MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetralt Structured version   Visualization version   GIF version

Theorem mdetralt 21757
Description: The determinant function is alternating regarding rows: if a matrix has two identical rows, its determinant is 0. Corollary 4.9 in [Lang] p. 515. (Contributed by SO, 10-Jul-2018.) (Proof shortened by AV, 23-Jul-2018.)
Hypotheses
Ref Expression
mdetralt.d 𝐷 = (𝑁 maDet 𝑅)
mdetralt.a 𝐴 = (𝑁 Mat 𝑅)
mdetralt.b 𝐵 = (Base‘𝐴)
mdetralt.z 0 = (0g𝑅)
mdetralt.r (𝜑𝑅 ∈ CRing)
mdetralt.x (𝜑𝑋𝐵)
mdetralt.i (𝜑𝐼𝑁)
mdetralt.j (𝜑𝐽𝑁)
mdetralt.ij (𝜑𝐼𝐽)
mdetralt.eq (𝜑 → ∀𝑎𝑁 (𝐼𝑋𝑎) = (𝐽𝑋𝑎))
Assertion
Ref Expression
mdetralt (𝜑 → (𝐷𝑋) = 0 )
Distinct variable groups:   𝐼,𝑎   𝐽,𝑎   𝑁,𝑎   𝑋,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐷(𝑎)   𝑅(𝑎)   0 (𝑎)

Proof of Theorem mdetralt
Dummy variables 𝑐 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetralt.x . . 3 (𝜑𝑋𝐵)
2 mdetralt.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
3 mdetralt.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
4 mdetralt.b . . . 4 𝐵 = (Base‘𝐴)
5 eqid 2738 . . . 4 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
6 eqid 2738 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
7 eqid 2738 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
8 eqid 2738 . . . 4 (.r𝑅) = (.r𝑅)
9 eqid 2738 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
102, 3, 4, 5, 6, 7, 8, 9mdetleib 21736 . . 3 (𝑋𝐵 → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
111, 10syl 17 . 2 (𝜑 → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
12 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2738 . . 3 (+g𝑅) = (+g𝑅)
14 mdetralt.r . . . . 5 (𝜑𝑅 ∈ CRing)
15 crngring 19795 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1614, 15syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
17 ringcmn 19820 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
1816, 17syl 17 . . 3 (𝜑𝑅 ∈ CMnd)
193, 4matrcl 21559 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
201, 19syl 17 . . . . 5 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2120simpld 495 . . . 4 (𝜑𝑁 ∈ Fin)
22 eqid 2738 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2322, 5symgbasfi 18986 . . . 4 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
2421, 23syl 17 . . 3 (𝜑 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
2516adantr 481 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
26 zrhpsgnmhm 20789 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2716, 21, 26syl2anc 584 . . . . . 6 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
289, 12mgpbas 19726 . . . . . . 7 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
295, 28mhmf 18435 . . . . . 6 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅))
3027, 29syl 17 . . . . 5 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅))
3130ffvelrnda 6961 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅))
329crngmgp 19791 . . . . . . 7 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
3314, 32syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
3433adantr 481 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ CMnd)
3521adantr 481 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 ∈ Fin)
363, 12, 4matbas2i 21571 . . . . . . . . . 10 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
371, 36syl 17 . . . . . . . . 9 (𝜑𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
38 elmapi 8637 . . . . . . . . 9 (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
3937, 38syl 17 . . . . . . . 8 (𝜑𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
4039ad2antrr 723 . . . . . . 7 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
4122, 5symgbasf1o 18982 . . . . . . . . . 10 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) → 𝑝:𝑁1-1-onto𝑁)
4241adantl 482 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁1-1-onto𝑁)
43 f1of 6716 . . . . . . . . 9 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
4442, 43syl 17 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁𝑁)
4544ffvelrnda 6961 . . . . . . 7 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → (𝑝𝑐) ∈ 𝑁)
46 simpr 485 . . . . . . 7 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → 𝑐𝑁)
4740, 45, 46fovrnd 7444 . . . . . 6 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → ((𝑝𝑐)𝑋𝑐) ∈ (Base‘𝑅))
