Detailed syntax breakdown of Definition df-mdet
Step | Hyp | Ref
| Expression |
1 | | cmdat 21733 |
. 2
class
maDet |
2 | | vn |
. . 3
setvar 𝑛 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cvv 3432 |
. . 3
class
V |
5 | | vm |
. . . 4
setvar 𝑚 |
6 | 2 | cv 1538 |
. . . . . 6
class 𝑛 |
7 | 3 | cv 1538 |
. . . . . 6
class 𝑟 |
8 | | cmat 21554 |
. . . . . 6
class
Mat |
9 | 6, 7, 8 | co 7275 |
. . . . 5
class (𝑛 Mat 𝑟) |
10 | | cbs 16912 |
. . . . 5
class
Base |
11 | 9, 10 | cfv 6433 |
. . . 4
class
(Base‘(𝑛 Mat
𝑟)) |
12 | | vp |
. . . . . 6
setvar 𝑝 |
13 | | csymg 18974 |
. . . . . . . 8
class
SymGrp |
14 | 6, 13 | cfv 6433 |
. . . . . . 7
class
(SymGrp‘𝑛) |
15 | 14, 10 | cfv 6433 |
. . . . . 6
class
(Base‘(SymGrp‘𝑛)) |
16 | 12 | cv 1538 |
. . . . . . . 8
class 𝑝 |
17 | | czrh 20701 |
. . . . . . . . . 10
class
ℤRHom |
18 | 7, 17 | cfv 6433 |
. . . . . . . . 9
class
(ℤRHom‘𝑟) |
19 | | cpsgn 19097 |
. . . . . . . . . 10
class
pmSgn |
20 | 6, 19 | cfv 6433 |
. . . . . . . . 9
class
(pmSgn‘𝑛) |
21 | 18, 20 | ccom 5593 |
. . . . . . . 8
class
((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛)) |
22 | 16, 21 | cfv 6433 |
. . . . . . 7
class
(((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝) |
23 | | cmgp 19720 |
. . . . . . . . 9
class
mulGrp |
24 | 7, 23 | cfv 6433 |
. . . . . . . 8
class
(mulGrp‘𝑟) |
25 | | vx |
. . . . . . . . 9
setvar 𝑥 |
26 | 25 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
27 | 26, 16 | cfv 6433 |
. . . . . . . . . 10
class (𝑝‘𝑥) |
28 | 5 | cv 1538 |
. . . . . . . . . 10
class 𝑚 |
29 | 27, 26, 28 | co 7275 |
. . . . . . . . 9
class ((𝑝‘𝑥)𝑚𝑥) |
30 | 25, 6, 29 | cmpt 5157 |
. . . . . . . 8
class (𝑥 ∈ 𝑛 ↦ ((𝑝‘𝑥)𝑚𝑥)) |
31 | | cgsu 17151 |
. . . . . . . 8
class
Σg |
32 | 24, 30, 31 | co 7275 |
. . . . . . 7
class
((mulGrp‘𝑟)
Σg (𝑥 ∈ 𝑛 ↦ ((𝑝‘𝑥)𝑚𝑥))) |
33 | | cmulr 16963 |
. . . . . . . 8
class
.r |
34 | 7, 33 | cfv 6433 |
. . . . . . 7
class
(.r‘𝑟) |
35 | 22, 32, 34 | co 7275 |
. . . . . 6
class
((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r‘𝑟)((mulGrp‘𝑟) Σg (𝑥 ∈ 𝑛 ↦ ((𝑝‘𝑥)𝑚𝑥)))) |
36 | 12, 15, 35 | cmpt 5157 |
. . . . 5
class (𝑝 ∈
(Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r‘𝑟)((mulGrp‘𝑟) Σg (𝑥 ∈ 𝑛 ↦ ((𝑝‘𝑥)𝑚𝑥))))) |
37 | 7, 36, 31 | co 7275 |
. . . 4
class (𝑟 Σg
(𝑝 ∈
(Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r‘𝑟)((mulGrp‘𝑟) Σg (𝑥 ∈ 𝑛 ↦ ((𝑝‘𝑥)𝑚𝑥)))))) |
38 | 5, 11, 37 | cmpt 5157 |
. . 3
class (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r‘𝑟)((mulGrp‘𝑟) Σg (𝑥 ∈ 𝑛 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) |
39 | 2, 3, 4, 4, 38 | cmpo 7277 |
. 2
class (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r‘𝑟)((mulGrp‘𝑟) Σg (𝑥 ∈ 𝑛 ↦ ((𝑝‘𝑥)𝑚𝑥)))))))) |
40 | 1, 39 | wceq 1539 |
1
wff maDet =
(𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r‘𝑟)((mulGrp‘𝑟) Σg (𝑥 ∈ 𝑛 ↦ ((𝑝‘𝑥)𝑚𝑥)))))))) |