MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf3 Structured version   Visualization version   GIF version

Theorem islindf3 20652
Description: In a nonzero ring, independent families can be equivalently characterized as renamings of independent sets. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypothesis
Ref Expression
islindf3.l 𝐿 = (Scalar‘𝑊)
Assertion
Ref Expression
islindf3 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))))

Proof of Theorem islindf3
StepHypRef Expression
1 eqid 2795 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
2 islindf3.l . . . . . 6 𝐿 = (Scalar‘𝑊)
31, 2lindff1 20646 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1→(Base‘𝑊))
433expa 1111 . . . 4 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1→(Base‘𝑊))
5 ssv 3912 . . . 4 (Base‘𝑊) ⊆ V
6 f1ss 6448 . . . 4 ((𝐹:dom 𝐹1-1→(Base‘𝑊) ∧ (Base‘𝑊) ⊆ V) → 𝐹:dom 𝐹1-1→V)
74, 5, 6sylancl 586 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1→V)
8 lindfrn 20647 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊))
98adantlr 711 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊))
107, 9jca 512 . 2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))
11 simpll 763 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝑊 ∈ LMod)
12 simprr 769 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → ran 𝐹 ∈ (LIndS‘𝑊))
13 f1f1orn 6494 . . . . 5 (𝐹:dom 𝐹1-1→V → 𝐹:dom 𝐹1-1-onto→ran 𝐹)
14 f1of1 6482 . . . . 5 (𝐹:dom 𝐹1-1-onto→ran 𝐹𝐹:dom 𝐹1-1→ran 𝐹)
1513, 14syl 17 . . . 4 (𝐹:dom 𝐹1-1→V → 𝐹:dom 𝐹1-1→ran 𝐹)
1615ad2antrl 724 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝐹:dom 𝐹1-1→ran 𝐹)
17 f1linds 20651 . . 3 ((𝑊 ∈ LMod ∧ ran 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐹:dom 𝐹1-1→ran 𝐹) → 𝐹 LIndF 𝑊)
1811, 12, 16, 17syl3anc 1364 . 2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝐹 LIndF 𝑊)
1910, 18impbida 797 1 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  Vcvv 3437  wss 3859   class class class wbr 4962  dom cdm 5443  ran crn 5444  1-1wf1 6222  1-1-ontowf1o 6224  cfv 6225  Basecbs 16312  Scalarcsca 16397  LModclmod 19324  NzRingcnzr 19719   LIndF clindf 20630  LIndSclinds 20631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-plusg 16407  df-0g 16544  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-grp 17864  df-mgp 18930  df-ur 18942  df-ring 18989  df-lmod 19326  df-lss 19394  df-lsp 19434  df-nzr 19720  df-lindf 20632  df-linds 20633
This theorem is referenced by:  lindflbs  30586  aacllem  44382
  Copyright terms: Public domain W3C validator