4847ralrimiva 3103 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑐𝑁 ((𝑝𝑐)𝑋𝑐) ∈ (Base‘𝑅))
4928, 34, 35, 48gsummptcl 19568 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
5012, 8ringcl 19800 . . . 4 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∈ (Base‘𝑅))
5125, 31, 49, 50syl3anc 1370 . . 3 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∈ (Base‘𝑅))
52 disjdif 4405 . . . 4 ((pmEven‘𝑁) ∩ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = ∅
5352a1i 11 . . 3 (𝜑 → ((pmEven‘𝑁) ∩ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = ∅)
5422, 5evpmss 20791 . . . . . 6 (pmEven‘𝑁) ⊆ (Base‘(SymGrp‘𝑁))
55 undif 4415 . . . . . 6 ((pmEven‘𝑁) ⊆ (Base‘(SymGrp‘𝑁)) ↔ ((pmEven‘𝑁) ∪ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = (Base‘(SymGrp‘𝑁)))
5654, 55mpbi 229 . . . . 5 ((pmEven‘𝑁) ∪ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = (Base‘(SymGrp‘𝑁))
5756eqcomi 2747 . . . 4 (Base‘(SymGrp‘𝑁)) = ((pmEven‘𝑁) ∪ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
5857a1i 11 . . 3 (𝜑 → (Base‘(SymGrp‘𝑁)) = ((pmEven‘𝑁) ∪ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))
59 eqid 2738 . . 3 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
6012, 13, 18, 24, 51, 53, 58, 59gsummptfidmsplitres 19532 . 2 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))) = ((𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)))(+g𝑅)(𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))))
61 resmpt 5945 . . . . . . 7 ((pmEven‘𝑁) ⊆ (Base‘(SymGrp‘𝑁)) → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
6254, 61ax-mp 5 . . . . . 6 ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
6316adantr 481 . . . . . . . . . 10 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑅 ∈ Ring)
6421adantr 481 . . . . . . . . . 10 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑁 ∈ Fin)
65 simpr 485 . . . . . . . . . 10 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑝 ∈ (pmEven‘𝑁))
66 eqid 2738 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
676, 7, 66zrhpsgnevpm 20796 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝 ∈ (pmEven‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = (1r𝑅))
6863, 64, 65, 67syl3anc 1370 . . . . . . . . 9 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = (1r𝑅))
6968oveq1d 7290 . . . . . . . 8 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((1r𝑅)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
7054sseli 3917 . . . . . . . . . 10 (𝑝 ∈ (pmEven‘𝑁) → 𝑝 ∈ (Base‘(SymGrp‘𝑁)))
7170, 49sylan2 593 . . . . . . . . 9 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
7212, 8, 66ringlidm 19810 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
7363, 71, 72syl2anc 584 . . . . . . . 8 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((1r𝑅)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
7469, 73eqtrd 2778 . . . . . . 7 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
7574mpteq2dva 5174 . . . . . 6 (𝜑 → (𝑝 ∈ (pmEven‘𝑁) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
7662, 75eqtrid 2790 . . . . 5 (𝜑 → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
7776oveq2d 7291 . . . 4 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁))) = (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
78 difss 4066 . . . . . . . 8 ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ⊆ (Base‘(SymGrp‘𝑁))
79 resmpt 5945 . . . . . . . 8 (((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ⊆ (Base‘(SymGrp‘𝑁)) → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
8078, 79ax-mp 5 . . . . . . 7 ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
8116adantr 481 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → 𝑅 ∈ Ring)
8221adantr 481 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → 𝑁 ∈ Fin)
83 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → 𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
84 eqid 2738 . . . . . . . . . . . . 13 (invg𝑅) = (invg𝑅)
856, 7, 66, 5, 84zrhpsgnodpm 20797 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = ((invg𝑅)‘(1r𝑅)))
8681, 82, 83, 85syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = ((invg𝑅)‘(1r𝑅)))
8786oveq1d 7290 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = (((invg𝑅)‘(1r𝑅))(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
