MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf4 Structured version   Visualization version   GIF version

Theorem islindf4 21779
Description: A family is independent iff it has no nontrivial representations of zero. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
islindf4.b 𝐵 = (Base‘𝑊)
islindf4.r 𝑅 = (Scalar‘𝑊)
islindf4.t · = ( ·𝑠𝑊)
islindf4.z 0 = (0g𝑊)
islindf4.y 𝑌 = (0g𝑅)
islindf4.l 𝐿 = (Base‘(𝑅 freeLMod 𝐼))
Assertion
Ref Expression
islindf4 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌}))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐼   𝑥,𝐿   𝑥,𝑅   𝑥, ·   𝑥,𝑊   𝑥,𝑋   𝑥,𝑌   𝑥, 0

Proof of Theorem islindf4
Dummy variables 𝑗 𝑘 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raldifsni 4748 . . . . 5 (∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑙 ∈ (Base‘𝑅)((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌))
2 simpll1 1213 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑊 ∈ LMod)
3 simprll 778 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑙 ∈ (Base‘𝑅))
4 ffvelcdm 7022 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐼𝐵𝑗𝐼) → (𝐹𝑗) ∈ 𝐵)
543ad2antl3 1188 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (𝐹𝑗) ∈ 𝐵)
65adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝐹𝑗) ∈ 𝐵)
7 islindf4.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝑊)
8 islindf4.r . . . . . . . . . . . . . . . . 17 𝑅 = (Scalar‘𝑊)
9 islindf4.t . . . . . . . . . . . . . . . . 17 · = ( ·𝑠𝑊)
10 eqid 2733 . . . . . . . . . . . . . . . . 17 (invg𝑊) = (invg𝑊)
11 eqid 2733 . . . . . . . . . . . . . . . . 17 (invg𝑅) = (invg𝑅)
12 eqid 2733 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
137, 8, 9, 10, 11, 12lmodvsinv 20974 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑙 ∈ (Base‘𝑅) ∧ (𝐹𝑗) ∈ 𝐵) → (((invg𝑅)‘𝑙) · (𝐹𝑗)) = ((invg𝑊)‘(𝑙 · (𝐹𝑗))))
142, 3, 6, 13syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((invg𝑅)‘𝑙) · (𝐹𝑗)) = ((invg𝑊)‘(𝑙 · (𝐹𝑗))))
1514eqeq1d 2735 . . . . . . . . . . . . . 14 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ↔ ((invg𝑊)‘(𝑙 · (𝐹𝑗))) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))))
16 lmodgrp 20804 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
172, 16syl 17 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑊 ∈ Grp)
187, 8, 9, 12lmodvscl 20815 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑙 ∈ (Base‘𝑅) ∧ (𝐹𝑗) ∈ 𝐵) → (𝑙 · (𝐹𝑗)) ∈ 𝐵)
192, 3, 6, 18syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑙 · (𝐹𝑗)) ∈ 𝐵)
20 islindf4.z . . . . . . . . . . . . . . . 16 0 = (0g𝑊)
21 lmodcmn 20847 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LMod → 𝑊 ∈ CMnd)
222, 21syl 17 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑊 ∈ CMnd)
23 simpll2 1214 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐼𝑋)
24 difexg 5271 . . . . . . . . . . . . . . . . 17 (𝐼𝑋 → (𝐼 ∖ {𝑗}) ∈ V)
2523, 24syl 17 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝐼 ∖ {𝑗}) ∈ V)
26 simprlr 779 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))
27 elmapi 8781 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})) → 𝑦:(𝐼 ∖ {𝑗})⟶(Base‘𝑅))
2826, 27syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑦:(𝐼 ∖ {𝑗})⟶(Base‘𝑅))
29 simpll3 1215 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐹:𝐼𝐵)
30 difss 4085 . . . . . . . . . . . . . . . . . 18 (𝐼 ∖ {𝑗}) ⊆ 𝐼
31 fssres 6696 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐼𝐵 ∧ (𝐼 ∖ {𝑗}) ⊆ 𝐼) → (𝐹 ↾ (𝐼 ∖ {𝑗})):(𝐼 ∖ {𝑗})⟶𝐵)
3229, 30, 31sylancl 586 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝐹 ↾ (𝐼 ∖ {𝑗})):(𝐼 ∖ {𝑗})⟶𝐵)
338, 12, 9, 7, 2, 28, 32, 25lcomf 20838 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))):(𝐼 ∖ {𝑗})⟶𝐵)
34 islindf4.y . . . . . . . . . . . . . . . . 17 𝑌 = (0g𝑅)
35 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑦 finSupp 𝑌)
368, 12, 9, 7, 2, 28, 32, 25, 20, 34, 35lcomfsupp 20839 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))) finSupp 0 )
