MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetrlin Structured version   Visualization version   GIF version

Theorem mdetrlin 22505
Description: The determinant function is additive for each row: The matrices X, Y, Z are identical except for the I's row, and the I's row of the matrix X is the componentwise sum of the I's row of the matrices Y and Z. In this case the determinant of X is the sum of the determinants of Y and Z. (Contributed by SO, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mdetrlin.d 𝐷 = (𝑁 maDet 𝑅)
mdetrlin.a 𝐴 = (𝑁 Mat 𝑅)
mdetrlin.b 𝐵 = (Base‘𝐴)
mdetrlin.p + = (+g𝑅)
mdetrlin.r (𝜑𝑅 ∈ CRing)
mdetrlin.x (𝜑𝑋𝐵)
mdetrlin.y (𝜑𝑌𝐵)
mdetrlin.z (𝜑𝑍𝐵)
mdetrlin.i (𝜑𝐼𝑁)
mdetrlin.eq (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁))))
mdetrlin.ne1 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
mdetrlin.ne2 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
Assertion
Ref Expression
mdetrlin (𝜑 → (𝐷𝑋) = ((𝐷𝑌) + (𝐷𝑍)))

Proof of Theorem mdetrlin
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6839 . . . . . 6 (Base‘(SymGrp‘𝑁)) ∈ V
2 ovex 7386 . . . . . . 7 ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) ∈ V
3 eqid 2729 . . . . . . 7 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))
42, 3fnmpti 6629 . . . . . 6 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁))
5 ovex 7386 . . . . . . 7 ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ V
6 eqid 2729 . . . . . . 7 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
75, 6fnmpti 6629 . . . . . 6 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁))
8 ofmpteq 7640 . . . . . 6 (((Base‘(SymGrp‘𝑁)) ∈ V ∧ (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁)) ∧ (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁))) → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
91, 4, 7, 8mp3an 1463 . . . . 5 ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
10 mdetrlin.r . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
11 crngring 20148 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
1312adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
14 mdetrlin.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
15 mdetrlin.a . . . . . . . . . . . . . 14 𝐴 = (𝑁 Mat 𝑅)
16 mdetrlin.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐴)
1715, 16matrcl 22315 . . . . . . . . . . . . 13 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1814, 17syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1918simpld 494 . . . . . . . . . . 11 (𝜑𝑁 ∈ Fin)
20 zrhpsgnmhm 21509 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2112, 19, 20syl2anc 584 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
22 eqid 2729 . . . . . . . . . . 11 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
23 eqid 2729 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
24 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
2523, 24mgpbas 20048 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2622, 25mhmf 18681 . . . . . . . . . 10 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅))
2721, 26syl 17 . . . . . . . . 9 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅))
2827ffvelcdmda 7022 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅))
2923crngmgp 20144 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
3010, 29syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
3130adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ CMnd)
3219adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 ∈ Fin)
3315, 24, 16matbas2i 22325 . . . . . . . . . . . . 13 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
34 elmapi 8783 . . . . . . . . . . . . 13 (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
3514, 33, 343syl 18 . . . . . . . . . . . 12 (𝜑𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
3635ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
37 simpr 484 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑟𝑁)
38 eqid 2729 . . . . . . . . . . . . . 14 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3938, 22symgbasf 19273 . . . . . . . . . . . . 13 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) → 𝑝:𝑁𝑁)
4039adantl 481 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁𝑁)
4140ffvelcdmda 7022 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑝𝑟) ∈ 𝑁)
4236, 37, 41fovcdmd 7525 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑌(𝑝𝑟)) ∈ (Base‘𝑅))
4342ralrimiva 3121 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟𝑁 (𝑟𝑌(𝑝𝑟)) ∈ (Base‘𝑅))
4425, 31, 32, 43gsummptcl 19864 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅))
45 mdetrlin.z . . . . . . . . . . . . 13 (𝜑𝑍𝐵)
4615, 24, 16matbas2i 22325 . . . . . . . . . . . . 13 (𝑍𝐵𝑍 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
47 elmapi 8783 . . . . . . . . . . . . 13 (𝑍 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
