MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf4 Structured version   Visualization version   GIF version

Theorem islindf4 21776
Description: A family is independent iff it has no nontrivial representations of zero. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
islindf4.b 𝐵 = (Base‘𝑊)
islindf4.r 𝑅 = (Scalar‘𝑊)
islindf4.t · = ( ·𝑠𝑊)
islindf4.z 0 = (0g𝑊)
islindf4.y 𝑌 = (0g𝑅)
islindf4.l 𝐿 = (Base‘(𝑅 freeLMod 𝐼))
Assertion
Ref Expression
islindf4 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌}))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐼   𝑥,𝐿   𝑥,𝑅   𝑥, ·   𝑥,𝑊   𝑥,𝑋   𝑥,𝑌   𝑥, 0

Proof of Theorem islindf4
Dummy variables 𝑗 𝑘 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raldifsni 4747 . . . . 5 (∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑙 ∈ (Base‘𝑅)((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌))
2 simpll1 1213 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑊 ∈ LMod)
3 simprll 778 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑙 ∈ (Base‘𝑅))
4 ffvelcdm 7014 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐼𝐵𝑗𝐼) → (𝐹𝑗) ∈ 𝐵)
543ad2antl3 1188 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (𝐹𝑗) ∈ 𝐵)
65adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝐹𝑗) ∈ 𝐵)
7 islindf4.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝑊)
8 islindf4.r . . . . . . . . . . . . . . . . 17 𝑅 = (Scalar‘𝑊)
9 islindf4.t . . . . . . . . . . . . . . . . 17 · = ( ·𝑠𝑊)
10 eqid 2731 . . . . . . . . . . . . . . . . 17 (invg𝑊) = (invg𝑊)
11 eqid 2731 . . . . . . . . . . . . . . . . 17 (invg𝑅) = (invg𝑅)
12 eqid 2731 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
137, 8, 9, 10, 11, 12lmodvsinv 20971 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑙 ∈ (Base‘𝑅) ∧ (𝐹𝑗) ∈ 𝐵) → (((invg𝑅)‘𝑙) · (𝐹𝑗)) = ((invg𝑊)‘(𝑙 · (𝐹𝑗))))
142, 3, 6, 13syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((invg𝑅)‘𝑙) · (𝐹𝑗)) = ((invg𝑊)‘(𝑙 · (𝐹𝑗))))
1514eqeq1d 2733 . . . . . . . . . . . . . 14 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ↔ ((invg𝑊)‘(𝑙 · (𝐹𝑗))) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))))
16 lmodgrp 20801 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
172, 16syl 17 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑊 ∈ Grp)
187, 8, 9, 12lmodvscl 20812 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑙 ∈ (Base‘𝑅) ∧ (𝐹𝑗) ∈ 𝐵) → (𝑙 · (𝐹𝑗)) ∈ 𝐵)
192, 3, 6, 18syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑙 · (𝐹𝑗)) ∈ 𝐵)
20 islindf4.z . . . . . . . . . . . . . . . 16 0 = (0g𝑊)
21 lmodcmn 20844 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LMod → 𝑊 ∈ CMnd)
222, 21syl 17 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑊 ∈ CMnd)
23 simpll2 1214 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐼𝑋)
24 difexg 5267 . . . . . . . . . . . . . . . . 17 (𝐼𝑋 → (𝐼 ∖ {𝑗}) ∈ V)
2523, 24syl 17 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝐼 ∖ {𝑗}) ∈ V)
26 simprlr 779 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))
27 elmapi 8773 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})) → 𝑦:(𝐼 ∖ {𝑗})⟶(Base‘𝑅))
2826, 27syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑦:(𝐼 ∖ {𝑗})⟶(Base‘𝑅))
29 simpll3 1215 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐹:𝐼𝐵)
30 difss 4086 . . . . . . . . . . . . . . . . . 18 (𝐼 ∖ {𝑗}) ⊆ 𝐼
31 fssres 6689 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐼𝐵 ∧ (𝐼 ∖ {𝑗}) ⊆ 𝐼) → (𝐹 ↾ (𝐼 ∖ {𝑗})):(𝐼 ∖ {𝑗})⟶𝐵)
3229, 30, 31sylancl 586 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝐹 ↾ (𝐼 ∖ {𝑗})):(𝐼 ∖ {𝑗})⟶𝐵)
338, 12, 9, 7, 2, 28, 32, 25lcomf 20835 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))):(𝐼 ∖ {𝑗})⟶𝐵)
34 islindf4.y . . . . . . . . . . . . . . . . 17 𝑌 = (0g𝑅)
35 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑦 finSupp 𝑌)
368, 12, 9, 7, 2, 28, 32, 25, 20, 34, 35lcomfsupp 20836 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))) finSupp 0 )
377, 20, 22, 25, 33, 36gsumcl 19828 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ∈ 𝐵)
38 eqid 2731 . . . . . . . . . . . . . . . 16 (+g𝑊) = (+g𝑊)
