MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetrlin Structured version   Visualization version   GIF version

Theorem mdetrlin 21659
Description: The determinant function is additive for each row: The matrices X, Y, Z are identical except for the I's row, and the I's row of the matrix X is the componentwise sum of the I's row of the matrices Y and Z. In this case the determinant of X is the sum of the determinants of Y and Z. (Contributed by SO, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mdetrlin.d 𝐷 = (𝑁 maDet 𝑅)
mdetrlin.a 𝐴 = (𝑁 Mat 𝑅)
mdetrlin.b 𝐵 = (Base‘𝐴)
mdetrlin.p + = (+g𝑅)
mdetrlin.r (𝜑𝑅 ∈ CRing)
mdetrlin.x (𝜑𝑋𝐵)
mdetrlin.y (𝜑𝑌𝐵)
mdetrlin.z (𝜑𝑍𝐵)
mdetrlin.i (𝜑𝐼𝑁)
mdetrlin.eq (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁))))
mdetrlin.ne1 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
mdetrlin.ne2 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
Assertion
Ref Expression
mdetrlin (𝜑 → (𝐷𝑋) = ((𝐷𝑌) + (𝐷𝑍)))

Proof of Theorem mdetrlin
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6769 . . . . . 6 (Base‘(SymGrp‘𝑁)) ∈ V
2 ovex 7288 . . . . . . 7 ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) ∈ V
3 eqid 2738 . . . . . . 7 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))
42, 3fnmpti 6560 . . . . . 6 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁))
5 ovex 7288 . . . . . . 7 ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ V
6 eqid 2738 . . . . . . 7 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
75, 6fnmpti 6560 . . . . . 6 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁))
8 ofmpteq 7533 . . . . . 6 (((Base‘(SymGrp‘𝑁)) ∈ V ∧ (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁)) ∧ (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁))) → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
91, 4, 7, 8mp3an 1459 . . . . 5 ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
10 mdetrlin.r . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
11 crngring 19710 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
1312adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
14 mdetrlin.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
15 mdetrlin.a . . . . . . . . . . . . . 14 𝐴 = (𝑁 Mat 𝑅)
16 mdetrlin.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐴)
1715, 16matrcl 21469 . . . . . . . . . . . . 13 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1814, 17syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1918simpld 494 . . . . . . . . . . 11 (𝜑𝑁 ∈ Fin)
20 zrhpsgnmhm 20701 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2112, 19, 20syl2anc 583 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
22 eqid 2738 . . . . . . . . . . 11 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
23 eqid 2738 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
24 eqid 2738 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
2523, 24mgpbas 19641 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2622, 25mhmf 18350 . . . . . . . . . 10 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅))
2721, 26syl 17 . . . . . . . . 9 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅))
2827ffvelrnda 6943 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅))
2923crngmgp 19706 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
3010, 29syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
3130adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ CMnd)
3219adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 ∈ Fin)
3315, 24, 16matbas2i 21479 . . . . . . . . . . . . 13 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
34 elmapi 8595 . . . . . . . . . . . . 13 (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
3514, 33, 343syl 18 . . . . . . . . . . . 12 (𝜑𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
3635ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
37 simpr 484 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑟𝑁)
38 eqid 2738 . . . . . . . . . . . . . 14 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3938, 22symgbasf 18898 . . . . . . . . . . . . 13 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) → 𝑝:𝑁𝑁)
4039adantl 481 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁𝑁)
4140ffvelrnda 6943 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑝𝑟) ∈ 𝑁)
4236, 37, 41fovrnd 7422 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑌(𝑝𝑟)) ∈ (Base‘𝑅))
4342ralrimiva 3107 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟𝑁 (𝑟𝑌(𝑝𝑟)) ∈ (Base‘𝑅))
4425, 31, 32, 43gsummptcl 19483 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅))
45 mdetrlin.z . . . . . . . . . . . . 13 (𝜑𝑍𝐵)
4615, 24, 16matbas2i 21479 . . . . . . . . . . . . 13 (𝑍𝐵𝑍 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
47 elmapi 8595 . . . . . . . . . . . . 13 (𝑍 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
