MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetralt Structured version   Visualization version   GIF version

Theorem mdetralt 22518
Description: The determinant function is alternating regarding rows: if a matrix has two identical rows, its determinant is 0. Corollary 4.9 in [Lang] p. 515. (Contributed by SO, 10-Jul-2018.) (Proof shortened by AV, 23-Jul-2018.)
Hypotheses
Ref Expression
mdetralt.d 𝐷 = (𝑁 maDet 𝑅)
mdetralt.a 𝐴 = (𝑁 Mat 𝑅)
mdetralt.b 𝐵 = (Base‘𝐴)
mdetralt.z 0 = (0g𝑅)
mdetralt.r (𝜑𝑅 ∈ CRing)
mdetralt.x (𝜑𝑋𝐵)
mdetralt.i (𝜑𝐼𝑁)
mdetralt.j (𝜑𝐽𝑁)
mdetralt.ij (𝜑𝐼𝐽)
mdetralt.eq (𝜑 → ∀𝑎𝑁 (𝐼𝑋𝑎) = (𝐽𝑋𝑎))
Assertion
Ref Expression
mdetralt (𝜑 → (𝐷𝑋) = 0 )
Distinct variable groups:   𝐼,𝑎   𝐽,𝑎   𝑁,𝑎   𝑋,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐷(𝑎)   𝑅(𝑎)   0 (𝑎)

Proof of Theorem mdetralt
Dummy variables 𝑐 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetralt.x . . 3 (𝜑𝑋𝐵)
2 mdetralt.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
3 mdetralt.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
4 mdetralt.b . . . 4 𝐵 = (Base‘𝐴)
5 eqid 2731 . . . 4 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
6 eqid 2731 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
7 eqid 2731 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
8 eqid 2731 . . . 4 (.r𝑅) = (.r𝑅)
9 eqid 2731 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
102, 3, 4, 5, 6, 7, 8, 9mdetleib 22497 . . 3 (𝑋𝐵 → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
111, 10syl 17 . 2 (𝜑 → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
12 eqid 2731 . . 3 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2731 . . 3 (+g𝑅) = (+g𝑅)
14 mdetralt.r . . . . 5 (𝜑𝑅 ∈ CRing)
15 crngring 20158 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1614, 15syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
17 ringcmn 20195 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
1816, 17syl 17 . . 3 (𝜑𝑅 ∈ CMnd)
193, 4matrcl 22322 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
201, 19syl 17 . . . . 5 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2120simpld 494 . . . 4 (𝜑𝑁 ∈ Fin)
22 eqid 2731 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2322, 5symgbasfi 19286 . . . 4 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
2421, 23syl 17 . . 3 (𝜑 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
2516adantr 480 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
26 zrhpsgnmhm 21516 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2716, 21, 26syl2anc 584 . . . . . 6 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
289, 12mgpbas 20058 . . . . . . 7 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
295, 28mhmf 18692 . . . . . 6 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅))
3027, 29syl 17 . . . . 5 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅))
3130ffvelcdmda 7012 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅))
329crngmgp 20154 . . . . . . 7 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
3314, 32syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
3433adantr 480 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ CMnd)
3521adantr 480 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 ∈ Fin)
363, 12, 4matbas2i 22332 . . . . . . . . . 10 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
371, 36syl 17 . . . . . . . . 9 (𝜑𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
38 elmapi 8768 . . . . . . . . 9 (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
3937, 38syl 17 . . . . . . . 8 (𝜑𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
4039ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
4122, 5symgbasf1o 19282 . . . . . . . . . 10 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) → 𝑝:𝑁1-1-onto𝑁)
4241adantl 481 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁1-1-onto𝑁)
43 f1of 6758 . . . . . . . . 9 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
4442, 43syl 17 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁𝑁)
4544ffvelcdmda 7012 . . . . . . 7 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → (𝑝𝑐) ∈ 𝑁)
46 simpr 484 . . . . . . 7 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → 𝑐𝑁)
4740, 45, 46fovcdmd 7513 . . . . . 6 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → ((𝑝𝑐)𝑋𝑐) ∈ (Base‘𝑅))
