| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islindf3 | Structured version Visualization version GIF version | ||
| Description: In a nonzero ring, independent families can be equivalently characterized as renamings of independent sets. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| islindf3.l | ⊢ 𝐿 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| islindf3 | ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | islindf3.l | . . . . . 6 ⊢ 𝐿 = (Scalar‘𝑊) | |
| 3 | 1, 2 | lindff1 21759 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→(Base‘𝑊)) |
| 4 | 3 | 3expa 1118 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→(Base‘𝑊)) |
| 5 | ssv 3955 | . . . 4 ⊢ (Base‘𝑊) ⊆ V | |
| 6 | f1ss 6729 | . . . 4 ⊢ ((𝐹:dom 𝐹–1-1→(Base‘𝑊) ∧ (Base‘𝑊) ⊆ V) → 𝐹:dom 𝐹–1-1→V) | |
| 7 | 4, 5, 6 | sylancl 586 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→V) |
| 8 | lindfrn 21760 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊)) | |
| 9 | 8 | adantlr 715 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊)) |
| 10 | 7, 9 | jca 511 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊) → (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) |
| 11 | simpll 766 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝑊 ∈ LMod) | |
| 12 | simprr 772 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → ran 𝐹 ∈ (LIndS‘𝑊)) | |
| 13 | f1f1orn 6779 | . . . . 5 ⊢ (𝐹:dom 𝐹–1-1→V → 𝐹:dom 𝐹–1-1-onto→ran 𝐹) | |
| 14 | f1of1 6767 | . . . . 5 ⊢ (𝐹:dom 𝐹–1-1-onto→ran 𝐹 → 𝐹:dom 𝐹–1-1→ran 𝐹) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝐹:dom 𝐹–1-1→V → 𝐹:dom 𝐹–1-1→ran 𝐹) |
| 16 | 15 | ad2antrl 728 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝐹:dom 𝐹–1-1→ran 𝐹) |
| 17 | f1linds 21764 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ran 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐹:dom 𝐹–1-1→ran 𝐹) → 𝐹 LIndF 𝑊) | |
| 18 | 11, 12, 16, 17 | syl3anc 1373 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))) → 𝐹 LIndF 𝑊) |
| 19 | 10, 18 | impbida 800 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 class class class wbr 5093 dom cdm 5619 ran crn 5620 –1-1→wf1 6483 –1-1-onto→wf1o 6485 ‘cfv 6486 Basecbs 17122 Scalarcsca 17166 NzRingcnzr 20429 LModclmod 20795 LIndF clindf 21743 LIndSclinds 21744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-mgp 20061 df-ur 20102 df-ring 20155 df-nzr 20430 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lindf 21745 df-linds 21746 |
| This theorem is referenced by: lindflbs 33351 extdgfialglem1 33726 aacllem 49927 |
| Copyright terms: Public domain | W3C validator |