4845, 46, 473syl 18 . . . . . . . . . . . 12 (𝜑𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
4948ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
5049, 37, 41fovrnd 7422 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑍(𝑝𝑟)) ∈ (Base‘𝑅))
5150ralrimiva 3107 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟𝑁 (𝑟𝑍(𝑝𝑟)) ∈ (Base‘𝑅))
5225, 31, 32, 51gsummptcl 19483 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅))
53 mdetrlin.p . . . . . . . . 9 + = (+g𝑅)
54 eqid 2738 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
5524, 53, 54ringdi 19720 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
5613, 28, 44, 52, 55syl13anc 1370 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
57 cmnmnd 19317 . . . . . . . . . . . . 13 ((mulGrp‘𝑅) ∈ CMnd → (mulGrp‘𝑅) ∈ Mnd)
5831, 57syl 17 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ Mnd)
59 mdetrlin.i . . . . . . . . . . . . 13 (𝜑𝐼𝑁)
6059adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼𝑁)
6135adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
6240, 60ffvelrnd 6944 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑝𝐼) ∈ 𝑁)
6361, 60, 62fovrnd 7422 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑌(𝑝𝐼)) ∈ (Base‘𝑅))
64 id 22 . . . . . . . . . . . . . 14 (𝑟 = 𝐼𝑟 = 𝐼)
65 fveq2 6756 . . . . . . . . . . . . . 14 (𝑟 = 𝐼 → (𝑝𝑟) = (𝑝𝐼))
6664, 65oveq12d 7273 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑟𝑌(𝑝𝑟)) = (𝐼𝑌(𝑝𝐼)))
6725, 66gsumsn 19470 . . . . . . . . . . . 12 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑌(𝑝𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) = (𝐼𝑌(𝑝𝐼)))
6858, 60, 63, 67syl3anc 1369 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) = (𝐼𝑌(𝑝𝐼)))
6968, 63eqeltrd 2839 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅))
7048adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
7170, 60, 62fovrnd 7422 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑍(𝑝𝐼)) ∈ (Base‘𝑅))
7264, 65oveq12d 7273 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑟𝑍(𝑝𝑟)) = (𝐼𝑍(𝑝𝐼)))
7325, 72gsumsn 19470 . . . . . . . . . . . 12 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑍(𝑝𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
7458, 60, 71, 73syl3anc 1369 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
7574, 71eqeltrd 2839 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅))
76 difssd 4063 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ⊆ 𝑁)
7732, 76ssfid 8971 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ∈ Fin)
78 eldifi 4057 . . . . . . . . . . . . 13 (𝑟 ∈ (𝑁 ∖ {𝐼}) → 𝑟𝑁)
79 mdetrlin.x . . . . . . . . . . . . . . . 16 (𝜑𝑋𝐵)
8015, 24, 16matbas2i 21479 . . . . . . . . . . . . . . . 16 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
81 elmapi 8595 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
8279, 80, 813syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
8382ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
8483, 37, 41fovrnd 7422 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑋(𝑝𝑟)) ∈ (Base‘𝑅))
8578, 84sylan2 592 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑋(𝑝𝑟)) ∈ (Base‘𝑅))
8685ralrimiva 3107 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟 ∈ (𝑁 ∖ {𝐼})(𝑟𝑋(𝑝𝑟)) ∈ (Base‘𝑅))
8725, 31, 77, 86gsummptcl 19483 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))) ∈ (Base‘𝑅))
8824, 53, 54ringdir 19721 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))) ∈ (Base‘𝑅))) → ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) + (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))))
8913, 69, 75, 87, 88syl13anc 1370 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) + (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))))
9023, 54mgpplusg 19639 . . . . . . . . . . 11 (.r𝑅) = (+g‘(mulGrp‘𝑅))
91 disjdif 4402 . . . . . . . . . . . 12 ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅
9291a1i 11 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅)
9359snssd 4739 . . . . . . . . . . . . . 14 (𝜑 → {𝐼} ⊆ 𝑁)
9493adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → {𝐼} ⊆ 𝑁)
95 undif 4412 . . . . . . . . . . . . 13 ({𝐼} ⊆ 𝑁 ↔ ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
9694, 95sylib 217 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
9796eqcomd 2744 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 = ({𝐼} ∪ (𝑁 ∖ {𝐼})))
9825, 90, 31, 32, 84, 92, 97gsummptfidmsplit 19446 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
99 mdetrlin.eq . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁))))
10099adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁))))
101100oveqd 7272 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)))
102 xpss1 5599 . . . . . . . . . . . . . . . . . . 19 ({𝐼} ⊆ 𝑁 → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
10394, 102syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
