MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mdet Structured version   Visualization version   GIF version

Definition df-mdet 21734
Description: Determinant of a square matrix. This definition is based on Leibniz' Formula (see mdetleib 21736). The properties of the axiomatic definition of a determinant according to [Weierstrass] p. 272 are derived from this definition as theorems: "The determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring". Functionality is shown by mdetf 21744. Multilineary means "linear for each row" - the additivity is shown by mdetrlin 21751, the homogeneity by mdetrsca 21752. Furthermore, it is shown that the determinant function is alternating (see mdetralt 21757) and normalized (see mdet1 21750). Finally, uniqueness is shown by mdetuni 21771. As a consequence, the "determinant of a square matrix" is the function value of the determinant function for this square matrix, see mdetleib 21736. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 10-Jul-2018.)
Assertion
Ref Expression
df-mdet maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
Distinct variable group:   𝑛,𝑟,𝑚,𝑝,𝑥

Detailed syntax breakdown of Definition df-mdet
StepHypRef Expression
1 cmdat 21733 . 2 class maDet
2 vn . . 3 setvar 𝑛
3 vr . . 3 setvar 𝑟
4 cvv 3432 . . 3 class V
5 vm . . . 4 setvar 𝑚
62cv 1538 . . . . . 6 class 𝑛
73cv 1538 . . . . . 6 class 𝑟
8 cmat 21554 . . . . . 6 class Mat
96, 7, 8co 7275 . . . . 5 class (𝑛 Mat 𝑟)
10 cbs 16912 . . . . 5 class Base
119, 10cfv 6433 . . . 4 class (Base‘(𝑛 Mat 𝑟))
12 vp . . . . . 6 setvar 𝑝
13 csymg 18974 . . . . . . . 8 class SymGrp
146, 13cfv 6433 . . . . . . 7 class (SymGrp‘𝑛)
1514, 10cfv 6433 . . . . . 6 class (Base‘(SymGrp‘𝑛))
1612cv 1538 . . . . . . . 8 class 𝑝
17 czrh 20701 . . . . . . . . . 10 class ℤRHom
187, 17cfv 6433 . . . . . . . . 9 class (ℤRHom‘𝑟)
19 cpsgn 19097 . . . . . . . . . 10 class pmSgn
206, 19cfv 6433 . . . . . . . . 9 class (pmSgn‘𝑛)
2118, 20ccom 5593 . . . . . . . 8 class ((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))
2216, 21cfv 6433 . . . . . . 7 class (((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)
23 cmgp 19720 . . . . . . . . 9 class mulGrp
247, 23cfv 6433 . . . . . . . 8 class (mulGrp‘𝑟)
25 vx . . . . . . . . 9 setvar 𝑥
2625cv 1538 . . . . . . . . . . 11 class 𝑥
2726, 16cfv 6433 . . . . . . . . . 10 class (𝑝𝑥)
285cv 1538 . . . . . . . . . 10 class 𝑚
2927, 26, 28co 7275 . . . . . . . . 9 class ((𝑝𝑥)𝑚𝑥)
3025, 6, 29cmpt 5157 . . . . . . . 8 class (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))
31 cgsu 17151 . . . . . . . 8 class Σg
3224, 30, 31co 7275 . . . . . . 7 class ((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))
33 cmulr 16963 . . . . . . . 8 class .r
347, 33cfv 6433 . . . . . . 7 class (.r𝑟)
3522, 32, 34co 7275 . . . . . 6 class ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))
3612, 15, 35cmpt 5157 . . . . 5 class (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))
377, 36, 31co 7275 . . . 4 class (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))
385, 11, 37cmpt 5157 . . 3 class (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))))
392, 3, 4, 4, 38cmpo 7277 . 2 class (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
401, 39wceq 1539 1 wff maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
Colors of variables: wff setvar class
This definition is referenced by:  mdetfval  21735
  Copyright terms: Public domain W3C validator