88 eldifi 4061 . . . . . . . . . . . 12 (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) → 𝑝 ∈ (Base‘(SymGrp‘𝑁)))
8988, 49sylan2 593 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
9012, 8, 66, 84, 81, 89ringnegl 19833 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (((invg𝑅)‘(1r𝑅))(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((invg𝑅)‘((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
9187, 90eqtrd 2778 . . . . . . . . 9 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((invg𝑅)‘((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
9291mpteq2dva 5174 . . . . . . . 8 (𝜑 → (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((invg𝑅)‘((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
93 ringgrp 19788 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
9416, 93syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Grp)
9512, 84grpinvf 18626 . . . . . . . . . 10 (𝑅 ∈ Grp → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
9694, 95syl 17 . . . . . . . . 9 (𝜑 → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
9796, 89cofmpt 7004 . . . . . . . 8 (𝜑 → ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((invg𝑅)‘((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
9892, 97eqtr4d 2781 . . . . . . 7 (𝜑 → (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
9980, 98eqtrid 2790 . . . . . 6 (𝜑 → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
10099oveq2d 7291 . . . . 5 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))) = (𝑅 Σg ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
101 mdetralt.z . . . . . 6 0 = (0g𝑅)
102 ringabl 19819 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
10316, 102syl 17 . . . . . 6 (𝜑𝑅 ∈ Abel)
104 difssd 4067 . . . . . . 7 (𝜑 → ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ⊆ (Base‘(SymGrp‘𝑁)))
10524, 104ssfid 9042 . . . . . 6 (𝜑 → ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ∈ Fin)
106 eqid 2738 . . . . . 6 (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
10712, 101, 84, 103, 105, 89, 106gsummptfidminv 19548 . . . . 5 (𝜑 → (𝑅 Σg ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))) = ((invg𝑅)‘(𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
10889ralrimiva 3103 . . . . . . . 8 (𝜑 → ∀𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
109 mdetralt.i . . . . . . . . . . . 12 (𝜑𝐼𝑁)
110 mdetralt.j . . . . . . . . . . . 12 (𝜑𝐽𝑁)
111109, 110prssd 4755 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ⊆ 𝑁)
112 mdetralt.ij . . . . . . . . . . . 12 (𝜑𝐼𝐽)
113 pr2nelem 9760 . . . . . . . . . . . 12 ((𝐼𝑁𝐽𝑁𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
114109, 110, 112, 113syl3anc 1370 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ≈ 2o)
115 eqid 2738 . . . . . . . . . . . 12 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
116 eqid 2738 . . . . . . . . . . . 12 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
117115, 116pmtrrn 19065 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ {𝐼, 𝐽} ⊆ 𝑁 ∧ {𝐼, 𝐽} ≈ 2o) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁))
11821, 111, 114, 117syl3anc 1370 . . . . . . . . . 10 (𝜑 → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁))
11922, 5, 116pmtrodpm 20802 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁)) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
12021, 118, 119syl2anc 584 . . . . . . . . 9 (𝜑 → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
12122, 5evpmodpmf1o 20801 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)):(pmEven‘𝑁)–1-1-onto→((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
12221, 120, 121syl2anc 584 . . . . . . . 8 (𝜑 → (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)):(pmEven‘𝑁)–1-1-onto→((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
12312, 18, 105, 108, 106, 122gsummptfif1o 19569 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑅 Σg ((𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∘ (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)))))
124 eleq1w 2821 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (𝑝 ∈ (pmEven‘𝑁) ↔ 𝑞 ∈ (pmEven‘𝑁)))
125124anbi2d 629 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ((𝜑𝑝 ∈ (pmEven‘𝑁)) ↔ (𝜑𝑞 ∈ (pmEven‘𝑁))))
126 oveq2 7283 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞))
127126eleq1d 2823 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↔ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))
