦 finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
130 impexp 450 . . . . . . . . . . 11 (((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ (𝑦 finSupp 𝑌 → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌)))
131130a1i 11 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ (𝑦 finSupp 𝑌 → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌))))
13263bicomd 223 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌𝑦 finSupp 𝑌))
133132imbi1d 341 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌)) ↔ (𝑦 finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
134129, 131, 1333bitr4d 311 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
1351342ralbidva 3225 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ ∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
136 breq1 5169 . . . . . . . . . . 11 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (𝑥 finSupp 𝑌 ↔ (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌))
137 oveq1 7455 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (𝑥f · 𝐹) = ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹))
138137oveq2d 7464 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (𝑊 Σg (𝑥f · 𝐹)) = (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)))
139138eqeq1d 2742 . . . . . . . . . . . 12 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → ((𝑊 Σg (𝑥f · 𝐹)) = 0 ↔ (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 ))
140 fveq1 6919 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (𝑥𝑗) = ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗))
141140eqeq1d 2742 . . . . . . . . . . . 12 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → ((𝑥𝑗) = 𝑌 ↔ ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))
142139, 141imbi12d 344 . . . . . . . . . . 11 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌) ↔ ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌)))
143136, 142imbi12d 344 . . . . . . . . . 10 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → ((𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)) ↔ ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
144143ralxpmap 8954 . . . . . . . . 9 (𝑗𝐼 → (∀𝑥 ∈ ((Base‘𝑅) ↑m 𝐼)(𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)) ↔ ∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
145144adantl 481 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑥 ∈ ((Base‘𝑅) ↑m 𝐼)(𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)) ↔ ∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
146135, 145bitr4d 282 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ ∀𝑥 ∈ ((Base‘𝑅) ↑m 𝐼)(𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌))))
147 breq1 5169 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 finSupp 𝑌𝑥 finSupp 𝑌))
148147ralrab 3715 . . . . . . 7 (∀𝑥 ∈ {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌) ↔ ∀𝑥 ∈ ((Base‘𝑅) ↑m 𝐼)(𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
149146, 148bitr4di 289 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ ∀𝑥 ∈ {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
150 resima 6044 . . . . . . . . . . . . 13 ((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗})) = (𝐹 “ (𝐼 ∖ {𝑗}))
151150eqcomi 2749 . . . . . . . . . . . 12 (𝐹 “ (𝐼 ∖ {𝑗})) = ((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗}))
152151fveq2i 6923 . . . . . . . . . . 11 ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) = ((LSpan‘𝑊)‘((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗})))
153152eleq2i 2836 . . . . . . . . . 10 ((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗}))))
154 eqid 2740 . . . . . . . . . . 11 (LSpan‘𝑊) = (LSpan‘𝑊)
15576, 30, 31sylancl 585 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (𝐹 ↾ (𝐼 ∖ {𝑗})):(𝐼 ∖ {𝑗})⟶𝐵)
156 simpl1 1191 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝑊 ∈ LMod)
157243ad2ant2 1134 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (𝐼 ∖ {𝑗}) ∈ V)
158157adantr 480 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (𝐼 ∖ {𝑗}) ∈ V)
159154, 7, 12, 8, 34, 9, 155, 156, 158ellspd 21845 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗}))) ↔ ∃𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))(𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))))))
160153, 159bitrid 283 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∃𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))(𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))))))
161160imbi1d 341 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌) ↔ (∃𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))(𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌)))
162 r19.23v 3189 . . . . . . . 8 (∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ (∃𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))(𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌))
163161, 162bitr4di 289 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌) ↔ ∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌)))
164163ralbidv 3184 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌) ↔ ∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌)))
165 islindf4.l . . . . . . . 8 𝐿 = (Base‘(𝑅 freeLMod 𝐼))
1668fvexi 6934 . . . . . . . . . . 11 𝑅 ∈ V
167 eqid 2740 . . . . . . . . . . . 12 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
168 eqid 2740 . . . . . . . . . . . 12 {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌}
169167, 12, 34, 168frlmbas 21798 . . . . . . . . . . 11 ((𝑅 ∈ V ∧ 𝐼𝑋) → {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = (Base‘(𝑅 freeLMod 𝐼)))
170166, 169mpan 689 . . . . . . . . . 10 (𝐼𝑋 → {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = (Base‘(𝑅 freeLMod 𝐼)))
1711703ad2ant2 1134 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = (Base‘(𝑅 freeLMod 𝐼)))
172171adantr 480 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = (Base‘(𝑅 freeLMod 𝐼)))
173165, 172eqtr4id 2799 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝐿 = {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌})