4847ralrimiva 3124 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑐𝑁 ((𝑝𝑐)𝑋𝑐) ∈ (Base‘𝑅))
4928, 34, 35, 48gsummptcl 19874 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
5012, 8ringcl 20163 . . . 4 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∈ (Base‘𝑅))
5125, 31, 49, 50syl3anc 1373 . . 3 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∈ (Base‘𝑅))
52 disjdif 4417 . . . 4 ((pmEven‘𝑁) ∩ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = ∅
5352a1i 11 . . 3 (𝜑 → ((pmEven‘𝑁) ∩ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = ∅)
5422, 5evpmss 21518 . . . . . 6 (pmEven‘𝑁) ⊆ (Base‘(SymGrp‘𝑁))
55 undif 4427 . . . . . 6 ((pmEven‘𝑁) ⊆ (Base‘(SymGrp‘𝑁)) ↔ ((pmEven‘𝑁) ∪ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = (Base‘(SymGrp‘𝑁)))
5654, 55mpbi 230 . . . . 5 ((pmEven‘𝑁) ∪ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = (Base‘(SymGrp‘𝑁))
5756eqcomi 2740 . . . 4 (Base‘(SymGrp‘𝑁)) = ((pmEven‘𝑁) ∪ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
5857a1i 11 . . 3 (𝜑 → (Base‘(SymGrp‘𝑁)) = ((pmEven‘𝑁) ∪ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))
59 eqid 2731 . . 3 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
6012, 13, 18, 24, 51, 53, 58, 59gsummptfidmsplitres 19838 . 2 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))) = ((𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)))(+g𝑅)(𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))))
61 resmpt 5981 . . . . . . 7 ((pmEven‘𝑁) ⊆ (Base‘(SymGrp‘𝑁)) → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
6254, 61ax-mp 5 . . . . . 6 ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
6316adantr 480 . . . . . . . . . 10 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑅 ∈ Ring)
6421adantr 480 . . . . . . . . . 10 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑁 ∈ Fin)
65 simpr 484 . . . . . . . . . 10 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑝 ∈ (pmEven‘𝑁))
66 eqid 2731 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
676, 7, 66zrhpsgnevpm 21523 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝 ∈ (pmEven‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = (1r𝑅))
6863, 64, 65, 67syl3anc 1373 . . . . . . . . 9 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = (1r𝑅))
6968oveq1d 7356 . . . . . . . 8 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((1r𝑅)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
7054sseli 3925 . . . . . . . . . 10 (𝑝 ∈ (pmEven‘𝑁) → 𝑝 ∈ (Base‘(SymGrp‘𝑁)))
7170, 49sylan2 593 . . . . . . . . 9 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
7212, 8, 66ringlidm 20182 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
7363, 71, 72syl2anc 584 . . . . . . . 8 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((1r𝑅)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
7469, 73eqtrd 2766 . . . . . . 7 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
7574mpteq2dva 5179 . . . . . 6 (𝜑 → (𝑝 ∈ (pmEven‘𝑁) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
7662, 75eqtrid 2778 . . . . 5 (𝜑 → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
7776oveq2d 7357 . . . 4 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁))) = (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
78 difss 4081 . . . . . . . 8 ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ⊆ (Base‘(SymGrp‘𝑁))
79 resmpt 5981 . . . . . . . 8 (((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ⊆ (Base‘(SymGrp‘𝑁)) → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
8078, 79ax-mp 5 . . . . . . 7 ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
8116adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → 𝑅 ∈ Ring)
8221adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → 𝑁 ∈ Fin)
83 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → 𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
84 eqid 2731 . . . . . . . . . . . . 13 (invg𝑅) = (invg𝑅)
856, 7, 66, 5, 84zrhpsgnodpm 21524 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = ((invg𝑅)‘(1r𝑅)))
8681, 82, 83, 85syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = ((invg𝑅)‘(1r𝑅)))
8786oveq1d 7356 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = (((invg𝑅)‘(1r𝑅))(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
88 eldifi 4076 . . . . . . . . . . . 12 (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) → 𝑝 ∈ (Base‘(SymGrp‘𝑁)))
