Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mdetf | Structured version Visualization version GIF version |
Description: Functionality of the determinant, see also definition in [Lang] p. 513. (Contributed by Stefan O'Rear, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.) |
Ref | Expression |
---|---|
mdetf.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdetf.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mdetf.b | ⊢ 𝐵 = (Base‘𝐴) |
mdetf.k | ⊢ 𝐾 = (Base‘𝑅) |
Ref | Expression |
---|---|
mdetf | ⊢ (𝑅 ∈ CRing → 𝐷:𝐵⟶𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetf.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
2 | crngring 19370 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
3 | 2 | adantr 485 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → 𝑅 ∈ Ring) |
4 | ringcmn 19395 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → 𝑅 ∈ CMnd) |
6 | mdetf.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
7 | mdetf.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
8 | 6, 7 | matrcl 21105 | . . . . . 6 ⊢ (𝑚 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
9 | 8 | adantl 486 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
10 | 9 | simpld 499 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → 𝑁 ∈ Fin) |
11 | eqid 2759 | . . . . 5 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
12 | eqid 2759 | . . . . 5 ⊢ (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁)) | |
13 | 11, 12 | symgbasfi 18567 | . . . 4 ⊢ (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin) |
14 | 10, 13 | syl 17 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → (Base‘(SymGrp‘𝑁)) ∈ Fin) |
15 | 2 | ad2antrr 726 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring) |
16 | zrhpsgnmhm 20342 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅))) | |
17 | 3, 10, 16 | syl2anc 588 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅))) |
18 | eqid 2759 | . . . . . . . . 9 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
19 | 18, 1 | mgpbas 19306 | . . . . . . . 8 ⊢ 𝐾 = (Base‘(mulGrp‘𝑅)) |
20 | 12, 19 | mhmf 18020 | . . . . . . 7 ⊢ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾) |
21 | 17, 20 | syl 17 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾) |
22 | 21 | ffvelrnda 6843 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾) |
23 | 18 | crngmgp 19366 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd) |
24 | 23 | ad2antrr 726 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ CMnd) |
25 | 10 | adantr 485 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 ∈ Fin) |
26 | 6, 1, 7 | matbas2i 21115 | . . . . . . . . . 10 ⊢ (𝑚 ∈ 𝐵 → 𝑚 ∈ (𝐾 ↑m (𝑁 × 𝑁))) |
27 | 26 | ad3antlr 731 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐 ∈ 𝑁) → 𝑚 ∈ (𝐾 ↑m (𝑁 × 𝑁))) |
28 | elmapi 8439 | . . . . . . . . 9 ⊢ (𝑚 ∈ (𝐾 ↑m (𝑁 × 𝑁)) → 𝑚:(𝑁 × 𝑁)⟶𝐾) | |
29 | 27, 28 | syl 17 | . . . . . . . 8 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐 ∈ 𝑁) → 𝑚:(𝑁 × 𝑁)⟶𝐾) |
30 | 11, 12 | symgbasf 18564 | . . . . . . . . . 10 ⊢ (𝑝 ∈ (Base‘(SymGrp‘𝑁)) → 𝑝:𝑁⟶𝑁) |
31 | 30 | adantl 486 | . . . . . . . . 9 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁⟶𝑁) |
32 | 31 | ffvelrnda 6843 | . . . . . . . 8 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐 ∈ 𝑁) → (𝑝‘𝑐) ∈ 𝑁) |
33 | simpr 489 | . . . . . . . 8 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐 ∈ 𝑁) → 𝑐 ∈ 𝑁) | |
34 | 29, 32, 33 | fovrnd 7317 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐 ∈ 𝑁) → ((𝑝‘𝑐)𝑚𝑐) ∈ 𝐾) |