377, 20, 22, 25, 33, 36gsumcl 19831 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ∈ 𝐵)
38 eqid 2733 . . . . . . . . . . . . . . . 16 (+g𝑊) = (+g𝑊)
397, 38, 20, 10grpinvid2 18909 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Grp ∧ (𝑙 · (𝐹𝑗)) ∈ 𝐵 ∧ (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ∈ 𝐵) → (((invg𝑊)‘(𝑙 · (𝐹𝑗))) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ↔ ((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))) = 0 ))
4017, 19, 37, 39syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((invg𝑊)‘(𝑙 · (𝐹𝑗))) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ↔ ((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))) = 0 ))
41 simplr 768 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑗𝐼)
42 fsnunf2 7128 . . . . . . . . . . . . . . . . . . 19 ((𝑦:(𝐼 ∖ {𝑗})⟶(Base‘𝑅) ∧ 𝑗𝐼𝑙 ∈ (Base‘𝑅)) → (𝑦 ∪ {⟨𝑗, 𝑙⟩}):𝐼⟶(Base‘𝑅))
4328, 41, 3, 42syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦 ∪ {⟨𝑗, 𝑙⟩}):𝐼⟶(Base‘𝑅))
448, 12, 9, 7, 2, 43, 29, 23lcomf 20838 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹):𝐼𝐵)
45 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝑗𝐼)
46 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) → 𝑙 ∈ (Base‘𝑅))
4745, 46anim12i 613 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (𝑗𝐼𝑙 ∈ (Base‘𝑅)))
48 elmapfun 8798 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})) → Fun 𝑦)
49 fdm 6667 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦:(𝐼 ∖ {𝑗})⟶(Base‘𝑅) → dom 𝑦 = (𝐼 ∖ {𝑗}))
50 neldifsnd 4746 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (dom 𝑦 = (𝐼 ∖ {𝑗}) → ¬ 𝑗 ∈ (𝐼 ∖ {𝑗}))
51 df-nel 3034 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∉ dom 𝑦 ↔ ¬ 𝑗 ∈ dom 𝑦)
52 eleq2 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑦 = (𝐼 ∖ {𝑗}) → (𝑗 ∈ dom 𝑦𝑗 ∈ (𝐼 ∖ {𝑗})))
5352notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (dom 𝑦 = (𝐼 ∖ {𝑗}) → (¬ 𝑗 ∈ dom 𝑦 ↔ ¬ 𝑗 ∈ (𝐼 ∖ {𝑗})))
5451, 53bitrid 283 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (dom 𝑦 = (𝐼 ∖ {𝑗}) → (𝑗 ∉ dom 𝑦 ↔ ¬ 𝑗 ∈ (𝐼 ∖ {𝑗})))
5550, 54mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑦 = (𝐼 ∖ {𝑗}) → 𝑗 ∉ dom 𝑦)
5627, 49, 553syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})) → 𝑗 ∉ dom 𝑦)
5748, 56jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})) → (Fun 𝑦𝑗 ∉ dom 𝑦))
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) → (Fun 𝑦𝑗 ∉ dom 𝑦))
5958adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (Fun 𝑦𝑗 ∉ dom 𝑦))
6047, 59jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → ((𝑗𝐼𝑙 ∈ (Base‘𝑅)) ∧ (Fun 𝑦𝑗 ∉ dom 𝑦)))
61 funsnfsupp 9285 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑗𝐼𝑙 ∈ (Base‘𝑅)) ∧ (Fun 𝑦𝑗 ∉ dom 𝑦)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌𝑦 finSupp 𝑌))
6261bicomd 223 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗𝐼𝑙 ∈ (Base‘𝑅)) ∧ (Fun 𝑦𝑗 ∉ dom 𝑦)) → (𝑦 finSupp 𝑌 ↔ (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌))
6360, 62syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (𝑦 finSupp 𝑌 ↔ (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌))
6463biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (𝑦 finSupp 𝑌 → (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌))
6564impr 454 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌)
668, 12, 9, 7, 2, 43, 29, 23, 20, 34, 65lcomfsupp 20839 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) finSupp 0 )
67 disjdifr 4422 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∖ {𝑗}) ∩ {𝑗}) = ∅
6867a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝐼 ∖ {𝑗}) ∩ {𝑗}) = ∅)
69 difsnid 4763 . . . . . . . . . . . . . . . . . . 19 (𝑗𝐼 → ((𝐼 ∖ {𝑗}) ∪ {𝑗}) = 𝐼)
7069eqcomd 2739 . . . . . . . . . . . . . . . . . 18 (𝑗𝐼𝐼 = ((𝐼 ∖ {𝑗}) ∪ {𝑗}))
7141, 70syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐼 = ((𝐼 ∖ {𝑗}) ∪ {𝑗}))
727, 20, 38, 22, 23, 44, 66, 68, 71gsumsplit 19844 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = ((𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})))(+g𝑊)(𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}))))