4845, 46, 473syl 18 . . . . . . . . . . . 12 (𝜑𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
4948ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
5049, 37, 41fovcdmd 7525 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑍(𝑝𝑟)) ∈ (Base‘𝑅))
5150ralrimiva 3121 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟𝑁 (𝑟𝑍(𝑝𝑟)) ∈ (Base‘𝑅))
5225, 31, 32, 51gsummptcl 19864 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅))
53 mdetrlin.p . . . . . . . . 9 + = (+g𝑅)
54 eqid 2729 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
5524, 53, 54ringdi 20164 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
5613, 28, 44, 52, 55syl13anc 1374 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
57 cmnmnd 19694 . . . . . . . . . . . . 13 ((mulGrp‘𝑅) ∈ CMnd → (mulGrp‘𝑅) ∈ Mnd)
5831, 57syl 17 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ Mnd)
59 mdetrlin.i . . . . . . . . . . . . 13 (𝜑𝐼𝑁)
6059adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼𝑁)
6135adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
6240, 60ffvelcdmd 7023 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑝𝐼) ∈ 𝑁)
6361, 60, 62fovcdmd 7525 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑌(𝑝𝐼)) ∈ (Base‘𝑅))
64 id 22 . . . . . . . . . . . . . 14 (𝑟 = 𝐼𝑟 = 𝐼)
65 fveq2 6826 . . . . . . . . . . . . . 14 (𝑟 = 𝐼 → (𝑝𝑟) = (𝑝𝐼))
6664, 65oveq12d 7371 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑟𝑌(𝑝𝑟)) = (𝐼𝑌(𝑝𝐼)))
6725, 66gsumsn 19851 . . . . . . . . . . . 12 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑌(𝑝𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) = (𝐼𝑌(𝑝𝐼)))
6858, 60, 63, 67syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) = (𝐼𝑌(𝑝𝐼)))
6968, 63eqeltrd 2828 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅))
7048adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
7170, 60, 62fovcdmd 7525 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑍(𝑝𝐼)) ∈ (Base‘𝑅))
7264, 65oveq12d 7371 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑟𝑍(𝑝𝑟)) = (𝐼𝑍(𝑝𝐼)))
7325, 72gsumsn 19851 . . . . . . . . . . . 12 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑍(𝑝𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
7458, 60, 71, 73syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
7574, 71eqeltrd 2828 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅))
76 difssd 4090 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ⊆ 𝑁)
7732, 76ssfid 9170 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ∈ Fin)
78 eldifi 4084 . . . . . . . . . . . . 13 (𝑟 ∈ (𝑁 ∖ {𝐼}) → 𝑟𝑁)
79 mdetrlin.x . . . . . . . . . . . . . . . 16 (𝜑𝑋𝐵)
8015, 24, 16matbas2i 22325 . . . . . . . . . . . . . . . 16 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
81 elmapi 8783 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
8279, 80, 813syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
8382ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
8483, 37, 41fovcdmd 7525 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑋(𝑝𝑟)) ∈ (Base‘𝑅))
8578, 84sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑋(𝑝𝑟)) ∈ (Base‘𝑅))
8685ralrimiva 3121 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟 ∈ (𝑁 ∖ {𝐼})(𝑟𝑋(𝑝𝑟)) ∈ (Base‘𝑅))
8725, 31, 77, 86gsummptcl 19864 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))) ∈ (Base‘𝑅))
8824, 53, 54ringdir 20165 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))) ∈ (Base‘𝑅))) → ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) + (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))))
8913, 69, 75, 87, 88syl13anc 1374 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) + (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))))
9023, 54mgpplusg 20047 . . . . . . . . . . 11 (.r𝑅) = (+g‘(mulGrp‘𝑅))
91 disjdif 4425 . . . . . . . . . . . 12 ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅
9291a1i 11 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅)
9359snssd 4763 . . . . . . . . . . . . . 14 (𝜑 → {𝐼} ⊆ 𝑁)
9493adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → {𝐼} ⊆ 𝑁)
95 undif 4435 . . . . . . . . . . . . 13 ({𝐼} ⊆ 𝑁 ↔ ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
9694, 95sylib 218 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
9796eqcomd 2735 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 = ({𝐼} ∪ (𝑁 ∖ {𝐼})))
9825, 90, 31, 32, 84, 92, 97gsummptfidmsplit 19827 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
99 mdetrlin.eq . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁))))
10099adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁))))
101100oveqd 7370 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)))
102 xpss1 5642 . . . . . . . . . . . . . . . . . . 19 ({𝐼} ⊆ 𝑁 → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
10394, 102syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
