MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mdet Structured version   Visualization version   GIF version

Definition df-mdet 22472
Description: Determinant of a square matrix. This definition is based on Leibniz' Formula (see mdetleib 22474). The properties of the axiomatic definition of a determinant according to [Weierstrass] p. 272 are derived from this definition as theorems: "The determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring". Functionality is shown by mdetf 22482. Multilineary means "linear for each row" - the additivity is shown by mdetrlin 22489, the homogeneity by mdetrsca 22490. Furthermore, it is shown that the determinant function is alternating (see mdetralt 22495) and normalized (see mdet1 22488). Finally, uniqueness is shown by mdetuni 22509. As a consequence, the "determinant of a square matrix" is the function value of the determinant function for this square matrix, see mdetleib 22474. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 10-Jul-2018.)
Assertion
Ref Expression
df-mdet maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
Distinct variable group:   𝑛,𝑟,𝑚,𝑝,𝑥

Detailed syntax breakdown of Definition df-mdet
StepHypRef Expression
1 cmdat 22471 . 2 class maDet
2 vn . . 3 setvar 𝑛
3 vr . . 3 setvar 𝑟
4 cvv 3447 . . 3 class V
5 vm . . . 4 setvar 𝑚
62cv 1539 . . . . . 6 class 𝑛
73cv 1539 . . . . . 6 class 𝑟
8 cmat 22294 . . . . . 6 class Mat
96, 7, 8co 7387 . . . . 5 class (𝑛 Mat 𝑟)
10 cbs 17179 . . . . 5 class Base
119, 10cfv 6511 . . . 4 class (Base‘(𝑛 Mat 𝑟))
12 vp . . . . . 6 setvar 𝑝
13 csymg 19299 . . . . . . . 8 class SymGrp
146, 13cfv 6511 . . . . . . 7 class (SymGrp‘𝑛)
1514, 10cfv 6511 . . . . . 6 class (Base‘(SymGrp‘𝑛))
1612cv 1539 . . . . . . . 8 class 𝑝
17 czrh 21409 . . . . . . . . . 10 class ℤRHom
187, 17cfv 6511 . . . . . . . . 9 class (ℤRHom‘𝑟)
19 cpsgn 19419 . . . . . . . . . 10 class pmSgn
206, 19cfv 6511 . . . . . . . . 9 class (pmSgn‘𝑛)
2118, 20ccom 5642 . . . . . . . 8 class ((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))
2216, 21cfv 6511 . . . . . . 7 class (((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)
23 cmgp 20049 . . . . . . . . 9 class mulGrp
247, 23cfv 6511 . . . . . . . 8 class (mulGrp‘𝑟)
25 vx . . . . . . . . 9 setvar 𝑥
2625cv 1539 . . . . . . . . . . 11 class 𝑥
2726, 16cfv 6511 . . . . . . . . . 10 class (𝑝𝑥)
285cv 1539 . . . . . . . . . 10 class 𝑚
2927, 26, 28co 7387 . . . . . . . . 9 class ((𝑝𝑥)𝑚𝑥)
3025, 6, 29cmpt 5188 . . . . . . . 8 class (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))
31 cgsu 17403 . . . . . . . 8 class Σg
3224, 30, 31co 7387 . . . . . . 7 class ((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))
33 cmulr 17221 . . . . . . . 8 class .r
347, 33cfv 6511 . . . . . . 7 class (.r𝑟)
3522, 32, 34co 7387 . . . . . 6 class ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))
3612, 15, 35cmpt 5188 . . . . 5 class (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))
377, 36, 31co 7387 . . . 4 class (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))
385, 11, 37cmpt 5188 . . 3 class (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))))
392, 3, 4, 4, 38cmpo 7389 . 2 class (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
401, 39wceq 1540 1 wff maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
Colors of variables: wff setvar class
This definition is referenced by:  mdetfval  22473
  Copyright terms: Public domain W3C validator