73 vex 3441 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
74 snex 5378 . . . . . . . . . . . . . . . . . . . . 21 {⟨𝑗, 𝑙⟩} ∈ V
7573, 74unex 7685 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∈ V
76 simpl3 1194 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝐹:𝐼𝐵)
77 simpl2 1193 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝐼𝑋)
7876, 77fexd 7169 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝐹 ∈ V)
7978adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐹 ∈ V)
80 offres 7923 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∈ V ∧ 𝐹 ∈ V) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})) = (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) ∘f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))
8175, 79, 80sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})) = (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) ∘f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))
8228ffnd 6659 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑦 Fn (𝐼 ∖ {𝑗}))
83 neldifsn 4745 . . . . . . . . . . . . . . . . . . . . 21 ¬ 𝑗 ∈ (𝐼 ∖ {𝑗})
84 fsnunres 7130 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 Fn (𝐼 ∖ {𝑗}) ∧ ¬ 𝑗 ∈ (𝐼 ∖ {𝑗})) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) = 𝑦)
8582, 83, 84sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) = 𝑦)
8685oveq1d 7369 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) ∘f · (𝐹 ↾ (𝐼 ∖ {𝑗}))) = (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))
8781, 86eqtrd 2768 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})) = (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))
8887oveq2d 7370 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗}))) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))))
8944ffnd 6659 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) Fn 𝐼)
90 fnressn 7099 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) Fn 𝐼𝑗𝐼) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}) = {⟨𝑗, (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗)⟩})
9189, 41, 90syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}) = {⟨𝑗, (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗)⟩})
9243ffnd 6659 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦 ∪ {⟨𝑗, 𝑙⟩}) Fn 𝐼)
9329ffnd 6659 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐹 Fn 𝐼)
94 fnfvof 7635 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∪ {⟨𝑗, 𝑙⟩}) Fn 𝐼𝐹 Fn 𝐼) ∧ (𝐼𝑋𝑗𝐼)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗) = (((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) · (𝐹𝑗)))
9592, 93, 23, 41, 94syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗) = (((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) · (𝐹𝑗)))
96 fndm 6591 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 Fn (𝐼 ∖ {𝑗}) → dom 𝑦 = (𝐼 ∖ {𝑗}))
9796eleq2d 2819 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 Fn (𝐼 ∖ {𝑗}) → (𝑗 ∈ dom 𝑦𝑗 ∈ (𝐼 ∖ {𝑗})))
9883, 97mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 Fn (𝐼 ∖ {𝑗}) → ¬ 𝑗 ∈ dom 𝑦)
99 vex 3441 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑗 ∈ V
100 vex 3441 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑙 ∈ V
101 fsnunfv 7129 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ V ∧ 𝑙 ∈ V ∧ ¬ 𝑗 ∈ dom 𝑦) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑙)
10299, 100, 101mp3an12 1453 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑗 ∈ dom 𝑦 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑙)
10382, 98, 1023syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑙)
104103oveq1d 7369 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) · (𝐹𝑗)) = (𝑙 · (𝐹𝑗)))
10595, 104eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗) = (𝑙 · (𝐹𝑗)))
106105opeq2d 4833 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ⟨𝑗, (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗)⟩ = ⟨𝑗, (𝑙 · (𝐹𝑗))⟩)