10461, 103fssresd 6625 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 ↾ ({𝐼} × 𝑁)):({𝐼} × 𝑁)⟶(Base‘𝑅))
105104ffnd 6585 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁))
10670, 103fssresd 6625 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑍 ↾ ({𝐼} × 𝑁)):({𝐼} × 𝑁)⟶(Base‘𝑅))
107106ffnd 6585 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁))
108 snex 5349 . . . . . . . . . . . . . . . . 17 {𝐼} ∈ V
109 xpexg 7578 . . . . . . . . . . . . . . . . 17 (({𝐼} ∈ V ∧ 𝑁 ∈ Fin) → ({𝐼} × 𝑁) ∈ V)
110108, 32, 109sylancr 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ∈ V)
111 snidg 4592 . . . . . . . . . . . . . . . . . 18 (𝐼𝑁𝐼 ∈ {𝐼})
11260, 111syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼 ∈ {𝐼})
113112, 62opelxpd 5618 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁))
114 fnfvof 7528 . . . . . . . . . . . . . . . 16 ((((𝑌 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁) ∧ (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁)) ∧ (({𝐼} × 𝑁) ∈ V ∧ ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁))) → (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) + ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
115105, 107, 110, 113, 114syl22anc 835 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) + ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
116 df-ov 7258 . . . . . . . . . . . . . . 15 (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩)
117 df-ov 7258 . . . . . . . . . . . . . . . 16 (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)
118 df-ov 7258 . . . . . . . . . . . . . . . 16 (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)
119117, 118oveq12i 7267 . . . . . . . . . . . . . . 15 ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = (((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) + ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩))
120115, 116, 1193eqtr4g 2804 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
121101, 120eqtrd 2778 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
122 ovres 7416 . . . . . . . . . . . . . 14 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
123112, 62, 122syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
124 ovres 7416 . . . . . . . . . . . . . . 15 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑌(𝑝𝐼)))
125112, 62, 124syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑌(𝑝𝐼)))
126 ovres 7416 . . . . . . . . . . . . . . 15 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
127112, 62, 126syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
128125, 127oveq12d 7273 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = ((𝐼𝑌(𝑝𝐼)) + (𝐼𝑍(𝑝𝐼))))
129121, 123, 1283eqtr3d 2786 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) = ((𝐼𝑌(𝑝𝐼)) + (𝐼𝑍(𝑝𝐼))))
13082adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
131130, 60, 62fovrnd 7422 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) ∈ (Base‘𝑅))
13264, 65oveq12d 7273 . . . . . . . . . . . . . 14 (𝑟 = 𝐼 → (𝑟𝑋(𝑝𝑟)) = (𝐼𝑋(𝑝𝐼)))
13325, 132gsumsn 19470 . . . . . . . . . . . . 13 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑋(𝑝𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
13458, 60, 131, 133syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
13568, 74oveq12d 7273 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝐼𝑌(𝑝𝐼)) + (𝐼𝑍(𝑝𝐼))))
136129, 134, 1353eqtr4d 2788 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))))
137136oveq1d 7270 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
13898, 137eqtrd 2778 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
13925, 90, 31, 32, 42, 92, 97gsummptfidmsplit 19446 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟))))))
140 mdetrlin.ne1 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
141140ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
142141oveqd 7272 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
143 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → 𝑟 ∈ (𝑁 ∖ {𝐼}))
14478, 41sylan2 592 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑝𝑟) ∈ 𝑁)
145 ovres 7416 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
146143, 144, 145syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
147 ovres 7416 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑌(𝑝𝑟)))
148143, 144, 147syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑌(𝑝𝑟)))
149142, 146, 1483eqtr3rd 2787 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑌(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
150149mpteq2dva 5170 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟))) = (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))
151150oveq2d 7271 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟)))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))
152151oveq2d 7271 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟))))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
