MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mdet Structured version   Visualization version   GIF version

Definition df-mdet 22307
Description: Determinant of a square matrix. This definition is based on Leibniz' Formula (see mdetleib 22309). The properties of the axiomatic definition of a determinant according to [Weierstrass] p. 272 are derived from this definition as theorems: "The determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring". Functionality is shown by mdetf 22317. Multilineary means "linear for each row" - the additivity is shown by mdetrlin 22324, the homogeneity by mdetrsca 22325. Furthermore, it is shown that the determinant function is alternating (see mdetralt 22330) and normalized (see mdet1 22323). Finally, uniqueness is shown by mdetuni 22344. As a consequence, the "determinant of a square matrix" is the function value of the determinant function for this square matrix, see mdetleib 22309. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 10-Jul-2018.)
Assertion
Ref Expression
df-mdet maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
Distinct variable group:   𝑛,𝑟,𝑚,𝑝,𝑥

Detailed syntax breakdown of Definition df-mdet
StepHypRef Expression
1 cmdat 22306 . 2 class maDet
2 vn . . 3 setvar 𝑛
3 vr . . 3 setvar 𝑟
4 cvv 3472 . . 3 class V
5 vm . . . 4 setvar 𝑚
62cv 1538 . . . . . 6 class 𝑛
73cv 1538 . . . . . 6 class 𝑟
8 cmat 22127 . . . . . 6 class Mat
96, 7, 8co 7411 . . . . 5 class (𝑛 Mat 𝑟)
10 cbs 17148 . . . . 5 class Base
119, 10cfv 6542 . . . 4 class (Base‘(𝑛 Mat 𝑟))
12 vp . . . . . 6 setvar 𝑝
13 csymg 19275 . . . . . . . 8 class SymGrp
146, 13cfv 6542 . . . . . . 7 class (SymGrp‘𝑛)
1514, 10cfv 6542 . . . . . 6 class (Base‘(SymGrp‘𝑛))
1612cv 1538 . . . . . . . 8 class 𝑝
17 czrh 21268 . . . . . . . . . 10 class ℤRHom
187, 17cfv 6542 . . . . . . . . 9 class (ℤRHom‘𝑟)
19 cpsgn 19398 . . . . . . . . . 10 class pmSgn
206, 19cfv 6542 . . . . . . . . 9 class (pmSgn‘𝑛)
2118, 20ccom 5679 . . . . . . . 8 class ((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))
2216, 21cfv 6542 . . . . . . 7 class (((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)
23 cmgp 20028 . . . . . . . . 9 class mulGrp
247, 23cfv 6542 . . . . . . . 8 class (mulGrp‘𝑟)
25 vx . . . . . . . . 9 setvar 𝑥
2625cv 1538 . . . . . . . . . . 11 class 𝑥
2726, 16cfv 6542 . . . . . . . . . 10 class (𝑝𝑥)
285cv 1538 . . . . . . . . . 10 class 𝑚
2927, 26, 28co 7411 . . . . . . . . 9 class ((𝑝𝑥)𝑚𝑥)
3025, 6, 29cmpt 5230 . . . . . . . 8 class (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))
31 cgsu 17390 . . . . . . . 8 class Σg
3224, 30, 31co 7411 . . . . . . 7 class ((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))
33 cmulr 17202 . . . . . . . 8 class .r
347, 33cfv 6542 . . . . . . 7 class (.r𝑟)
3522, 32, 34co 7411 . . . . . 6 class ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))
3612, 15, 35cmpt 5230 . . . . 5 class (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))
377, 36, 31co 7411 . . . 4 class (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))
385, 11, 37cmpt 5230 . . 3 class (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))))
392, 3, 4, 4, 38cmpo 7413 . 2 class (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
401, 39wceq 1539 1 wff maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
Colors of variables: wff setvar class
This definition is referenced by:  mdetfval  22308
  Copyright terms: Public domain W3C validator