128125, 127imbi12d 345 . . . . . . . . . . 11 (𝑝 = 𝑞 → (((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) ↔ ((𝜑𝑞 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))))
12922symggrp 19008 . . . . . . . . . . . . . . 15 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
13021, 129syl 17 . . . . . . . . . . . . . 14 (𝜑 → (SymGrp‘𝑁) ∈ Grp)
131130adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (SymGrp‘𝑁) ∈ Grp)
132116, 22, 5symgtrf 19077 . . . . . . . . . . . . . 14 ran (pmTrsp‘𝑁) ⊆ (Base‘(SymGrp‘𝑁))
133118adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁))
134132, 133sselid 3919 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)))
13570adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑝 ∈ (Base‘(SymGrp‘𝑁)))
136 eqid 2738 . . . . . . . . . . . . . 14 (+g‘(SymGrp‘𝑁)) = (+g‘(SymGrp‘𝑁))
1375, 136grpcl 18585 . . . . . . . . . . . . 13 (((SymGrp‘𝑁) ∈ Grp ∧ ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ (Base‘(SymGrp‘𝑁)))
138131, 134, 135, 137syl3anc 1370 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ (Base‘(SymGrp‘𝑁)))
139 eqid 2738 . . . . . . . . . . . . . . . . 17 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
14022, 7, 139psgnghm2 20786 . . . . . . . . . . . . . . . 16 (𝑁 ∈ Fin → (pmSgn‘𝑁) ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
14121, 140syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (pmSgn‘𝑁) ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
142141adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (pmSgn‘𝑁) ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
143 prex 5355 . . . . . . . . . . . . . . . 16 {1, -1} ∈ V
144 eqid 2738 . . . . . . . . . . . . . . . . . 18 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
145 cnfldmul 20603 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
146144, 145mgpplusg 19724 . . . . . . . . . . . . . . . . 17 · = (+g‘(mulGrp‘ℂfld))
147139, 146ressplusg 17000 . . . . . . . . . . . . . . . 16 ({1, -1} ∈ V → · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1})))
148143, 147ax-mp 5 . . . . . . . . . . . . . . 15 · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1}))
1495, 136, 148ghmlin 18839 . . . . . . . . . . . . . 14 (((pmSgn‘𝑁) ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((pmSgn‘𝑁)‘(((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)) = (((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) · ((pmSgn‘𝑁)‘𝑝)))
150142, 134, 135, 149syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘(((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)) = (((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) · ((pmSgn‘𝑁)‘𝑝)))
15122, 116, 7psgnpmtr 19118 . . . . . . . . . . . . . . . 16 (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁) → ((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) = -1)
152133, 151syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) = -1)
15322, 5, 7psgnevpm 20794 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘𝑝) = 1)
15421, 153sylan 580 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘𝑝) = 1)
155152, 154oveq12d 7293 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) · ((pmSgn‘𝑁)‘𝑝)) = (-1 · 1))
156 neg1cn 12087 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
157156mulid1i 10979 . . . . . . . . . . . . . 14 (-1 · 1) = -1
158155, 157eqtrdi 2794 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) · ((pmSgn‘𝑁)‘𝑝)) = -1)
159150, 158eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘(((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)) = -1)
16022, 5, 7psgnodpmr 20795 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ (Base‘(SymGrp‘𝑁)) ∧ ((pmSgn‘𝑁)‘(((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)) = -1) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
16164, 138, 159, 160syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
162128, 161chvarvv 2002 . . . . . . . . . 10 ((𝜑𝑞 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
163 eqidd 2739 . . . . . . . . . 10 (𝜑 → (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)) = (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)))
164 eqidd 2739 . . . . . . . . . 10 (𝜑 → (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
165 fveq1 6773 . . . . . . . . . . . . 13 (𝑝 = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) → (𝑝𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐))