153139, 152eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
15425, 90, 31, 32, 50, 92, 97gsummptfidmsplit 19446 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
155 mdetrlin.ne2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
156155ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
157156oveqd 7272 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
158 ovres 7416 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
159143, 144, 158syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
160157, 146, 1593eqtr3rd 2787 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑍(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
161160mpteq2dva 5170 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))) = (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))
162161oveq2d 7271 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))
163162oveq2d 7271 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
164154, 163eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
165153, 164oveq12d 7273 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) + (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))))
16689, 138, 1653eqtr4rd 2789 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))
167166oveq2d 7271 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))
16856, 167eqtr3d 2780 . . . . . 6 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))
169168mpteq2dva 5170 . . . . 5 (𝜑 → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))))
1709, 169eqtrid 2790 . . . 4 (𝜑 → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))))
171170oveq2d 7271 . . 3 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
172 ringcmn 19735 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
17310, 11, 1723syl 18 . . . 4 (𝜑𝑅 ∈ CMnd)
17438, 22symgbasfi 18901 . . . . 5 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
17519, 174syl 17 . . . 4 (𝜑 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
17624, 54ringcl 19715 . . . . 5 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) ∈ (Base‘𝑅))
17713, 28, 44, 176syl3anc 1369 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) ∈ (Base‘𝑅))
17824, 54ringcl 19715 . . . . 5 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ (Base‘𝑅))
17913, 28, 52, 178syl3anc 1369 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ (Base‘𝑅))
18024, 53, 173, 175, 177, 179, 3, 6gsummptfidmadd2 19442 . . 3 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))) + (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
181171, 180eqtr3d 2780 . 2 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))) + (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
182 mdetrlin.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
183 eqid 2738 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
184 eqid 2738 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
185182, 15, 16, 22, 183, 184, 54, 23mdetleib2 21645 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
18610, 79, 185syl2anc 583 . 2 (𝜑 → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
187182, 15, 16, 22, 183, 184, 54, 23mdetleib2 21645 . . . 4 ((𝑅 ∈ CRing ∧ 𝑌𝐵) → (𝐷𝑌) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))))
18810, 14, 187syl2anc 583 . . 3 (𝜑 → (𝐷𝑌) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))))
189182, 15, 16, 22, 183, 184, 54, 23mdetleib2 21645 . . . 4 ((𝑅 ∈ CRing ∧ 𝑍𝐵) → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
19010, 45, 189syl2anc 583 . . 3 (𝜑 → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
191188, 190oveq12d 7273 . 2 (𝜑 → ((𝐷𝑌) + (𝐷𝑍)) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))) + (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
192181, 186, 1913eqtr4d 2788 1 (𝜑 → (𝐷𝑋) = ((𝐷𝑌) + (𝐷𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558  cop 4564  cmpt 5153   × cxp 5578  cres 5582  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573  Fincfn 8691  Basecbs 16840  +gcplusg 16888  .rcmulr 16889   Σg cgsu 17068  Mndcmnd 18300   MndHom cmhm 18343  SymGrpcsymg 18889  pmSgncpsgn 19012  CMndccmn 19301  mulGrpcmgp 19635  Ringcrg 19698  CRingccrg 19699  ℤRHomczrh 20613   Mat cmat 21464   maDet cmdat 21641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-xor 1504  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-reverse 14400  df-s2 14489  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-efmnd 18423  df-grp 18495  df-minusg 18496  df-mulg 18616  df-subg 18667  df-ghm 18747  df-gim 18790  df-cntz 18838  df-oppg 18865  df-symg 18890  df-pmtr 18965  df-psgn 19014  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-sra 20349  df-rgmod 20350  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-dsmm 20849  df-frlm 20864  df-mat 21465  df-mdet 21642
This theorem is referenced by:  mdetrlin2  21664  mdetuni0  21678  mdetmul  21680
  Copyright terms: Public domain W3C validator