397, 38, 20, 10grpinvid2 18905 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Grp ∧ (𝑙 · (𝐹𝑗)) ∈ 𝐵 ∧ (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ∈ 𝐵) → (((invg𝑊)‘(𝑙 · (𝐹𝑗))) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ↔ ((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))) = 0 ))
4017, 19, 37, 39syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((invg𝑊)‘(𝑙 · (𝐹𝑗))) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ↔ ((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))) = 0 ))
41 simplr 768 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑗𝐼)
42 fsnunf2 7120 . . . . . . . . . . . . . . . . . . 19 ((𝑦:(𝐼 ∖ {𝑗})⟶(Base‘𝑅) ∧ 𝑗𝐼𝑙 ∈ (Base‘𝑅)) → (𝑦 ∪ {⟨𝑗, 𝑙⟩}):𝐼⟶(Base‘𝑅))
4328, 41, 3, 42syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦 ∪ {⟨𝑗, 𝑙⟩}):𝐼⟶(Base‘𝑅))
448, 12, 9, 7, 2, 43, 29, 23lcomf 20835 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹):𝐼𝐵)
45 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝑗𝐼)
46 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) → 𝑙 ∈ (Base‘𝑅))
4745, 46anim12i 613 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (𝑗𝐼𝑙 ∈ (Base‘𝑅)))
48 elmapfun 8790 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})) → Fun 𝑦)
49 fdm 6660 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦:(𝐼 ∖ {𝑗})⟶(Base‘𝑅) → dom 𝑦 = (𝐼 ∖ {𝑗}))
50 neldifsnd 4745 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (dom 𝑦 = (𝐼 ∖ {𝑗}) → ¬ 𝑗 ∈ (𝐼 ∖ {𝑗}))
51 df-nel 3033 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∉ dom 𝑦 ↔ ¬ 𝑗 ∈ dom 𝑦)
52 eleq2 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑦 = (𝐼 ∖ {𝑗}) → (𝑗 ∈ dom 𝑦𝑗 ∈ (𝐼 ∖ {𝑗})))
5352notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (dom 𝑦 = (𝐼 ∖ {𝑗}) → (¬ 𝑗 ∈ dom 𝑦 ↔ ¬ 𝑗 ∈ (𝐼 ∖ {𝑗})))
5451, 53bitrid 283 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (dom 𝑦 = (𝐼 ∖ {𝑗}) → (𝑗 ∉ dom 𝑦 ↔ ¬ 𝑗 ∈ (𝐼 ∖ {𝑗})))
5550, 54mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑦 = (𝐼 ∖ {𝑗}) → 𝑗 ∉ dom 𝑦)
5627, 49, 553syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})) → 𝑗 ∉ dom 𝑦)
5748, 56jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})) → (Fun 𝑦𝑗 ∉ dom 𝑦))
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) → (Fun 𝑦𝑗 ∉ dom 𝑦))
5958adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (Fun 𝑦𝑗 ∉ dom 𝑦))
6047, 59jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → ((𝑗𝐼𝑙 ∈ (Base‘𝑅)) ∧ (Fun 𝑦𝑗 ∉ dom 𝑦)))
61 funsnfsupp 9276 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑗𝐼𝑙 ∈ (Base‘𝑅)) ∧ (Fun 𝑦𝑗 ∉ dom 𝑦)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌𝑦 finSupp 𝑌))
6261bicomd 223 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗𝐼𝑙 ∈ (Base‘𝑅)) ∧ (Fun 𝑦𝑗 ∉ dom 𝑦)) → (𝑦 finSupp 𝑌 ↔ (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌))
6360, 62syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (𝑦 finSupp 𝑌 ↔ (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌))
6463biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (𝑦 finSupp 𝑌 → (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌))
6564impr 454 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌)
668, 12, 9, 7, 2, 43, 29, 23, 20, 34, 65lcomfsupp 20836 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) finSupp 0 )
67 disjdifr 4423 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∖ {𝑗}) ∩ {𝑗}) = ∅
6867a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝐼 ∖ {𝑗}) ∩ {𝑗}) = ∅)
69 difsnid 4762 . . . . . . . . . . . . . . . . . . 19 (𝑗𝐼 → ((𝐼 ∖ {𝑗}) ∪ {𝑗}) = 𝐼)
7069eqcomd 2737 . . . . . . . . . . . . . . . . . 18 (𝑗𝐼𝐼 = ((𝐼 ∖ {𝑗}) ∪ {𝑗}))
7141, 70syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐼 = ((𝐼 ∖ {𝑗}) ∪ {𝑗}))
727, 20, 38, 22, 23, 44, 66, 68, 71gsumsplit 19841 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = ((𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})))(+g𝑊)(𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}))))
73 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
74 snex 5374 . . . . . . . . . . . . . . . . . . . . 21 {⟨𝑗, 𝑙⟩} ∈ V
7573, 74unex 7677 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∈ V