8988, 49sylan2 593 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
9012, 8, 66, 84, 81, 89ringnegl 20215 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (((invg𝑅)‘(1r𝑅))(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((invg𝑅)‘((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
9187, 90eqtrd 2766 . . . . . . . . 9 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((invg𝑅)‘((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
9291mpteq2dva 5179 . . . . . . . 8 (𝜑 → (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((invg𝑅)‘((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
93 ringgrp 20151 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
9416, 93syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Grp)
9512, 84grpinvf 18894 . . . . . . . . . 10 (𝑅 ∈ Grp → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
9694, 95syl 17 . . . . . . . . 9 (𝜑 → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
9796, 89cofmpt 7060 . . . . . . . 8 (𝜑 → ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((invg𝑅)‘((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
9892, 97eqtr4d 2769 . . . . . . 7 (𝜑 → (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
9980, 98eqtrid 2778 . . . . . 6 (𝜑 → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
10099oveq2d 7357 . . . . 5 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))) = (𝑅 Σg ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
101 mdetralt.z . . . . . 6 0 = (0g𝑅)
102 ringabl 20194 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
10316, 102syl 17 . . . . . 6 (𝜑𝑅 ∈ Abel)
104 difssd 4082 . . . . . . 7 (𝜑 → ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ⊆ (Base‘(SymGrp‘𝑁)))
10524, 104ssfid 9148 . . . . . 6 (𝜑 → ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ∈ Fin)
106 eqid 2731 . . . . . 6 (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
10712, 101, 84, 103, 105, 89, 106gsummptfidminv 19854 . . . . 5 (𝜑 → (𝑅 Σg ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))) = ((invg𝑅)‘(𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
10889ralrimiva 3124 . . . . . . . 8 (𝜑 → ∀𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
109 mdetralt.i . . . . . . . . . . . 12 (𝜑𝐼𝑁)
110 mdetralt.j . . . . . . . . . . . 12 (𝜑𝐽𝑁)
111109, 110prssd 4769 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ⊆ 𝑁)
112 mdetralt.ij . . . . . . . . . . . 12 (𝜑𝐼𝐽)
113 enpr2 9890 . . . . . . . . . . . 12 ((𝐼𝑁𝐽𝑁𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
114109, 110, 112, 113syl3anc 1373 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ≈ 2o)
115 eqid 2731 . . . . . . . . . . . 12 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
116 eqid 2731 . . . . . . . . . . . 12 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
117115, 116pmtrrn 19364 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ {𝐼, 𝐽} ⊆ 𝑁 ∧ {𝐼, 𝐽} ≈ 2o) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁))
11821, 111, 114, 117syl3anc 1373 . . . . . . . . . 10 (𝜑 → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁))
11922, 5, 116pmtrodpm 21529 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁)) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
12021, 118, 119syl2anc 584 . . . . . . . . 9 (𝜑 → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
12122, 5evpmodpmf1o 21528 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)):(pmEven‘𝑁)–1-1-onto→((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
12221, 120, 121syl2anc 584 . . . . . . . 8 (𝜑 → (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)):(pmEven‘𝑁)–1-1-onto→((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
12312, 18, 105, 108, 106, 122gsummptfif1o 19875 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑅 Σg ((𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∘ (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)))))
124 eleq1w 2814 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (𝑝 ∈ (pmEven‘𝑁) ↔ 𝑞 ∈ (pmEven‘𝑁)))
125124anbi2d 630 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ((𝜑𝑝 ∈ (pmEven‘𝑁)) ↔ (𝜑𝑞 ∈ (pmEven‘𝑁))))
126 oveq2 7349 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞))
127126eleq1d 2816 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↔ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))