35 | 34 | ralrimiva 3114 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑐 ∈ 𝑁 ((𝑝‘𝑐)𝑚𝑐) ∈ 𝐾) |
36 | 19, 24, 25, 35 | gsummptcl 19148 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑐 ∈ 𝑁 ↦ ((𝑝‘𝑐)𝑚𝑐))) ∈ 𝐾) |
37 | eqid 2759 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
38 | 1, 37 | ringcl 19375 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑐 ∈ 𝑁 ↦ ((𝑝‘𝑐)𝑚𝑐))) ∈ 𝐾) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑐 ∈ 𝑁 ↦ ((𝑝‘𝑐)𝑚𝑐)))) ∈ 𝐾) |
39 | 15, 22, 36, 38 | syl3anc 1369 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑐 ∈ 𝑁 ↦ ((𝑝‘𝑐)𝑚𝑐)))) ∈ 𝐾) |
40 | 39 | ralrimiva 3114 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → ∀𝑝 ∈ (Base‘(SymGrp‘𝑁))((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑐 ∈ 𝑁 ↦ ((𝑝‘𝑐)𝑚𝑐)))) ∈ 𝐾) |
41 | 1, 5, 14, 40 | gsummptcl 19148 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑐 ∈ 𝑁 ↦ ((𝑝‘𝑐)𝑚𝑐)))))) ∈ 𝐾) |
42 | mdetf.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
43 | eqid 2759 | . . 3 ⊢ (ℤRHom‘𝑅) = (ℤRHom‘𝑅) | |
44 | eqid 2759 | . . 3 ⊢ (pmSgn‘𝑁) = (pmSgn‘𝑁) | |
45 | 42, 6, 7, 12, 43, 44, 37, 18 | mdetfval 21279 | . 2 ⊢ 𝐷 = (𝑚 ∈ 𝐵 ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑐 ∈ 𝑁 ↦ ((𝑝‘𝑐)𝑚𝑐))))))) |
46 | 41, 45 | fmptd 6870 | 1 ⊢ (𝑅 ∈ CRing → 𝐷:𝐵⟶𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ↦ cmpt 5113 × cxp 5523 ∘ ccom 5529 ⟶wf 6332 ‘cfv 6336 (class class class)co 7151 ↑m cmap 8417 Fincfn 8528 Basecbs 16534 .rcmulr 16617 Σg cgsu 16765 MndHom cmhm 18013 SymGrpcsymg 18555 pmSgncpsgn 18677 CMndccmn 18966 mulGrpcmgp 19300 Ringcrg 19358 CRingccrg 19359 ℤRHomczrh 20262 Mat cmat 21100 maDet cmdat 21277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-addf 10647 ax-mulf 10648 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-xor 1504 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-ot 4532 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-supp 7837 df-tpos 7903 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-oadd 8117 df-er 8300 df-map 8419 df-pm 8420 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-fsupp 8860 df-sup 8932 df-oi 9000 df-card 9394 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-9 11737 df-n0 11928 df-xnn0 12000 df-z 12014 df-dec 12131 df-uz 12276 df-rp 12424 df-fz 12933 df-fzo 13076 df-seq 13412 df-exp 13473 df-hash 13734 df-word 13907 df-lsw 13955 df-concat 13963 df-s1 13990 df-substr 14043 df-pfx 14073 df-splice 14152 df-reverse 14161 df-s2 14250 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-mulr 16630 df-starv 16631 df-sca 16632 df-vsca 16633 df-ip 16634 df-tset 16635 df-ple 16636 df-ds 16638 df-unif 16639 df-hom 16640 df-cco 16641 df-0g 16766 df-gsum 16767 df-prds 16772 df-pws 16774 df-mre 16908 df-mrc 16909 df-acs 16911 df-mgm 17911 df-sgrp 17960 df-mnd 17971 df-mhm 18015 df-submnd 18016 df-efmnd 18093 df-grp 18165 df-minusg 18166 df-mulg 18285 df-subg 18336 df-ghm 18416 df-gim 18459 df-cntz 18507 df-oppg 18534 df-symg 18556 df-pmtr 18630 df-psgn 18679 df-cmn 18968 df-abl 18969 df-mgp 19301 df-ur 19313 df-ring 19360 df-cring 19361 df-oppr 19437 df-dvdsr 19455 df-unit 19456 df-invr 19486 df-dvr 19497 df-rnghom 19531 df-drng 19565 df-subrg 19594 df-sra 20005 df-rgmod 20006 df-cnfld 20160 df-zring 20232 df-zrh 20266 df-dsmm 20490 df-frlm 20505 df-mat 21101 df-mdet 21278 |
This theorem is referenced by: mdetcl 21289 mdetr0 21298 mdetero 21303 mdetuni0 21314 mdetmul 21316 maduf 21334 madurid 21337 madulid 21338 matunit 21371 cramerimp 21379 |
Copyright terms: Public domain | W3C validator |