174173raleqdv 3334 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌) ↔ ∀𝑥 ∈ {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
175149, 164, 1743bitr4d 311 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
1761, 175bitrid 283 . . . 4 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
1778lmodfgrp 20889 . . . . . . . 8 (𝑊 ∈ LMod → 𝑅 ∈ Grp)
17812, 34, 11grpinvnzcl 19051 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑙 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘𝑙) ∈ ((Base‘𝑅) ∖ {𝑌}))
179177, 178sylan 579 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑙 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘𝑙) ∈ ((Base‘𝑅) ∖ {𝑌}))
18012, 34, 11grpinvnzcl 19051 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘𝑘) ∈ ((Base‘𝑅) ∖ {𝑌}))
181177, 180sylan 579 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘𝑘) ∈ ((Base‘𝑅) ∖ {𝑌}))
182 eldifi 4154 . . . . . . . . . 10 (𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) → 𝑘 ∈ (Base‘𝑅))
18312, 11grpinvinv 19045 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝑘 ∈ (Base‘𝑅)) → ((invg𝑅)‘((invg𝑅)‘𝑘)) = 𝑘)
184177, 182, 183syl2an 595 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘((invg𝑅)‘𝑘)) = 𝑘)
185184eqcomd 2746 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → 𝑘 = ((invg𝑅)‘((invg𝑅)‘𝑘)))
186 fveq2 6920 . . . . . . . . 9 (𝑙 = ((invg𝑅)‘𝑘) → ((invg𝑅)‘𝑙) = ((invg𝑅)‘((invg𝑅)‘𝑘)))
187186rspceeqv 3658 . . . . . . . 8 ((((invg𝑅)‘𝑘) ∈ ((Base‘𝑅) ∖ {𝑌}) ∧ 𝑘 = ((invg𝑅)‘((invg𝑅)‘𝑘))) → ∃𝑙 ∈ ((Base‘𝑅) ∖ {𝑌})𝑘 = ((invg𝑅)‘𝑙))
188181, 185, 187syl2anc 583 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → ∃𝑙 ∈ ((Base‘𝑅) ∖ {𝑌})𝑘 = ((invg𝑅)‘𝑙))
189 oveq1 7455 . . . . . . . . . 10 (𝑘 = ((invg𝑅)‘𝑙) → (𝑘 · (𝐹𝑗)) = (((invg𝑅)‘𝑙) · (𝐹𝑗)))
190189eleq1d 2829 . . . . . . . . 9 (𝑘 = ((invg𝑅)‘𝑙) → ((𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
191190notbid 318 . . . . . . . 8 (𝑘 = ((invg𝑅)‘𝑙) → (¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
192191adantl 481 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑘 = ((invg𝑅)‘𝑙)) → (¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
193179, 188, 192ralxfrd 5426 . . . . . 6 (𝑊 ∈ LMod → (∀𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
1941933ad2ant1 1133 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (∀𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
195194adantr 480 . . . 4 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
196 simplr 768 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ 𝑥𝐿) → 𝑗𝐼)
19734fvexi 6934 . . . . . . . . 9 𝑌 ∈ V
198197fvconst2 7241 . . . . . . . 8 (𝑗𝐼 → ((𝐼 × {𝑌})‘𝑗) = 𝑌)
199196, 198syl 17 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ 𝑥𝐿) → ((𝐼 × {𝑌})‘𝑗) = 𝑌)
200199eqeq2d 2751 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ 𝑥𝐿) → ((𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗) ↔ (𝑥𝑗) = 𝑌))
201200imbi2d 340 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ 𝑥𝐿) → (((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
202201ralbidva 3182 . . . 4 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
203176, 195, 2023bitr4d 311 . . 3 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
204203ralbidva 3182 . 2 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (∀𝑗𝐼𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑗𝐼𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
2057, 9, 154, 8, 12, 34islindf2 21857 . 2 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑗𝐼𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
206167, 12, 165frlmbasf 21803 . . . . . . . 8 ((𝐼𝑋𝑥𝐿) → 𝑥:𝐼⟶(Base‘𝑅))
2072063ad2antl2 1186 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑥𝐿) → 𝑥:𝐼⟶(Base‘𝑅))
208207ffnd 6748 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑥𝐿) → 𝑥 Fn 𝐼)
209 fnconstg 6809 . . . . . . 7 (𝑌 ∈ V → (𝐼 × {𝑌}) Fn 𝐼)
210197, 209ax-mp 5 . . . . . 6 (𝐼 × {𝑌}) Fn 𝐼
211 eqfnfv 7064 . . . . . 6 ((𝑥 Fn 𝐼 ∧ (𝐼 × {𝑌}) Fn 𝐼) → (𝑥 = (𝐼 × {𝑌}) ↔ ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
212208, 210, 211sylancl 585 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑥𝐿) → (𝑥 = (𝐼 × {𝑌}) ↔ ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
213212imbi2d 340 . . . 4 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑥𝐿) → (((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌})) ↔ ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
214213ralbidva 3182 . . 3 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌})) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
215 r19.21v 3186 . . . . 5 (∀𝑗𝐼 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
216215ralbii 3099 . . . 4 (∀𝑥𝐿𝑗𝐼 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
217 ralcom 3295 . . . 4 (∀𝑥𝐿𝑗𝐼 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ∀𝑗𝐼𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
218216, 217bitr3i 277 . . 3 (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ∀𝑗𝐼𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
219214, 218bitrdi 287 . 2 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌})) ↔ ∀𝑗𝐼𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
220204, 205, 2193bitr4d 311 1 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wnel 3052  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  cop 4654   class class class wbr 5166  cmpt 5249   × cxp 5698  dom cdm 5700  cres 5702  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884   finSupp cfsupp 9431  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  Grpcgrp 18973  invgcminusg 18974  CMndccmn 19822  LModclmod 20880  LSpanclspn 20992   freeLMod cfrlm 21789   LIndF clindf 21847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-nzr 20539  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lmhm 21044  df-lbs 21097  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-uvc 21826  df-lindf 21849
This theorem is referenced by:  islindf5  21882  islinds5  33360  islbs5  33373  fedgmul  33644  matunitlindflem1  37576  aacllem  48895
  Copyright terms: Public domain W3C validator