Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islindf3 | Structured version Visualization version GIF version |
Description: In a nonzero ring, independent families can be equivalently characterized as renamings of independent sets. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
islindf3.l | ⊢ 𝐿 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
islindf3 | ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | islindf3.l | . . . . . 6 ⊢ 𝐿 = (Scalar‘𝑊) | |
3 | 1, 2 | lindff1 20782 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→(Base‘𝑊)) |
4 | 3 | 3expa 1120 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→(Base‘𝑊)) |
5 | ssv 3925 | . . . 4 ⊢ (Base‘𝑊) ⊆ V | |
6 | f1ss 6621 | . . . 4 ⊢ ((𝐹:dom 𝐹–1-1→(Base‘𝑊) ∧ (Base‘𝑊) ⊆ V) → 𝐹:dom 𝐹–1-1→V) | |
7 | 4, 5, 6 | sylancl 589 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→V) |
8 | lindfrn 20783 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊)) | |
9 | 8 | adantlr 715 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊)) |
10 | 7, 9 | jca 515 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) |
11 | simpll 767 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝑊 ∈ LMod) | |
12 | simprr 773 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → ran 𝐹 ∈ (LIndS‘𝑊)) | |
13 | f1f1orn 6672 | . . . . 5 ⊢ (𝐹:dom 𝐹–1-1→V → 𝐹:dom 𝐹–1-1-onto→ran 𝐹) | |
14 | f1of1 6660 | . . . . 5 ⊢ (𝐹:dom 𝐹–1-1-onto→ran 𝐹 → 𝐹:dom 𝐹–1-1→ran 𝐹) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝐹:dom 𝐹–1-1→V → 𝐹:dom 𝐹–1-1→ran 𝐹) |
16 | 15 | ad2antrl 728 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝐹:dom 𝐹–1-1→ran 𝐹) |
17 | f1linds 20787 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ran 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐹:dom 𝐹–1-1→ran 𝐹) → 𝐹 LIndF 𝑊) | |
18 | 11, 12, 16, 17 | syl3anc 1373 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝐹 LIndF 𝑊) |
19 | 10, 18 | impbida 801 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ⊆ wss 3866 class class class wbr 5053 dom cdm 5551 ran crn 5552 –1-1→wf1 6377 –1-1-onto→wf1o 6379 ‘cfv 6380 Basecbs 16760 Scalarcsca 16805 LModclmod 19899 NzRingcnzr 20295 LIndF clindf 20766 LIndSclinds 20767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-mgp 19505 df-ur 19517 df-ring 19564 df-lmod 19901 df-lss 19969 df-lsp 20009 df-nzr 20296 df-lindf 20768 df-linds 20769 |
This theorem is referenced by: lindflbs 31288 aacllem 46176 |
Copyright terms: Public domain | W3C validator |