128125, 127imbi12d 344 . . . . . . . . . . 11 (𝑝 = 𝑞 → (((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) ↔ ((𝜑𝑞 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))))
12922symggrp 19307 . . . . . . . . . . . . . . 15 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
13021, 129syl 17 . . . . . . . . . . . . . 14 (𝜑 → (SymGrp‘𝑁) ∈ Grp)
131130adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (SymGrp‘𝑁) ∈ Grp)
132116, 22, 5symgtrf 19376 . . . . . . . . . . . . . 14 ran (pmTrsp‘𝑁) ⊆ (Base‘(SymGrp‘𝑁))
133118adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁))
134132, 133sselid 3927 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)))
13570adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑝 ∈ (Base‘(SymGrp‘𝑁)))
136 eqid 2731 . . . . . . . . . . . . . 14 (+g‘(SymGrp‘𝑁)) = (+g‘(SymGrp‘𝑁))
1375, 136grpcl 18849 . . . . . . . . . . . . 13 (((SymGrp‘𝑁) ∈ Grp ∧ ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ (Base‘(SymGrp‘𝑁)))
138131, 134, 135, 137syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ (Base‘(SymGrp‘𝑁)))
139 eqid 2731 . . . . . . . . . . . . . . . . 17 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
14022, 7, 139psgnghm2 21513 . . . . . . . . . . . . . . . 16 (𝑁 ∈ Fin → (pmSgn‘𝑁) ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
14121, 140syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (pmSgn‘𝑁) ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
142141adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (pmSgn‘𝑁) ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
143 prex 5370 . . . . . . . . . . . . . . . 16 {1, -1} ∈ V
144 eqid 2731 . . . . . . . . . . . . . . . . . 18 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
145 cnfldmul 21294 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
146144, 145mgpplusg 20057 . . . . . . . . . . . . . . . . 17 · = (+g‘(mulGrp‘ℂfld))
147139, 146ressplusg 17190 . . . . . . . . . . . . . . . 16 ({1, -1} ∈ V → · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1})))
148143, 147ax-mp 5 . . . . . . . . . . . . . . 15 · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1}))
1495, 136, 148ghmlin 19128 . . . . . . . . . . . . . 14 (((pmSgn‘𝑁) ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((pmSgn‘𝑁)‘(((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)) = (((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) · ((pmSgn‘𝑁)‘𝑝)))
150142, 134, 135, 149syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘(((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)) = (((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) · ((pmSgn‘𝑁)‘𝑝)))
15122, 116, 7psgnpmtr 19417 . . . . . . . . . . . . . . . 16 (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁) → ((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) = -1)
152133, 151syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) = -1)
15322, 5, 7psgnevpm 21521 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘𝑝) = 1)
15421, 153sylan 580 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘𝑝) = 1)
155152, 154oveq12d 7359 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) · ((pmSgn‘𝑁)‘𝑝)) = (-1 · 1))
156 neg1cn 12105 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
157156mulridi 11111 . . . . . . . . . . . . . 14 (-1 · 1) = -1
158155, 157eqtrdi 2782 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) · ((pmSgn‘𝑁)‘𝑝)) = -1)
159150, 158eqtrd 2766 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘(((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)) = -1)
16022, 5, 7psgnodpmr 21522 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ (Base‘(SymGrp‘𝑁)) ∧ ((pmSgn‘𝑁)‘(((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)) = -1) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
16164, 138, 159, 160syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
162128, 161chvarvv 1990 . . . . . . . . . 10 ((𝜑𝑞 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
163 eqidd 2732 . . . . . . . . . 10 (𝜑 → (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)) = (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)))
164 eqidd 2732 . . . . . . . . . 10 (𝜑 → (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
165 fveq1 6816 . . . . . . . . . . . . 13 (𝑝 = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) → (𝑝𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐))