166165oveq1d 7290 . . . . . . . . . . . 12 (𝑝 = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) → ((𝑝𝑐)𝑋𝑐) = (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐))
167166mpteq2dv 5176 . . . . . . . . . . 11 (𝑝 = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) → (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)) = (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)))
168167oveq2d 7291 . . . . . . . . . 10 (𝑝 = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐))))
169162, 163, 164, 168fmptco 7001 . . . . . . . . 9 (𝜑 → ((𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∘ (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞))) = (𝑞 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)))))
170 oveq2 7283 . . . . . . . . . . . . . . 15 (𝑞 = 𝑝 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝))
171170fveq1d 6776 . . . . . . . . . . . . . 14 (𝑞 = 𝑝 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐))
172171oveq1d 7290 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐) = (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐))
173172mpteq2dv 5176 . . . . . . . . . . . 12 (𝑞 = 𝑝 → (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)) = (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐)))
174173oveq2d 7291 . . . . . . . . . . 11 (𝑞 = 𝑝 → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐))))
175174cbvmptv 5187 . . . . . . . . . 10 (𝑞 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐))))
176175a1i 11 . . . . . . . . 9 (𝜑 → (𝑞 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐)))))
177134adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)))
178135adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → 𝑝 ∈ (Base‘(SymGrp‘𝑁)))
17922, 5, 136symgov 18991 . . . . . . . . . . . . . . . . 17 ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝))
180177, 178, 179syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝))
181180fveq1d 6776 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝)‘𝑐))
18270, 44sylan2 593 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑝:𝑁𝑁)
183 fvco3 6867 . . . . . . . . . . . . . . . 16 ((𝑝:𝑁𝑁𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝)‘𝑐) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)))
184182, 183sylan 580 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝)‘𝑐) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)))
185181, 184eqtrd 2778 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)))
186185oveq1d 7290 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐))
187115pmtrprfv 19061 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ (𝐼𝑁𝐽𝑁𝐼𝐽)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼) = 𝐽)
18821, 109, 110, 112, 187syl13anc 1371 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼) = 𝐽)
189188ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼) = 𝐽)
190189oveq1d 7290 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼)𝑋𝑐) = (𝐽𝑋𝑐))
191 oveq2 7283 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑐 → (𝐼𝑋𝑎) = (𝐼𝑋𝑐))
192 oveq2 7283 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑐 → (𝐽𝑋𝑎) = (𝐽𝑋𝑐))
193191, 192eqeq12d 2754 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑐 → ((𝐼𝑋𝑎) = (𝐽𝑋𝑎) ↔ (𝐼𝑋𝑐) = (𝐽𝑋𝑐)))
194 mdetralt.eq . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑎𝑁 (𝐼𝑋𝑎) = (𝐽𝑋𝑎))
195194ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ∀𝑎𝑁 (𝐼𝑋𝑎) = (𝐽𝑋𝑎))
196 simpr 485 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → 𝑐𝑁)
197193, 195, 196rspcdva 3562 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (𝐼𝑋𝑐) = (𝐽𝑋𝑐))
198190, 197eqtr4d 2781 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼)𝑋𝑐) = (𝐼𝑋𝑐))
199 fveq2 6774 . . . . . . . . . . . . . . . . 17 ((𝑝𝑐) = 𝐼 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼))
200199oveq1d 7290 . . . . . . . . . . . . . . . 16 ((𝑝𝑐) = 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼)𝑋𝑐))
201 oveq1 7282 . . . . . . . . . . . . . . . 16 ((𝑝𝑐) = 𝐼 → ((𝑝𝑐)𝑋𝑐) = (𝐼𝑋𝑐))
202200, 201eqeq12d 2754 . . . . . . . . . . . . . . 15 ((𝑝𝑐) = 𝐼 → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐) ↔ ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼)𝑋𝑐) = (𝐼𝑋𝑐)))