107106sneqd 4589 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → {⟨𝑗, (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗)⟩} = {⟨𝑗, (𝑙 · (𝐹𝑗))⟩})
108 ovex 7387 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 · (𝐹𝑗)) ∈ V
109 fmptsn 7109 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ V ∧ (𝑙 · (𝐹𝑗)) ∈ V) → {⟨𝑗, (𝑙 · (𝐹𝑗))⟩} = (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗))))
11099, 108, 109mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 {⟨𝑗, (𝑙 · (𝐹𝑗))⟩} = (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗)))
111110a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → {⟨𝑗, (𝑙 · (𝐹𝑗))⟩} = (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗))))
11291, 107, 1113eqtrd 2772 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}) = (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗))))
113112oveq2d 7370 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗})) = (𝑊 Σg (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗)))))
114 cmnmnd 19713 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ CMnd → 𝑊 ∈ Mnd)
1152, 21, 1143syl 18 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑊 ∈ Mnd)
11699a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑗 ∈ V)
117 eqidd 2734 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑗 → (𝑙 · (𝐹𝑗)) = (𝑙 · (𝐹𝑗)))
1187, 117gsumsn 19870 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Mnd ∧ 𝑗 ∈ V ∧ (𝑙 · (𝐹𝑗)) ∈ 𝐵) → (𝑊 Σg (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗)))) = (𝑙 · (𝐹𝑗)))
119115, 116, 19, 118syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗)))) = (𝑙 · (𝐹𝑗)))
120113, 119eqtrd 2768 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗})) = (𝑙 · (𝐹𝑗)))
12188, 120oveq12d 7372 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})))(+g𝑊)(𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}))) = ((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))))
12272, 121eqtr2d 2769 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))) = (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)))
123122eqeq1d 2735 . . . . . . . . . . . . . 14 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))) = 0 ↔ (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 ))
12415, 40, 1233bitrd 305 . . . . . . . . . . . . 13 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ↔ (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 ))
125103eqcomd 2739 . . . . . . . . . . . . . 14 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑙 = ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗))
126125eqeq1d 2735 . . . . . . . . . . . . 13 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑙 = 𝑌 ↔ ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))
127124, 126imbi12d 344 . . . . . . . . . . . 12 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌) ↔ ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌)))
128127anassrs 467 . . . . . . . . . . 11 (((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) ∧ 𝑦 finSupp 𝑌) → (((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌) ↔ ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌)))
129128pm5.74da 803 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → ((𝑦 finSupp 𝑌 → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌)) ↔ (𝑦 finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
130 impexp 450 . . . . . . . . . . 11 (((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ (𝑦 finSupp 𝑌 → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌)))
131130a1i 11 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ (𝑦 finSupp 𝑌 → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌))))
13263bicomd 223 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌𝑦 finSupp 𝑌))
133132imbi1d 341 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌)) ↔ (𝑦 finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
134129, 131, 1333bitr4d 311 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