166165oveq1d 7356 . . . . . . . . . . . 12 (𝑝 = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) → ((𝑝𝑐)𝑋𝑐) = (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐))
167166mpteq2dv 5180 . . . . . . . . . . 11 (𝑝 = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) → (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)) = (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)))
168167oveq2d 7357 . . . . . . . . . 10 (𝑝 = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐))))
169162, 163, 164, 168fmptco 7057 . . . . . . . . 9 (𝜑 → ((𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∘ (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞))) = (𝑞 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)))))
170 oveq2 7349 . . . . . . . . . . . . . . 15 (𝑞 = 𝑝 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝))
171170fveq1d 6819 . . . . . . . . . . . . . 14 (𝑞 = 𝑝 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐))
172171oveq1d 7356 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐) = (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐))
173172mpteq2dv 5180 . . . . . . . . . . . 12 (𝑞 = 𝑝 → (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)) = (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐)))
174173oveq2d 7357 . . . . . . . . . . 11 (𝑞 = 𝑝 → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐))))
175174cbvmptv 5190 . . . . . . . . . 10 (𝑞 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐))))
176175a1i 11 . . . . . . . . 9 (𝜑 → (𝑞 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐)))))
177134adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)))
178135adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → 𝑝 ∈ (Base‘(SymGrp‘𝑁)))
17922, 5, 136symgov 19291 . . . . . . . . . . . . . . . . 17 ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝))
180177, 178, 179syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝))
181180fveq1d 6819 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝)‘𝑐))
18270, 44sylan2 593 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑝:𝑁𝑁)
183 fvco3 6916 . . . . . . . . . . . . . . . 16 ((𝑝:𝑁𝑁𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝)‘𝑐) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)))
184182, 183sylan 580 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝)‘𝑐) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)))
185181, 184eqtrd 2766 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)))
186185oveq1d 7356 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐))
187115pmtrprfv 19360 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ (𝐼𝑁𝐽𝑁𝐼𝐽)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼) = 𝐽)
18821, 109, 110, 112, 187syl13anc 1374 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼) = 𝐽)
189188ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼) = 𝐽)
190189oveq1d 7356 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼)𝑋𝑐) = (𝐽𝑋𝑐))
191 oveq2 7349 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑐 → (𝐼𝑋𝑎) = (𝐼𝑋𝑐))
192 oveq2 7349 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑐 → (𝐽𝑋𝑎) = (𝐽𝑋𝑐))
193191, 192eqeq12d 2747 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑐 → ((𝐼𝑋𝑎) = (𝐽𝑋𝑎) ↔ (𝐼𝑋𝑐) = (𝐽𝑋𝑐)))
194 mdetralt.eq . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑎𝑁 (𝐼𝑋𝑎) = (𝐽𝑋𝑎))
195194ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ∀𝑎𝑁 (𝐼𝑋𝑎) = (𝐽𝑋𝑎))
196 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → 𝑐𝑁)
197193, 195, 196rspcdva 3573 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (𝐼𝑋𝑐) = (𝐽𝑋𝑐))
198190, 197eqtr4d 2769 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼)𝑋𝑐) = (𝐼𝑋𝑐))
199 fveq2 6817 . . . . . . . . . . . . . . . . 17 ((𝑝𝑐) = 𝐼 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼))
200199oveq1d 7356 . . . . . . . . . . . . . . . 16 ((𝑝𝑐) = 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼)𝑋𝑐))
201 oveq1 7348 . . . . . . . . . . . . . . . 16 ((𝑝𝑐) = 𝐼 → ((𝑝𝑐)𝑋𝑐) = (𝐼𝑋𝑐))
202200, 201eqeq12d 2747 . . . . . . . . . . . . . . 15 ((𝑝𝑐) = 𝐼 → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐) ↔ ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼)𝑋𝑐) = (𝐼𝑋𝑐)))
203198, 202syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) = 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐)))
204 prcom 4680 . . . . . . . . . . . . . . . . . . . . . . 23 {𝐼, 𝐽} = {𝐽, 𝐼}
