MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf3 Structured version   Visualization version   GIF version

Theorem islindf3 20969
Description: In a nonzero ring, independent families can be equivalently characterized as renamings of independent sets. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypothesis
Ref Expression
islindf3.l 𝐿 = (Scalar‘𝑊)
Assertion
Ref Expression
islindf3 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))))

Proof of Theorem islindf3
StepHypRef Expression
1 eqid 2821 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
2 islindf3.l . . . . . 6 𝐿 = (Scalar‘𝑊)
31, 2lindff1 20963 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1→(Base‘𝑊))
433expa 1114 . . . 4 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1→(Base‘𝑊))
5 ssv 3990 . . . 4 (Base‘𝑊) ⊆ V
6 f1ss 6579 . . . 4 ((𝐹:dom 𝐹1-1→(Base‘𝑊) ∧ (Base‘𝑊) ⊆ V) → 𝐹:dom 𝐹1-1→V)
74, 5, 6sylancl 588 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1→V)
8 lindfrn 20964 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊))
98adantlr 713 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊))
107, 9jca 514 . 2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))
11 simpll 765 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝑊 ∈ LMod)
12 simprr 771 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → ran 𝐹 ∈ (LIndS‘𝑊))
13 f1f1orn 6625 . . . . 5 (𝐹:dom 𝐹1-1→V → 𝐹:dom 𝐹1-1-onto→ran 𝐹)
14 f1of1 6613 . . . . 5 (𝐹:dom 𝐹1-1-onto→ran 𝐹𝐹:dom 𝐹1-1→ran 𝐹)
1513, 14syl 17 . . . 4 (𝐹:dom 𝐹1-1→V → 𝐹:dom 𝐹1-1→ran 𝐹)
1615ad2antrl 726 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝐹:dom 𝐹1-1→ran 𝐹)
17 f1linds 20968 . . 3 ((𝑊 ∈ LMod ∧ ran 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐹:dom 𝐹1-1→ran 𝐹) → 𝐹 LIndF 𝑊)
1811, 12, 16, 17syl3anc 1367 . 2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝐹 LIndF 𝑊)
1910, 18impbida 799 1 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935   class class class wbr 5065  dom cdm 5554  ran crn 5555  1-1wf1 6351  1-1-ontowf1o 6353  cfv 6354  Basecbs 16482  Scalarcsca 16567  LModclmod 19633  NzRingcnzr 20029   LIndF clindf 20947  LIndSclinds 20948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-plusg 16577  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-mgp 19239  df-ur 19251  df-ring 19298  df-lmod 19635  df-lss 19703  df-lsp 19743  df-nzr 20030  df-lindf 20949  df-linds 20950
This theorem is referenced by:  lindflbs  30940  aacllem  44901
  Copyright terms: Public domain W3C validator