1351342ralbidva 3195 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ ∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
136 breq1 5098 . . . . . . . . . . 11 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (𝑥 finSupp 𝑌 ↔ (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌))
137 oveq1 7361 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (𝑥f · 𝐹) = ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹))
138137oveq2d 7370 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (𝑊 Σg (𝑥f · 𝐹)) = (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)))
139138eqeq1d 2735 . . . . . . . . . . . 12 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → ((𝑊 Σg (𝑥f · 𝐹)) = 0 ↔ (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 ))
140 fveq1 6829 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (𝑥𝑗) = ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗))
141140eqeq1d 2735 . . . . . . . . . . . 12 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → ((𝑥𝑗) = 𝑌 ↔ ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))
142139, 141imbi12d 344 . . . . . . . . . . 11 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌) ↔ ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌)))
143136, 142imbi12d 344 . . . . . . . . . 10 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → ((𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)) ↔ ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
144143ralxpmap 8828 . . . . . . . . 9 (𝑗𝐼 → (∀𝑥 ∈ ((Base‘𝑅) ↑m 𝐼)(𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)) ↔ ∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
145144adantl 481 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑥 ∈ ((Base‘𝑅) ↑m 𝐼)(𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)) ↔ ∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
146135, 145bitr4d 282 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ ∀𝑥 ∈ ((Base‘𝑅) ↑m 𝐼)(𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌))))
147 breq1 5098 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 finSupp 𝑌𝑥 finSupp 𝑌))
148147ralrab 3649 . . . . . . 7 (∀𝑥 ∈ {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌) ↔ ∀𝑥 ∈ ((Base‘𝑅) ↑m 𝐼)(𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
149146, 148bitr4di 289 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ ∀𝑥 ∈ {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
150 resima 5970 . . . . . . . . . . . . 13 ((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗})) = (𝐹 “ (𝐼 ∖ {𝑗}))
151150eqcomi 2742 . . . . . . . . . . . 12 (𝐹 “ (𝐼 ∖ {𝑗})) = ((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗}))
152151fveq2i 6833 . . . . . . . . . . 11 ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) = ((LSpan‘𝑊)‘((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗})))
153152eleq2i 2825 . . . . . . . . . 10 ((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗}))))
154 eqid 2733 . . . . . . . . . . 11 (LSpan‘𝑊) = (LSpan‘𝑊)
15576, 30, 31sylancl 586 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (𝐹 ↾ (𝐼 ∖ {𝑗})):(𝐼 ∖ {𝑗})⟶𝐵)
156 simpl1 1192 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝑊 ∈ LMod)
157243ad2ant2 1134 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (𝐼 ∖ {𝑗}) ∈ V)
158157adantr 480 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (𝐼 ∖ {𝑗}) ∈ V)
159154, 7, 12, 8, 34, 9, 155, 156, 158ellspd 21743 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗}))) ↔ ∃𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))(𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))))))
160153, 159bitrid 283 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∃𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))(𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))))))
161160imbi1d 341 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌) ↔ (∃𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))(𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌)))