10461, 103fssresd 6695 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 ↾ ({𝐼} × 𝑁)):({𝐼} × 𝑁)⟶(Base‘𝑅))
105104ffnd 6657 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁))
10670, 103fssresd 6695 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑍 ↾ ({𝐼} × 𝑁)):({𝐼} × 𝑁)⟶(Base‘𝑅))
107106ffnd 6657 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁))
108 snex 5378 . . . . . . . . . . . . . . . . 17 {𝐼} ∈ V
109 xpexg 7690 . . . . . . . . . . . . . . . . 17 (({𝐼} ∈ V ∧ 𝑁 ∈ Fin) → ({𝐼} × 𝑁) ∈ V)
110108, 32, 109sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ∈ V)
111 snidg 4614 . . . . . . . . . . . . . . . . . 18 (𝐼𝑁𝐼 ∈ {𝐼})
11260, 111syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼 ∈ {𝐼})
113112, 62opelxpd 5662 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁))
114 fnfvof 7634 . . . . . . . . . . . . . . . 16 ((((𝑌 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁) ∧ (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁)) ∧ (({𝐼} × 𝑁) ∈ V ∧ ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁))) → (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) + ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
115105, 107, 110, 113, 114syl22anc 838 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) + ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
116 df-ov 7356 . . . . . . . . . . . . . . 15 (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩)
117 df-ov 7356 . . . . . . . . . . . . . . . 16 (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)
118 df-ov 7356 . . . . . . . . . . . . . . . 16 (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)
119117, 118oveq12i 7365 . . . . . . . . . . . . . . 15 ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = (((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) + ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩))
120115, 116, 1193eqtr4g 2789 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
121101, 120eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
122 ovres 7519 . . . . . . . . . . . . . 14 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
123112, 62, 122syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
124 ovres 7519 . . . . . . . . . . . . . . 15 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑌(𝑝𝐼)))
125112, 62, 124syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑌(𝑝𝐼)))
126 ovres 7519 . . . . . . . . . . . . . . 15 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
127112, 62, 126syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
128125, 127oveq12d 7371 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = ((𝐼𝑌(𝑝𝐼)) + (𝐼𝑍(𝑝𝐼))))
129121, 123, 1283eqtr3d 2772 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) = ((𝐼𝑌(𝑝𝐼)) + (𝐼𝑍(𝑝𝐼))))
13082adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
131130, 60, 62fovcdmd 7525 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) ∈ (Base‘𝑅))
13264, 65oveq12d 7371 . . . . . . . . . . . . . 14 (𝑟 = 𝐼 → (𝑟𝑋(𝑝𝑟)) = (𝐼𝑋(𝑝𝐼)))
13325, 132gsumsn 19851 . . . . . . . . . . . . 13 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑋(𝑝𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
13458, 60, 131, 133syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
13568, 74oveq12d 7371 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝐼𝑌(𝑝𝐼)) + (𝐼𝑍(𝑝𝐼))))
136129, 134, 1353eqtr4d 2774 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))))
137136oveq1d 7368 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
13898, 137eqtrd 2764 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
13925, 90, 31, 32, 42, 92, 97gsummptfidmsplit 19827 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟))))))
140 mdetrlin.ne1 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
141140ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
142141oveqd 7370 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
143 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → 𝑟 ∈ (𝑁 ∖ {𝐼}))
14478, 41sylan2 593 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑝𝑟) ∈ 𝑁)
145 ovres 7519 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
146143, 144, 145syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
147 ovres 7519 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑌(𝑝𝑟)))
148143, 144, 147syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑌(𝑝𝑟)))
149142, 146, 1483eqtr3rd 2773 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑌(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
150149mpteq2dva 5188 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟))) = (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))
151150oveq2d 7369 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟)))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))
152151oveq2d 7369 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟))))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