76 simpl3 1194 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝐹:𝐼𝐵)
77 simpl2 1193 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝐼𝑋)
7876, 77fexd 7161 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝐹 ∈ V)
7978adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐹 ∈ V)
80 offres 7915 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∈ V ∧ 𝐹 ∈ V) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})) = (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) ∘f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))
8175, 79, 80sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})) = (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) ∘f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))
8228ffnd 6652 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑦 Fn (𝐼 ∖ {𝑗}))
83 neldifsn 4744 . . . . . . . . . . . . . . . . . . . . 21 ¬ 𝑗 ∈ (𝐼 ∖ {𝑗})
84 fsnunres 7122 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 Fn (𝐼 ∖ {𝑗}) ∧ ¬ 𝑗 ∈ (𝐼 ∖ {𝑗})) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) = 𝑦)
8582, 83, 84sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) = 𝑦)
8685oveq1d 7361 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ↾ (𝐼 ∖ {𝑗})) ∘f · (𝐹 ↾ (𝐼 ∖ {𝑗}))) = (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))
8781, 86eqtrd 2766 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})) = (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))
8887oveq2d 7362 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗}))) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))))
8944ffnd 6652 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) Fn 𝐼)
90 fnressn 7091 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) Fn 𝐼𝑗𝐼) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}) = {⟨𝑗, (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗)⟩})
9189, 41, 90syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}) = {⟨𝑗, (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗)⟩})
9243ffnd 6652 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑦 ∪ {⟨𝑗, 𝑙⟩}) Fn 𝐼)
9329ffnd 6652 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝐹 Fn 𝐼)
94 fnfvof 7627 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∪ {⟨𝑗, 𝑙⟩}) Fn 𝐼𝐹 Fn 𝐼) ∧ (𝐼𝑋𝑗𝐼)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗) = (((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) · (𝐹𝑗)))
9592, 93, 23, 41, 94syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗) = (((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) · (𝐹𝑗)))
96 fndm 6584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 Fn (𝐼 ∖ {𝑗}) → dom 𝑦 = (𝐼 ∖ {𝑗}))
9796eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 Fn (𝐼 ∖ {𝑗}) → (𝑗 ∈ dom 𝑦𝑗 ∈ (𝐼 ∖ {𝑗})))
9883, 97mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 Fn (𝐼 ∖ {𝑗}) → ¬ 𝑗 ∈ dom 𝑦)
99 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑗 ∈ V
100 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑙 ∈ V
101 fsnunfv 7121 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ V ∧ 𝑙 ∈ V ∧ ¬ 𝑗 ∈ dom 𝑦) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑙)
10299, 100, 101mp3an12 1453 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑗 ∈ dom 𝑦 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑙)
10382, 98, 1023syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑙)
104103oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) · (𝐹𝑗)) = (𝑙 · (𝐹𝑗)))
10595, 104eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗) = (𝑙 · (𝐹𝑗)))
106105opeq2d 4832 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ⟨𝑗, (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗)⟩ = ⟨𝑗, (𝑙 · (𝐹𝑗))⟩)
107106sneqd 4588 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → {⟨𝑗, (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)‘𝑗)⟩} = {⟨𝑗, (𝑙 · (𝐹𝑗))⟩})
108 ovex 7379 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 · (𝐹𝑗)) ∈ V
109 fmptsn 7101 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ V ∧ (𝑙 · (𝐹𝑗)) ∈ V) → {⟨𝑗, (𝑙 · (𝐹𝑗))⟩} = (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗))))