205204fveq2i 6820 . . . . . . . . . . . . . . . . . . . . . 22 ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) = ((pmTrsp‘𝑁)‘{𝐽, 𝐼})
206205fveq1i 6818 . . . . . . . . . . . . . . . . . . . . 21 (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽) = (((pmTrsp‘𝑁)‘{𝐽, 𝐼})‘𝐽)
207112necomd 2983 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽𝐼)
208115pmtrprfv 19360 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ (𝐽𝑁𝐼𝑁𝐽𝐼)) → (((pmTrsp‘𝑁)‘{𝐽, 𝐼})‘𝐽) = 𝐼)
20921, 110, 109, 207, 208syl13anc 1374 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((pmTrsp‘𝑁)‘{𝐽, 𝐼})‘𝐽) = 𝐼)
210206, 209eqtrid 2778 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽) = 𝐼)
211210oveq1d 7356 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐) = (𝐼𝑋𝑐))
212211ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐) = (𝐼𝑋𝑐))
213212, 197eqtrd 2766 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐) = (𝐽𝑋𝑐))
214 fveq2 6817 . . . . . . . . . . . . . . . . . . 19 ((𝑝𝑐) = 𝐽 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽))
215214oveq1d 7356 . . . . . . . . . . . . . . . . . 18 ((𝑝𝑐) = 𝐽 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐))
216 oveq1 7348 . . . . . . . . . . . . . . . . . 18 ((𝑝𝑐) = 𝐽 → ((𝑝𝑐)𝑋𝑐) = (𝐽𝑋𝑐))
217215, 216eqeq12d 2747 . . . . . . . . . . . . . . . . 17 ((𝑝𝑐) = 𝐽 → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐) ↔ ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐) = (𝐽𝑋𝑐)))
218213, 217syl5ibrcom 247 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) = 𝐽 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐)))
219218a1dd 50 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) = 𝐽 → ((𝑝𝑐) ≠ 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))))
220 neanior 3021 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) ↔ ¬ ((𝑝𝑐) = 𝐽 ∨ (𝑝𝑐) = 𝐼))
221 elpri 4595 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝𝑐) ∈ {𝐼, 𝐽} → ((𝑝𝑐) = 𝐼 ∨ (𝑝𝑐) = 𝐽))
222221orcomd 871 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝𝑐) ∈ {𝐼, 𝐽} → ((𝑝𝑐) = 𝐽 ∨ (𝑝𝑐) = 𝐼))
223222con3i 154 . . . . . . . . . . . . . . . . . . . . 21 (¬ ((𝑝𝑐) = 𝐽 ∨ (𝑝𝑐) = 𝐼) → ¬ (𝑝𝑐) ∈ {𝐼, 𝐽})
224220, 223sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (((𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ¬ (𝑝𝑐) ∈ {𝐼, 𝐽})
2252243adant1 1130 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ¬ (𝑝𝑐) ∈ {𝐼, 𝐽})
226115pmtrmvd 19363 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ {𝐼, 𝐽} ⊆ 𝑁 ∧ {𝐼, 𝐽} ≈ 2o) → dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
22721, 111, 114, 226syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
228227ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
2292283ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
230225, 229neleqtrrd 2854 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ¬ (𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ))
231115pmtrf 19362 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ Fin ∧ {𝐼, 𝐽} ⊆ 𝑁 ∧ {𝐼, 𝐽} ≈ 2o) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}):𝑁𝑁)
23221, 111, 114, 231syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}):𝑁𝑁)
233232ffnd 6647 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) Fn 𝑁)
234233ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) Fn 𝑁)
235182ffvelcdmda 7012 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (𝑝𝑐) ∈ 𝑁)
236 fnelnfp 7106 . . . . . . . . . . . . . . . . . . . . 21 ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) Fn 𝑁 ∧ (𝑝𝑐) ∈ 𝑁) → ((𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) ↔ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) ≠ (𝑝𝑐)))
237234, 235, 236syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) ↔ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) ≠ (𝑝𝑐)))
2382373ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ((𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) ↔ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) ≠ (𝑝𝑐)))
239238necon2bbid 2971 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) = (𝑝𝑐) ↔ ¬ (𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I )))
240230, 239mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) = (𝑝𝑐))
241240oveq1d 7356 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))
2422413exp 1119 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) ≠ 𝐽 → ((𝑝𝑐) ≠ 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))))
