MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mdet Structured version   Visualization version   GIF version

Definition df-mdet 21642
Description: Determinant of a square matrix. This definition is based on Leibniz' Formula (see mdetleib 21644). The properties of the axiomatic definition of a determinant according to [Weierstrass] p. 272 are derived from this definition as theorems: "The determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring". Functionality is shown by mdetf 21652. Multilineary means "linear for each row" - the additivity is shown by mdetrlin 21659, the homogeneity by mdetrsca 21660. Furthermore, it is shown that the determinant function is alternating (see mdetralt 21665) and normalized (see mdet1 21658). Finally, uniqueness is shown by mdetuni 21679. As a consequence, the "determinant of a square matrix" is the function value of the determinant function for this square matrix, see mdetleib 21644. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 10-Jul-2018.)
Assertion
Ref Expression
df-mdet maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
Distinct variable group:   𝑛,𝑟,𝑚,𝑝,𝑥

Detailed syntax breakdown of Definition df-mdet
StepHypRef Expression
1 cmdat 21641 . 2 class maDet
2 vn . . 3 setvar 𝑛
3 vr . . 3 setvar 𝑟
4 cvv 3422 . . 3 class V
5 vm . . . 4 setvar 𝑚
62cv 1538 . . . . . 6 class 𝑛
73cv 1538 . . . . . 6 class 𝑟
8 cmat 21464 . . . . . 6 class Mat
96, 7, 8co 7255 . . . . 5 class (𝑛 Mat 𝑟)
10 cbs 16840 . . . . 5 class Base
119, 10cfv 6418 . . . 4 class (Base‘(𝑛 Mat 𝑟))
12 vp . . . . . 6 setvar 𝑝
13 csymg 18889 . . . . . . . 8 class SymGrp
146, 13cfv 6418 . . . . . . 7 class (SymGrp‘𝑛)
1514, 10cfv 6418 . . . . . 6 class (Base‘(SymGrp‘𝑛))
1612cv 1538 . . . . . . . 8 class 𝑝
17 czrh 20613 . . . . . . . . . 10 class ℤRHom
187, 17cfv 6418 . . . . . . . . 9 class (ℤRHom‘𝑟)
19 cpsgn 19012 . . . . . . . . . 10 class pmSgn
206, 19cfv 6418 . . . . . . . . 9 class (pmSgn‘𝑛)
2118, 20ccom 5584 . . . . . . . 8 class ((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))
2216, 21cfv 6418 . . . . . . 7 class (((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)
23 cmgp 19635 . . . . . . . . 9 class mulGrp
247, 23cfv 6418 . . . . . . . 8 class (mulGrp‘𝑟)
25 vx . . . . . . . . 9 setvar 𝑥
2625cv 1538 . . . . . . . . . . 11 class 𝑥
2726, 16cfv 6418 . . . . . . . . . 10 class (𝑝𝑥)
285cv 1538 . . . . . . . . . 10 class 𝑚
2927, 26, 28co 7255 . . . . . . . . 9 class ((𝑝𝑥)𝑚𝑥)
3025, 6, 29cmpt 5153 . . . . . . . 8 class (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))
31 cgsu 17068 . . . . . . . 8 class Σg
3224, 30, 31co 7255 . . . . . . 7 class ((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))
33 cmulr 16889 . . . . . . . 8 class .r
347, 33cfv 6418 . . . . . . 7 class (.r𝑟)
3522, 32, 34co 7255 . . . . . 6 class ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))
3612, 15, 35cmpt 5153 . . . . 5 class (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))
377, 36, 31co 7255 . . . 4 class (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))
385, 11, 37cmpt 5153 . . 3 class (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))))
392, 3, 4, 4, 38cmpo 7257 . 2 class (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
401, 39wceq 1539 1 wff maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
Colors of variables: wff setvar class
This definition is referenced by:  mdetfval  21643
  Copyright terms: Public domain W3C validator