11099, 108, 109mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 {⟨𝑗, (𝑙 · (𝐹𝑗))⟩} = (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗)))
111110a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → {⟨𝑗, (𝑙 · (𝐹𝑗))⟩} = (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗))))
11291, 107, 1113eqtrd 2770 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}) = (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗))))
113112oveq2d 7362 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗})) = (𝑊 Σg (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗)))))
114 cmnmnd 19710 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ CMnd → 𝑊 ∈ Mnd)
1152, 21, 1143syl 18 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑊 ∈ Mnd)
11699a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑗 ∈ V)
117 eqidd 2732 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑗 → (𝑙 · (𝐹𝑗)) = (𝑙 · (𝐹𝑗)))
1187, 117gsumsn 19867 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Mnd ∧ 𝑗 ∈ V ∧ (𝑙 · (𝐹𝑗)) ∈ 𝐵) → (𝑊 Σg (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗)))) = (𝑙 · (𝐹𝑗)))
119115, 116, 19, 118syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (𝑥 ∈ {𝑗} ↦ (𝑙 · (𝐹𝑗)))) = (𝑙 · (𝐹𝑗)))
120113, 119eqtrd 2766 . . . . . . . . . . . . . . . . 17 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗})) = (𝑙 · (𝐹𝑗)))
12188, 120oveq12d 7364 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ (𝐼 ∖ {𝑗})))(+g𝑊)(𝑊 Σg (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹) ↾ {𝑗}))) = ((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))))
12272, 121eqtr2d 2767 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))) = (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)))
123122eqeq1d 2733 . . . . . . . . . . . . . 14 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))(+g𝑊)(𝑙 · (𝐹𝑗))) = 0 ↔ (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 ))
12415, 40, 1233bitrd 305 . . . . . . . . . . . . 13 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) ↔ (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 ))
125103eqcomd 2737 . . . . . . . . . . . . . 14 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → 𝑙 = ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗))
126125eqeq1d 2733 . . . . . . . . . . . . 13 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (𝑙 = 𝑌 ↔ ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))
127124, 126imbi12d 344 . . . . . . . . . . . 12 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ ((𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))) ∧ 𝑦 finSupp 𝑌)) → (((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌) ↔ ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌)))
128127anassrs 467 . . . . . . . . . . 11 (((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) ∧ 𝑦 finSupp 𝑌) → (((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌) ↔ ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌)))
129128pm5.74da 803 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → ((𝑦 finSupp 𝑌 → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌)) ↔ (𝑦 finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
130 impexp 450 . . . . . . . . . . 11 (((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ (𝑦 finSupp 𝑌 → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌)))
131130a1i 11 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ (𝑦 finSupp 𝑌 → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))) → 𝑙 = 𝑌))))
13263bicomd 223 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌𝑦 finSupp 𝑌))
133132imbi1d 341 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌)) ↔ (𝑦 finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
134129, 131, 1333bitr4d 311 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ (𝑙 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗})))) → (((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
1351342ralbidva 3194 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ ∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