162 r19.23v 3160 . . . . . . . 8 (∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ (∃𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))(𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌))
163161, 162bitr4di 289 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌) ↔ ∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌)))
164163ralbidv 3156 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌) ↔ ∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌)))
165 islindf4.l . . . . . . . 8 𝐿 = (Base‘(𝑅 freeLMod 𝐼))
1668fvexi 6844 . . . . . . . . . . 11 𝑅 ∈ V
167 eqid 2733 . . . . . . . . . . . 12 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
168 eqid 2733 . . . . . . . . . . . 12 {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌}
169167, 12, 34, 168frlmbas 21696 . . . . . . . . . . 11 ((𝑅 ∈ V ∧ 𝐼𝑋) → {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = (Base‘(𝑅 freeLMod 𝐼)))
170166, 169mpan 690 . . . . . . . . . 10 (𝐼𝑋 → {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = (Base‘(𝑅 freeLMod 𝐼)))
1711703ad2ant2 1134 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = (Base‘(𝑅 freeLMod 𝐼)))
172171adantr 480 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = (Base‘(𝑅 freeLMod 𝐼)))
173165, 172eqtr4id 2787 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝐿 = {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌})
174173raleqdv 3293 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌) ↔ ∀𝑥 ∈ {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
175149, 164, 1743bitr4d 311 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
1761, 175bitrid 283 . . . 4 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
1778lmodfgrp 20806 . . . . . . . 8 (𝑊 ∈ LMod → 𝑅 ∈ Grp)
17812, 34, 11grpinvnzcl 18928 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑙 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘𝑙) ∈ ((Base‘𝑅) ∖ {𝑌}))
179177, 178sylan 580 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑙 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘𝑙) ∈ ((Base‘𝑅) ∖ {𝑌}))
18012, 34, 11grpinvnzcl 18928 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘𝑘) ∈ ((Base‘𝑅) ∖ {𝑌}))
181177, 180sylan 580 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘𝑘) ∈ ((Base‘𝑅) ∖ {𝑌}))
182 eldifi 4080 . . . . . . . . . 10 (𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) → 𝑘 ∈ (Base‘𝑅))
18312, 11grpinvinv 18922 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝑘 ∈ (Base‘𝑅)) → ((invg𝑅)‘((invg𝑅)‘𝑘)) = 𝑘)
184177, 182, 183syl2an 596 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘((invg𝑅)‘𝑘)) = 𝑘)
185184eqcomd 2739 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → 𝑘 = ((invg𝑅)‘((invg𝑅)‘𝑘)))
186 fveq2 6830 . . . . . . . . 9 (𝑙 = ((invg𝑅)‘𝑘) → ((invg𝑅)‘𝑙) = ((invg𝑅)‘((invg𝑅)‘𝑘)))
187186rspceeqv 3596 . . . . . . . 8 ((((invg𝑅)‘𝑘) ∈ ((Base‘𝑅) ∖ {𝑌}) ∧ 𝑘 = ((invg𝑅)‘((invg𝑅)‘𝑘))) → ∃𝑙 ∈ ((Base‘𝑅) ∖ {𝑌})𝑘 = ((invg𝑅)‘𝑙))
188181, 185, 187syl2anc 584 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → ∃𝑙 ∈ ((Base‘𝑅) ∖ {𝑌})𝑘 = ((invg𝑅)‘𝑙))
189 oveq1 7361 . . . . . . . . . 10 (𝑘 = ((invg𝑅)‘𝑙) → (𝑘 · (𝐹𝑗)) = (((invg𝑅)‘𝑙) · (𝐹𝑗)))
190189eleq1d 2818 . . . . . . . . 9 (𝑘 = ((invg𝑅)‘𝑙) → ((𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
191190notbid 318 . . . . . . . 8 (𝑘 = ((invg𝑅)‘𝑙) → (¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
192191adantl 481 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑘 = ((invg𝑅)‘𝑙)) → (¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
193179, 188, 192ralxfrd 5350 . . . . . 6 (𝑊 ∈ LMod → (∀𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
1941933ad2ant1 1133 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (∀𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
195194adantr 480 . . . 4 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
196 simplr 768 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ 𝑥𝐿) → 𝑗𝐼)
19734fvexi 6844 . . . . . . . . 9 𝑌 ∈ V
198197fvconst2 7146 . . . . . . . 8 (𝑗𝐼 → ((𝐼 × {𝑌})‘𝑗) = 𝑌)
