MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mdet Structured version   Visualization version   GIF version

Definition df-mdet 22520
Description: Determinant of a square matrix. This definition is based on Leibniz' Formula (see mdetleib 22522). The properties of the axiomatic definition of a determinant according to [Weierstrass] p. 272 are derived from this definition as theorems: "The determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring". Functionality is shown by mdetf 22530. Multilineary means "linear for each row" - the additivity is shown by mdetrlin 22537, the homogeneity by mdetrsca 22538. Furthermore, it is shown that the determinant function is alternating (see mdetralt 22543) and normalized (see mdet1 22536). Finally, uniqueness is shown by mdetuni 22557. As a consequence, the "determinant of a square matrix" is the function value of the determinant function for this square matrix, see mdetleib 22522. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 10-Jul-2018.)
Assertion
Ref Expression
df-mdet maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
Distinct variable group:   𝑛,𝑟,𝑚,𝑝,𝑥

Detailed syntax breakdown of Definition df-mdet
StepHypRef Expression
1 cmdat 22519 . 2 class maDet
2 vn . . 3 setvar 𝑛
3 vr . . 3 setvar 𝑟
4 cvv 3437 . . 3 class V
5 vm . . . 4 setvar 𝑚
62cv 1540 . . . . . 6 class 𝑛
73cv 1540 . . . . . 6 class 𝑟
8 cmat 22342 . . . . . 6 class Mat
96, 7, 8co 7355 . . . . 5 class (𝑛 Mat 𝑟)
10 cbs 17127 . . . . 5 class Base
119, 10cfv 6489 . . . 4 class (Base‘(𝑛 Mat 𝑟))
12 vp . . . . . 6 setvar 𝑝
13 csymg 19289 . . . . . . . 8 class SymGrp
146, 13cfv 6489 . . . . . . 7 class (SymGrp‘𝑛)
1514, 10cfv 6489 . . . . . 6 class (Base‘(SymGrp‘𝑛))
1612cv 1540 . . . . . . . 8 class 𝑝
17 czrh 21445 . . . . . . . . . 10 class ℤRHom
187, 17cfv 6489 . . . . . . . . 9 class (ℤRHom‘𝑟)
19 cpsgn 19409 . . . . . . . . . 10 class pmSgn
206, 19cfv 6489 . . . . . . . . 9 class (pmSgn‘𝑛)
2118, 20ccom 5625 . . . . . . . 8 class ((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))
2216, 21cfv 6489 . . . . . . 7 class (((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)
23 cmgp 20066 . . . . . . . . 9 class mulGrp
247, 23cfv 6489 . . . . . . . 8 class (mulGrp‘𝑟)
25 vx . . . . . . . . 9 setvar 𝑥
2625cv 1540 . . . . . . . . . . 11 class 𝑥
2726, 16cfv 6489 . . . . . . . . . 10 class (𝑝𝑥)
285cv 1540 . . . . . . . . . 10 class 𝑚
2927, 26, 28co 7355 . . . . . . . . 9 class ((𝑝𝑥)𝑚𝑥)
3025, 6, 29cmpt 5176 . . . . . . . 8 class (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))
31 cgsu 17351 . . . . . . . 8 class Σg
3224, 30, 31co 7355 . . . . . . 7 class ((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))
33 cmulr 17169 . . . . . . . 8 class .r
347, 33cfv 6489 . . . . . . 7 class (.r𝑟)
3522, 32, 34co 7355 . . . . . 6 class ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))
3612, 15, 35cmpt 5176 . . . . 5 class (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))
377, 36, 31co 7355 . . . 4 class (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))
385, 11, 37cmpt 5176 . . 3 class (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))))
392, 3, 4, 4, 38cmpo 7357 . 2 class (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
401, 39wceq 1541 1 wff maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
Colors of variables: wff setvar class
This definition is referenced by:  mdetfval  22521
  Copyright terms: Public domain W3C validator