153139, 152eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
15425, 90, 31, 32, 50, 92, 97gsummptfidmsplit 19827 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
155 mdetrlin.ne2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
156155ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
157156oveqd 7370 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
158 ovres 7519 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
159143, 144, 158syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
160157, 146, 1593eqtr3rd 2773 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑍(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
161160mpteq2dva 5188 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))) = (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))
162161oveq2d 7369 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))
163162oveq2d 7369 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
164154, 163eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
165153, 164oveq12d 7371 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) + (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))))
16689, 138, 1653eqtr4rd 2775 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))
167166oveq2d 7369 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))
16856, 167eqtr3d 2766 . . . . . 6 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))
169168mpteq2dva 5188 . . . . 5 (𝜑 → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))))
1709, 169eqtrid 2776 . . . 4 (𝜑 → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))))
171170oveq2d 7369 . . 3 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
172 ringcmn 20185 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
17310, 11, 1723syl 18 . . . 4 (𝜑𝑅 ∈ CMnd)
17438, 22symgbasfi 19276 . . . . 5 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
17519, 174syl 17 . . . 4 (𝜑 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
17624, 54ringcl 20153 . . . . 5 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) ∈ (Base‘𝑅))
17713, 28, 44, 176syl3anc 1373 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) ∈ (Base‘𝑅))
17824, 54ringcl 20153 . . . . 5 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ (Base‘𝑅))
17913, 28, 52, 178syl3anc 1373 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ (Base‘𝑅))
18024, 53, 173, 175, 177, 179, 3, 6gsummptfidmadd2 19823 . . 3 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))) + (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
181171, 180eqtr3d 2766 . 2 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))) + (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
182 mdetrlin.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
183 eqid 2729 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
184 eqid 2729 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
185182, 15, 16, 22, 183, 184, 54, 23mdetleib2 22491 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
18610, 79, 185syl2anc 584 . 2 (𝜑 → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
187182, 15, 16, 22, 183, 184, 54, 23mdetleib2 22491 . . . 4 ((𝑅 ∈ CRing ∧ 𝑌𝐵) → (𝐷𝑌) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))))
18810, 14, 187syl2anc 584 . . 3 (𝜑 → (𝐷𝑌) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))))
189182, 15, 16, 22, 183, 184, 54, 23mdetleib2 22491 . . . 4 ((𝑅 ∈ CRing ∧ 𝑍𝐵) → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
19010, 45, 189syl2anc 584 . . 3 (𝜑 → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
191188, 190oveq12d 7371 . 2 (𝜑 → ((𝐷𝑌) + (𝐷𝑍)) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))) + (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
192181, 186, 1913eqtr4d 2774 1 (𝜑 → (𝐷𝑋) = ((𝐷𝑌) + (𝐷𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579  cop 4585  cmpt 5176   × cxp 5621  cres 5625  ccom 5627   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  m cmap 8760  Fincfn 8879  Basecbs 17138  +gcplusg 17179  .rcmulr 17180   Σg cgsu 17362  Mndcmnd 18626   MndHom cmhm 18673  SymGrpcsymg 19266  pmSgncpsgn 19386  CMndccmn 19677  mulGrpcmgp 20043  Ringcrg 20136  CRingccrg 20137  ℤRHomczrh 21424   Mat cmat 22310   maDet cmdat 22487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-splice 14674  df-reverse 14683  df-s2 14773  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-efmnd 18761  df-grp 18833  df-minusg 18834  df-mulg 18965  df-subg 19020  df-ghm 19110  df-gim 19156  df-cntz 19214  df-oppg 19243  df-symg 19267  df-pmtr 19339  df-psgn 19388  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-drng 20634  df-sra 21095  df-rgmod 21096  df-cnfld 21280  df-zring 21372  df-zrh 21428  df-dsmm 21657  df-frlm 21672  df-mat 22311  df-mdet 22488
This theorem is referenced by:  mdetrlin2  22510  mdetuni0  22524  mdetmul  22526
  Copyright terms: Public domain W3C validator