203198, 202syl5ibrcom 246 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) = 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐)))
204 prcom 4668 . . . . . . . . . . . . . . . . . . . . . . 23 {𝐼, 𝐽} = {𝐽, 𝐼}
205204fveq2i 6777 . . . . . . . . . . . . . . . . . . . . . 22 ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) = ((pmTrsp‘𝑁)‘{𝐽, 𝐼})
206205fveq1i 6775 . . . . . . . . . . . . . . . . . . . . 21 (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽) = (((pmTrsp‘𝑁)‘{𝐽, 𝐼})‘𝐽)
207112necomd 2999 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽𝐼)
208115pmtrprfv 19061 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ (𝐽𝑁𝐼𝑁𝐽𝐼)) → (((pmTrsp‘𝑁)‘{𝐽, 𝐼})‘𝐽) = 𝐼)
20921, 110, 109, 207, 208syl13anc 1371 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((pmTrsp‘𝑁)‘{𝐽, 𝐼})‘𝐽) = 𝐼)
210206, 209eqtrid 2790 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽) = 𝐼)
211210oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐) = (𝐼𝑋𝑐))
212211ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐) = (𝐼𝑋𝑐))
213212, 197eqtrd 2778 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐) = (𝐽𝑋𝑐))
214 fveq2 6774 . . . . . . . . . . . . . . . . . . 19 ((𝑝𝑐) = 𝐽 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽))
215214oveq1d 7290 . . . . . . . . . . . . . . . . . 18 ((𝑝𝑐) = 𝐽 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐))
216 oveq1 7282 . . . . . . . . . . . . . . . . . 18 ((𝑝𝑐) = 𝐽 → ((𝑝𝑐)𝑋𝑐) = (𝐽𝑋𝑐))
217215, 216eqeq12d 2754 . . . . . . . . . . . . . . . . 17 ((𝑝𝑐) = 𝐽 → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐) ↔ ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐) = (𝐽𝑋𝑐)))
218213, 217syl5ibrcom 246 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) = 𝐽 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐)))
219218a1dd 50 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) = 𝐽 → ((𝑝𝑐) ≠ 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))))
220 neanior 3037 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) ↔ ¬ ((𝑝𝑐) = 𝐽 ∨ (𝑝𝑐) = 𝐼))
221 elpri 4583 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝𝑐) ∈ {𝐼, 𝐽} → ((𝑝𝑐) = 𝐼 ∨ (𝑝𝑐) = 𝐽))
222221orcomd 868 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝𝑐) ∈ {𝐼, 𝐽} → ((𝑝𝑐) = 𝐽 ∨ (𝑝𝑐) = 𝐼))
223222con3i 154 . . . . . . . . . . . . . . . . . . . . 21 (¬ ((𝑝𝑐) = 𝐽 ∨ (𝑝𝑐) = 𝐼) → ¬ (𝑝𝑐) ∈ {𝐼, 𝐽})
224220, 223sylbi 216 . . . . . . . . . . . . . . . . . . . 20 (((𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ¬ (𝑝𝑐) ∈ {𝐼, 𝐽})
2252243adant1 1129 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ¬ (𝑝𝑐) ∈ {𝐼, 𝐽})
226115pmtrmvd 19064 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ {𝐼, 𝐽} ⊆ 𝑁 ∧ {𝐼, 𝐽} ≈ 2o) → dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
22721, 111, 114, 226syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
228227ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
2292283ad2ant1 1132 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
230225, 229neleqtrrd 2861 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ¬ (𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ))
231115pmtrf 19063 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ Fin ∧ {𝐼, 𝐽} ⊆ 𝑁 ∧ {𝐼, 𝐽} ≈ 2o) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}):𝑁𝑁)
23221, 111, 114, 231syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}):𝑁𝑁)
233232ffnd 6601 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) Fn 𝑁)
234233ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) Fn 𝑁)
235182ffvelrnda 6961 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (𝑝𝑐) ∈ 𝑁)
236 fnelnfp 7049 . . . . . . . . . . . . . . . . . . . . 21 ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) Fn 𝑁 ∧ (𝑝𝑐) ∈ 𝑁) → ((𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) ↔ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) ≠ (𝑝𝑐)))
237234, 235, 236syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) ↔ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) ≠ (𝑝𝑐)))
2382373ad2ant1 1132 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ((𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) ↔ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) ≠ (𝑝𝑐)))
239238necon2bbid 2987 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) = (𝑝𝑐) ↔ ¬ (𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I )))
240230, 239mpbird 256 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) = (𝑝𝑐))