199196, 198syl 17 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ 𝑥𝐿) → ((𝐼 × {𝑌})‘𝑗) = 𝑌)
200199eqeq2d 2744 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ 𝑥𝐿) → ((𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗) ↔ (𝑥𝑗) = 𝑌))
201200imbi2d 340 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ 𝑥𝐿) → (((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
202201ralbidva 3154 . . . 4 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
203176, 195, 2023bitr4d 311 . . 3 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
204203ralbidva 3154 . 2 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (∀𝑗𝐼𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑗𝐼𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
2057, 9, 154, 8, 12, 34islindf2 21755 . 2 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑗𝐼𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
206167, 12, 165frlmbasf 21701 . . . . . . . 8 ((𝐼𝑋𝑥𝐿) → 𝑥:𝐼⟶(Base‘𝑅))
2072063ad2antl2 1187 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑥𝐿) → 𝑥:𝐼⟶(Base‘𝑅))
208207ffnd 6659 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑥𝐿) → 𝑥 Fn 𝐼)
209 fnconstg 6718 . . . . . . 7 (𝑌 ∈ V → (𝐼 × {𝑌}) Fn 𝐼)
210197, 209ax-mp 5 . . . . . 6 (𝐼 × {𝑌}) Fn 𝐼
211 eqfnfv 6972 . . . . . 6 ((𝑥 Fn 𝐼 ∧ (𝐼 × {𝑌}) Fn 𝐼) → (𝑥 = (𝐼 × {𝑌}) ↔ ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
212208, 210, 211sylancl 586 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑥𝐿) → (𝑥 = (𝐼 × {𝑌}) ↔ ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
213212imbi2d 340 . . . 4 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑥𝐿) → (((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌})) ↔ ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
214213ralbidva 3154 . . 3 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌})) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
215 r19.21v 3158 . . . . 5 (∀𝑗𝐼 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
216215ralbii 3079 . . . 4 (∀𝑥𝐿𝑗𝐼 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
217 ralcom 3261 . . . 4 (∀𝑥𝐿𝑗𝐼 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ∀𝑗𝐼𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
218216, 217bitr3i 277 . . 3 (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ∀𝑗𝐼𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
219214, 218bitrdi 287 . 2 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌})) ↔ ∀𝑗𝐼𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
220204, 205, 2193bitr4d 311 1 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wnel 3033  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282  {csn 4577  cop 4583   class class class wbr 5095  cmpt 5176   × cxp 5619  dom cdm 5621  cres 5623  cima 5624  Fun wfun 6482   Fn wfn 6483  wf 6484  cfv 6488  (class class class)co 7354  f cof 7616  m cmap 8758   finSupp cfsupp 9254  Basecbs 17124  +gcplusg 17165  Scalarcsca 17168   ·𝑠 cvsca 17169  0gc0g 17347   Σg cgsu 17348  Mndcmnd 18646  Grpcgrp 18850  invgcminusg 18851  CMndccmn 19696  LModclmod 20797  LSpanclspn 20908   freeLMod cfrlm 21687   LIndF clindf 21745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-sup 9335  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-hom 17189  df-cco 17190  df-0g 17349  df-gsum 17350  df-prds 17355  df-pws 17357  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-submnd 18696  df-grp 18853  df-minusg 18854  df-sbg 18855  df-mulg 18985  df-subg 19040  df-ghm 19129  df-cntz 19233  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-nzr 20432  df-subrg 20489  df-lmod 20799  df-lss 20869  df-lsp 20909  df-lmhm 20960  df-lbs 21013  df-sra 21111  df-rgmod 21112  df-dsmm 21673  df-frlm 21688  df-uvc 21724  df-lindf 21747
This theorem is referenced by:  islindf5  21780  islinds5  33341  islbs5  33354  fedgmul  33667  extdgfialglem1  33728  matunitlindflem1  37679  aacllem  49929
  Copyright terms: Public domain W3C validator