136 breq1 5094 . . . . . . . . . . 11 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (𝑥 finSupp 𝑌 ↔ (𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌))
137 oveq1 7353 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (𝑥f · 𝐹) = ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹))
138137oveq2d 7362 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (𝑊 Σg (𝑥f · 𝐹)) = (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)))
139138eqeq1d 2733 . . . . . . . . . . . 12 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → ((𝑊 Σg (𝑥f · 𝐹)) = 0 ↔ (𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 ))
140 fveq1 6821 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (𝑥𝑗) = ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗))
141140eqeq1d 2733 . . . . . . . . . . . 12 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → ((𝑥𝑗) = 𝑌 ↔ ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))
142139, 141imbi12d 344 . . . . . . . . . . 11 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → (((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌) ↔ ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌)))
143136, 142imbi12d 344 . . . . . . . . . 10 (𝑥 = (𝑦 ∪ {⟨𝑗, 𝑙⟩}) → ((𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)) ↔ ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
144143ralxpmap 8820 . . . . . . . . 9 (𝑗𝐼 → (∀𝑥 ∈ ((Base‘𝑅) ↑m 𝐼)(𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)) ↔ ∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
145144adantl 481 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑥 ∈ ((Base‘𝑅) ↑m 𝐼)(𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)) ↔ ∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 ∪ {⟨𝑗, 𝑙⟩}) finSupp 𝑌 → ((𝑊 Σg ((𝑦 ∪ {⟨𝑗, 𝑙⟩}) ∘f · 𝐹)) = 0 → ((𝑦 ∪ {⟨𝑗, 𝑙⟩})‘𝑗) = 𝑌))))
146135, 145bitr4d 282 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ ∀𝑥 ∈ ((Base‘𝑅) ↑m 𝐼)(𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌))))
147 breq1 5094 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 finSupp 𝑌𝑥 finSupp 𝑌))
148147ralrab 3653 . . . . . . 7 (∀𝑥 ∈ {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌) ↔ ∀𝑥 ∈ ((Base‘𝑅) ↑m 𝐼)(𝑥 finSupp 𝑌 → ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
149146, 148bitr4di 289 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ ∀𝑥 ∈ {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
150 resima 5964 . . . . . . . . . . . . 13 ((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗})) = (𝐹 “ (𝐼 ∖ {𝑗}))
151150eqcomi 2740 . . . . . . . . . . . 12 (𝐹 “ (𝐼 ∖ {𝑗})) = ((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗}))
152151fveq2i 6825 . . . . . . . . . . 11 ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) = ((LSpan‘𝑊)‘((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗})))
153152eleq2i 2823 . . . . . . . . . 10 ((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗}))))
154 eqid 2731 . . . . . . . . . . 11 (LSpan‘𝑊) = (LSpan‘𝑊)
15576, 30, 31sylancl 586 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (𝐹 ↾ (𝐼 ∖ {𝑗})):(𝐼 ∖ {𝑗})⟶𝐵)
156 simpl1 1192 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝑊 ∈ LMod)
157243ad2ant2 1134 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (𝐼 ∖ {𝑗}) ∈ V)
158157adantr 480 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (𝐼 ∖ {𝑗}) ∈ V)
159154, 7, 12, 8, 34, 9, 155, 156, 158ellspd 21740 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘((𝐹 ↾ (𝐼 ∖ {𝑗})) “ (𝐼 ∖ {𝑗}))) ↔ ∃𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))(𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))))))
160153, 159bitrid 283 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → ((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∃𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))(𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗})))))))
161160imbi1d 341 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌) ↔ (∃𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))(𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌)))
162 r19.23v 3159 . . . . . . . 8 (∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌) ↔ (∃𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))(𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌))