241240oveq1d 7290 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))
2422413exp 1118 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) ≠ 𝐽 → ((𝑝𝑐) ≠ 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))))
243219, 242pm2.61dne 3031 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) ≠ 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐)))
244203, 243pm2.61dne 3031 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))
245186, 244eqtrd 2778 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))
246245mpteq2dva 5174 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐)) = (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))
247246oveq2d 7291 . . . . . . . . . 10 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
248247mpteq2dva 5174 . . . . . . . . 9 (𝜑 → (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐)))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
249169, 176, 2483eqtrd 2782 . . . . . . . 8 (𝜑 → ((𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∘ (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
250249oveq2d 7291 . . . . . . 7 (𝜑 → (𝑅 Σg ((𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∘ (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)))) = (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
251123, 250eqtrd 2778 . . . . . 6 (𝜑 → (𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
252251fveq2d 6778 . . . . 5 (𝜑 → ((invg𝑅)‘(𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))) = ((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
253100, 107, 2523eqtrd 2782 . . . 4 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))) = ((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
25477, 253oveq12d 7293 . . 3 (𝜑 → ((𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)))(+g𝑅)(𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))) = ((𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))(+g𝑅)((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))))
25554a1i 11 . . . . . 6 (𝜑 → (pmEven‘𝑁) ⊆ (Base‘(SymGrp‘𝑁)))
25624, 255ssfid 9042 . . . . 5 (𝜑 → (pmEven‘𝑁) ∈ Fin)
25771ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑝 ∈ (pmEven‘𝑁)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
25812, 18, 256, 257gsummptcl 19568 . . . 4 (𝜑 → (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ∈ (Base‘𝑅))
25912, 13, 101, 84grprinv 18629 . . . 4 ((𝑅 ∈ Grp ∧ (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))(+g𝑅)((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))) = 0 )
26094, 258, 259syl2anc 584 . . 3 (𝜑 → ((𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))(+g𝑅)((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))) = 0 )
261254, 260eqtrd 2778 . 2 (𝜑 → ((𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)))(+g𝑅)(𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))) = 0 )
26211, 60, 2613eqtrd 2782 1 (𝜑 → (𝐷𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  {cpr 4563   class class class wbr 5074  cmpt 5157   I cid 5488   × cxp 5587  dom cdm 5589  ran crn 5590  cres 5591  ccom 5593   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  2oc2o 8291  m cmap 8615  cen 8730  Fincfn 8733  1c1 10872   · cmul 10876  -cneg 11206  Basecbs 16912  s cress 16941  +gcplusg 16962  .rcmulr 16963  0gc0g 17150   Σg cgsu 17151   MndHom cmhm 18428  Grpcgrp 18577  invgcminusg 18578   GrpHom cghm 18831  SymGrpcsymg 18974  pmTrspcpmtr 19049  pmSgncpsgn 19097  pmEvencevpm 19098  CMndccmn 19386  Abelcabl 19387  mulGrpcmgp 19720  1rcur 19737  Ringcrg 19783  CRingccrg 19784  fldccnfld 20597  ℤRHomczrh 20701   Mat cmat 21554   maDet cmdat 21733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1507  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-reverse 14472  df-s2 14561  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-efmnd 18508  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-ghm 18832  df-gim 18875  df-cntz 18923  df-oppg 18950  df-symg 18975  df-pmtr 19050  df-psgn 19099  df-evpm 19100  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-sra 20434  df-rgmod 20435  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-dsmm 20939  df-frlm 20954  df-mat 21555  df-mdet 21734
This theorem is referenced by:  mdetralt2  21758  mdetuni0  21770  mdetmul  21772
  Copyright terms: Public domain W3C validator