243219, 242pm2.61dne 3014 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) ≠ 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐)))
244203, 243pm2.61dne 3014 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))
245186, 244eqtrd 2766 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))
246245mpteq2dva 5179 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐)) = (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))
247246oveq2d 7357 . . . . . . . . . 10 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
248247mpteq2dva 5179 . . . . . . . . 9 (𝜑 → (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐)))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
249169, 176, 2483eqtrd 2770 . . . . . . . 8 (𝜑 → ((𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∘ (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
250249oveq2d 7357 . . . . . . 7 (𝜑 → (𝑅 Σg ((𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∘ (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)))) = (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
251123, 250eqtrd 2766 . . . . . 6 (𝜑 → (𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
252251fveq2d 6821 . . . . 5 (𝜑 → ((invg𝑅)‘(𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))) = ((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
253100, 107, 2523eqtrd 2770 . . . 4 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))) = ((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
25477, 253oveq12d 7359 . . 3 (𝜑 → ((𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)))(+g𝑅)(𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))) = ((𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))(+g𝑅)((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))))
25554a1i 11 . . . . . 6 (𝜑 → (pmEven‘𝑁) ⊆ (Base‘(SymGrp‘𝑁)))
25624, 255ssfid 9148 . . . . 5 (𝜑 → (pmEven‘𝑁) ∈ Fin)
25771ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑝 ∈ (pmEven‘𝑁)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
25812, 18, 256, 257gsummptcl 19874 . . . 4 (𝜑 → (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ∈ (Base‘𝑅))
25912, 13, 101, 84grprinv 18898 . . . 4 ((𝑅 ∈ Grp ∧ (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))(+g𝑅)((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))) = 0 )
26094, 258, 259syl2anc 584 . . 3 (𝜑 → ((𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))(+g𝑅)((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))) = 0 )
261254, 260eqtrd 2766 . 2 (𝜑 → ((𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)))(+g𝑅)(𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))) = 0 )
26211, 60, 2613eqtrd 2770 1 (𝜑 → (𝐷𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4278  {cpr 4573   class class class wbr 5086  cmpt 5167   I cid 5505   × cxp 5609  dom cdm 5611  ran crn 5612  cres 5613  ccom 5615   Fn wfn 6471  wf 6472  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  2oc2o 8374  m cmap 8745  cen 8861  Fincfn 8864  1c1 11002   · cmul 11006  -cneg 11340  Basecbs 17115  s cress 17136  +gcplusg 17156  .rcmulr 17157  0gc0g 17338   Σg cgsu 17339   MndHom cmhm 18684  Grpcgrp 18841  invgcminusg 18842   GrpHom cghm 19119  SymGrpcsymg 19276  pmTrspcpmtr 19348  pmSgncpsgn 19396  pmEvencevpm 19397  CMndccmn 19687  Abelcabl 19688  mulGrpcmgp 20053  1rcur 20094  Ringcrg 20146  CRingccrg 20147  fldccnfld 21286  ℤRHomczrh 21431   Mat cmat 22317   maDet cmdat 22494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-addf 11080  ax-mulf 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-ot 4580  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-hash 14233  df-word 14416  df-lsw 14465  df-concat 14473  df-s1 14499  df-substr 14544  df-pfx 14574  df-splice 14652  df-reverse 14661  df-s2 14750  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-efmnd 18772  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-ghm 19120  df-gim 19166  df-cntz 19224  df-oppg 19253  df-symg 19277  df-pmtr 19349  df-psgn 19398  df-evpm 19399  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-rhm 20385  df-subrng 20456  df-subrg 20480  df-drng 20641  df-sra 21102  df-rgmod 21103  df-cnfld 21287  df-zring 21379  df-zrh 21435  df-dsmm 21664  df-frlm 21679  df-mat 22318  df-mdet 22495
This theorem is referenced by:  mdetralt2  22519  mdetuni0  22531  mdetmul  22533
  Copyright terms: Public domain W3C validator