| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islindf3 | Structured version Visualization version GIF version | ||
| Description: In a nonzero ring, independent families can be equivalently characterized as renamings of independent sets. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| islindf3.l | ⊢ 𝐿 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| islindf3 | ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | islindf3.l | . . . . . 6 ⊢ 𝐿 = (Scalar‘𝑊) | |
| 3 | 1, 2 | lindff1 21758 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→(Base‘𝑊)) |
| 4 | 3 | 3expa 1118 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→(Base‘𝑊)) |
| 5 | ssv 3959 | . . . 4 ⊢ (Base‘𝑊) ⊆ V | |
| 6 | f1ss 6724 | . . . 4 ⊢ ((𝐹:dom 𝐹–1-1→(Base‘𝑊) ∧ (Base‘𝑊) ⊆ V) → 𝐹:dom 𝐹–1-1→V) | |
| 7 | 4, 5, 6 | sylancl 586 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→V) |
| 8 | lindfrn 21759 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊)) | |
| 9 | 8 | adantlr 715 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊)) |
| 10 | 7, 9 | jca 511 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) |
| 11 | simpll 766 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝑊 ∈ LMod) | |
| 12 | simprr 772 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → ran 𝐹 ∈ (LIndS‘𝑊)) | |
| 13 | f1f1orn 6774 | . . . . 5 ⊢ (𝐹:dom 𝐹–1-1→V → 𝐹:dom 𝐹–1-1-onto→ran 𝐹) | |
| 14 | f1of1 6762 | . . . . 5 ⊢ (𝐹:dom 𝐹–1-1-onto→ran 𝐹 → 𝐹:dom 𝐹–1-1→ran 𝐹) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝐹:dom 𝐹–1-1→V → 𝐹:dom 𝐹–1-1→ran 𝐹) |
| 16 | 15 | ad2antrl 728 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝐹:dom 𝐹–1-1→ran 𝐹) |
| 17 | f1linds 21763 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ran 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐹:dom 𝐹–1-1→ran 𝐹) → 𝐹 LIndF 𝑊) | |
| 18 | 11, 12, 16, 17 | syl3anc 1373 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝐹 LIndF 𝑊) |
| 19 | 10, 18 | impbida 800 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 class class class wbr 5091 dom cdm 5616 ran crn 5617 –1-1→wf1 6478 –1-1-onto→wf1o 6480 ‘cfv 6481 Basecbs 17120 Scalarcsca 17164 NzRingcnzr 20428 LModclmod 20794 LIndF clindf 21742 LIndSclinds 21743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-mgp 20060 df-ur 20101 df-ring 20154 df-nzr 20429 df-lmod 20796 df-lss 20866 df-lsp 20906 df-lindf 21744 df-linds 21745 |
| This theorem is referenced by: lindflbs 33342 extdgfialglem1 33703 aacllem 49839 |
| Copyright terms: Public domain | W3C validator |