163161, 162bitr4di 289 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌) ↔ ∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌)))
164163ralbidv 3155 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌) ↔ ∀𝑙 ∈ (Base‘𝑅)∀𝑦 ∈ ((Base‘𝑅) ↑m (𝐼 ∖ {𝑗}))((𝑦 finSupp 𝑌 ∧ (((invg𝑅)‘𝑙) · (𝐹𝑗)) = (𝑊 Σg (𝑦f · (𝐹 ↾ (𝐼 ∖ {𝑗}))))) → 𝑙 = 𝑌)))
165 islindf4.l . . . . . . . 8 𝐿 = (Base‘(𝑅 freeLMod 𝐼))
1668fvexi 6836 . . . . . . . . . . 11 𝑅 ∈ V
167 eqid 2731 . . . . . . . . . . . 12 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
168 eqid 2731 . . . . . . . . . . . 12 {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌}
169167, 12, 34, 168frlmbas 21693 . . . . . . . . . . 11 ((𝑅 ∈ V ∧ 𝐼𝑋) → {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = (Base‘(𝑅 freeLMod 𝐼)))
170166, 169mpan 690 . . . . . . . . . 10 (𝐼𝑋 → {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = (Base‘(𝑅 freeLMod 𝐼)))
1711703ad2ant2 1134 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = (Base‘(𝑅 freeLMod 𝐼)))
172171adantr 480 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} = (Base‘(𝑅 freeLMod 𝐼)))
173165, 172eqtr4id 2785 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → 𝐿 = {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌})
174173raleqdv 3292 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌) ↔ ∀𝑥 ∈ {𝑧 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑧 finSupp 𝑌} ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
175149, 164, 1743bitr4d 311 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ (Base‘𝑅)((((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) → 𝑙 = 𝑌) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
1761, 175bitrid 283 . . . 4 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
1778lmodfgrp 20803 . . . . . . . 8 (𝑊 ∈ LMod → 𝑅 ∈ Grp)
17812, 34, 11grpinvnzcl 18924 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑙 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘𝑙) ∈ ((Base‘𝑅) ∖ {𝑌}))
179177, 178sylan 580 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑙 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘𝑙) ∈ ((Base‘𝑅) ∖ {𝑌}))
18012, 34, 11grpinvnzcl 18924 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘𝑘) ∈ ((Base‘𝑅) ∖ {𝑌}))
181177, 180sylan 580 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘𝑘) ∈ ((Base‘𝑅) ∖ {𝑌}))
182 eldifi 4081 . . . . . . . . . 10 (𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) → 𝑘 ∈ (Base‘𝑅))
18312, 11grpinvinv 18918 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝑘 ∈ (Base‘𝑅)) → ((invg𝑅)‘((invg𝑅)‘𝑘)) = 𝑘)
184177, 182, 183syl2an 596 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → ((invg𝑅)‘((invg𝑅)‘𝑘)) = 𝑘)
185184eqcomd 2737 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → 𝑘 = ((invg𝑅)‘((invg𝑅)‘𝑘)))
186 fveq2 6822 . . . . . . . . 9 (𝑙 = ((invg𝑅)‘𝑘) → ((invg𝑅)‘𝑙) = ((invg𝑅)‘((invg𝑅)‘𝑘)))
187186rspceeqv 3600 . . . . . . . 8 ((((invg𝑅)‘𝑘) ∈ ((Base‘𝑅) ∖ {𝑌}) ∧ 𝑘 = ((invg𝑅)‘((invg𝑅)‘𝑘))) → ∃𝑙 ∈ ((Base‘𝑅) ∖ {𝑌})𝑘 = ((invg𝑅)‘𝑙))
188181, 185, 187syl2anc 584 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑘 ∈ ((Base‘𝑅) ∖ {𝑌})) → ∃𝑙 ∈ ((Base‘𝑅) ∖ {𝑌})𝑘 = ((invg𝑅)‘𝑙))
189 oveq1 7353 . . . . . . . . . 10 (𝑘 = ((invg𝑅)‘𝑙) → (𝑘 · (𝐹𝑗)) = (((invg𝑅)‘𝑙) · (𝐹𝑗)))
190189eleq1d 2816 . . . . . . . . 9 (𝑘 = ((invg𝑅)‘𝑙) → ((𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
191190notbid 318 . . . . . . . 8 (𝑘 = ((invg𝑅)‘𝑙) → (¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
192191adantl 481 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑘 = ((invg𝑅)‘𝑙)) → (¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
193179, 188, 192ralxfrd 5346 . . . . . 6 (𝑊 ∈ LMod → (∀𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
1941933ad2ant1 1133 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (∀𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
195194adantr 480 . . . 4 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑙 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (((invg𝑅)‘𝑙) · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
