MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetf Structured version   Visualization version   GIF version

Theorem mdetf 22533
Description: Functionality of the determinant, see also definition in [Lang] p. 513. (Contributed by Stefan O'Rear, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mdetf.d 𝐷 = (𝑁 maDet 𝑅)
mdetf.a 𝐴 = (𝑁 Mat 𝑅)
mdetf.b 𝐵 = (Base‘𝐴)
mdetf.k 𝐾 = (Base‘𝑅)
Assertion
Ref Expression
mdetf (𝑅 ∈ CRing → 𝐷:𝐵𝐾)

Proof of Theorem mdetf
Dummy variables 𝑝 𝑐 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetf.k . . 3 𝐾 = (Base‘𝑅)
2 crngring 20205 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
32adantr 480 . . . 4 ((𝑅 ∈ CRing ∧ 𝑚𝐵) → 𝑅 ∈ Ring)
4 ringcmn 20242 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . 3 ((𝑅 ∈ CRing ∧ 𝑚𝐵) → 𝑅 ∈ CMnd)
6 mdetf.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
7 mdetf.b . . . . . . 7 𝐵 = (Base‘𝐴)
86, 7matrcl 22350 . . . . . 6 (𝑚𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98adantl 481 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑚𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
109simpld 494 . . . 4 ((𝑅 ∈ CRing ∧ 𝑚𝐵) → 𝑁 ∈ Fin)
11 eqid 2735 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
12 eqid 2735 . . . . 5 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
1311, 12symgbasfi 19360 . . . 4 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
1410, 13syl 17 . . 3 ((𝑅 ∈ CRing ∧ 𝑚𝐵) → (Base‘(SymGrp‘𝑁)) ∈ Fin)
152ad2antrr 726 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑚𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
16 zrhpsgnmhm 21544 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
173, 10, 16syl2anc 584 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑚𝐵) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
18 eqid 2735 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1918, 1mgpbas 20105 . . . . . . . 8 𝐾 = (Base‘(mulGrp‘𝑅))
2012, 19mhmf 18767 . . . . . . 7 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
2117, 20syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑚𝐵) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
2221ffvelcdmda 7074 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑚𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾)
2318crngmgp 20201 . . . . . . 7 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
2423ad2antrr 726 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑚𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ CMnd)
2510adantr 480 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑚𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 ∈ Fin)
266, 1, 7matbas2i 22360 . . . . . . . . . 10 (𝑚𝐵𝑚 ∈ (𝐾m (𝑁 × 𝑁)))
2726ad3antlr 731 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑚𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → 𝑚 ∈ (𝐾m (𝑁 × 𝑁)))
28 elmapi 8863 . . . . . . . . 9 (𝑚 ∈ (𝐾m (𝑁 × 𝑁)) → 𝑚:(𝑁 × 𝑁)⟶𝐾)
2927, 28syl 17 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑚𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → 𝑚:(𝑁 × 𝑁)⟶𝐾)
3011, 12symgbasf 19357 . . . . . . . . . 10 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) → 𝑝:𝑁𝑁)
3130adantl 481 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑚𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁𝑁)
3231ffvelcdmda 7074 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑚𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → (𝑝𝑐) ∈ 𝑁)
33 simpr 484 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑚𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → 𝑐𝑁)
3429, 32, 33fovcdmd 7579 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑚𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → ((𝑝𝑐)𝑚𝑐) ∈ 𝐾)
3534ralrimiva 3132 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑚𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑐𝑁 ((𝑝𝑐)𝑚𝑐) ∈ 𝐾)
3619, 24, 25, 35gsummptcl 19948 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑚𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑚𝑐))) ∈ 𝐾)
37 eqid 2735 . . . . . 6 (.r𝑅) = (.r𝑅)
381, 37ringcl 20210 . . . . 5 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑚𝑐))) ∈ 𝐾) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑚𝑐)))) ∈ 𝐾)
3915, 22, 36, 38syl3anc 1373 . . . 4 (((𝑅 ∈ CRing ∧ 𝑚𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑚𝑐)))) ∈ 𝐾)
4039ralrimiva 3132 . . 3 ((𝑅 ∈ CRing ∧ 𝑚𝐵) → ∀𝑝 ∈ (Base‘(SymGrp‘𝑁))((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑚𝑐)))) ∈ 𝐾)
411, 5, 14, 40gsummptcl 19948 . 2 ((𝑅 ∈ CRing ∧ 𝑚𝐵) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑚𝑐)))))) ∈ 𝐾)
42 mdetf.d . . 3 𝐷 = (𝑁 maDet 𝑅)
43 eqid 2735 . . 3 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
44 eqid 2735 . . 3 (pmSgn‘𝑁) = (pmSgn‘𝑁)
4542, 6, 7, 12, 43, 44, 37, 18mdetfval 22524 . 2 𝐷 = (𝑚𝐵 ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑚𝑐)))))))
4641, 45fmptd 7104 1 (𝑅 ∈ CRing → 𝐷:𝐵𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cmpt 5201   × cxp 5652  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  Fincfn 8959  Basecbs 17228  .rcmulr 17272   Σg cgsu 17454   MndHom cmhm 18759  SymGrpcsymg 19350  pmSgncpsgn 19470  CMndccmn 19761  mulGrpcmgp 20100  Ringcrg 20193  CRingccrg 20194  ℤRHomczrh 21460   Mat cmat 22345   maDet cmdat 22522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-splice 14768  df-reverse 14777  df-s2 14867  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-efmnd 18847  df-grp 18919  df-minusg 18920  df-mulg 19051  df-subg 19106  df-ghm 19196  df-gim 19242  df-cntz 19300  df-oppg 19329  df-symg 19351  df-pmtr 19423  df-psgn 19472  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-drng 20691  df-sra 21131  df-rgmod 21132  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-dsmm 21692  df-frlm 21707  df-mat 22346  df-mdet 22523
This theorem is referenced by:  mdetcl  22534  mdetr0  22543  mdetero  22548  mdetuni0  22559  mdetmul  22561  maduf  22579  madurid  22582  madulid  22583  matunit  22616  cramerimp  22624
  Copyright terms: Public domain W3C validator