196 simplr 768 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ 𝑥𝐿) → 𝑗𝐼)
19734fvexi 6836 . . . . . . . . 9 𝑌 ∈ V
198197fvconst2 7138 . . . . . . . 8 (𝑗𝐼 → ((𝐼 × {𝑌})‘𝑗) = 𝑌)
199196, 198syl 17 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ 𝑥𝐿) → ((𝐼 × {𝑌})‘𝑗) = 𝑌)
200199eqeq2d 2742 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ 𝑥𝐿) → ((𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗) ↔ (𝑥𝑗) = 𝑌))
201200imbi2d 340 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) ∧ 𝑥𝐿) → (((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
202201ralbidva 3153 . . . 4 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = 𝑌)))
203176, 195, 2023bitr4d 311 . . 3 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑗𝐼) → (∀𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
204203ralbidva 3153 . 2 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (∀𝑗𝐼𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗}))) ↔ ∀𝑗𝐼𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
2057, 9, 154, 8, 12, 34islindf2 21752 . 2 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑗𝐼𝑘 ∈ ((Base‘𝑅) ∖ {𝑌}) ¬ (𝑘 · (𝐹𝑗)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (𝐼 ∖ {𝑗})))))
206167, 12, 165frlmbasf 21698 . . . . . . . 8 ((𝐼𝑋𝑥𝐿) → 𝑥:𝐼⟶(Base‘𝑅))
2072063ad2antl2 1187 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑥𝐿) → 𝑥:𝐼⟶(Base‘𝑅))
208207ffnd 6652 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑥𝐿) → 𝑥 Fn 𝐼)
209 fnconstg 6711 . . . . . . 7 (𝑌 ∈ V → (𝐼 × {𝑌}) Fn 𝐼)
210197, 209ax-mp 5 . . . . . 6 (𝐼 × {𝑌}) Fn 𝐼
211 eqfnfv 6964 . . . . . 6 ((𝑥 Fn 𝐼 ∧ (𝐼 × {𝑌}) Fn 𝐼) → (𝑥 = (𝐼 × {𝑌}) ↔ ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
212208, 210, 211sylancl 586 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑥𝐿) → (𝑥 = (𝐼 × {𝑌}) ↔ ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
213212imbi2d 340 . . . 4 (((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) ∧ 𝑥𝐿) → (((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌})) ↔ ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
214213ralbidva 3153 . . 3 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌})) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
215 r19.21v 3157 . . . . 5 (∀𝑗𝐼 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
216215ralbii 3078 . . . 4 (∀𝑥𝐿𝑗𝐼 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
217 ralcom 3260 . . . 4 (∀𝑥𝐿𝑗𝐼 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ∀𝑗𝐼𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
218216, 217bitr3i 277 . . 3 (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → ∀𝑗𝐼 (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)) ↔ ∀𝑗𝐼𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗)))
219214, 218bitrdi 287 . 2 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌})) ↔ ∀𝑗𝐼𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0 → (𝑥𝑗) = ((𝐼 × {𝑌})‘𝑗))))
220204, 205, 2193bitr4d 311 1 ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wnel 3032  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cdif 3899  cun 3900  cin 3901  wss 3902  c0 4283  {csn 4576  cop 4582   class class class wbr 5091  cmpt 5172   × cxp 5614  dom cdm 5616  cres 5618  cima 5619  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  m cmap 8750   finSupp cfsupp 9245  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  Grpcgrp 18846  invgcminusg 18847  CMndccmn 19693  LModclmod 20794  LSpanclspn 20905   freeLMod cfrlm 21684   LIndF clindf 21742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19126  df-cntz 19230  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-nzr 20429  df-subrg 20486  df-lmod 20796  df-lss 20866  df-lsp 20906  df-lmhm 20957  df-lbs 21010  df-sra 21108  df-rgmod 21109  df-dsmm 21670  df-frlm 21685  df-uvc 21721  df-lindf 21744
This theorem is referenced by:  islindf5  21777  islinds5  33330  islbs5  33343  fedgmul  33642  extdgfialglem1  33703  matunitlindflem1  37662  aacllem  49839
  Copyright terms: Public domain W3C validator