MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetrlin Structured version   Visualization version   GIF version

Theorem mdetrlin 22629
Description: The determinant function is additive for each row: The matrices X, Y, Z are identical except for the I's row, and the I's row of the matrix X is the componentwise sum of the I's row of the matrices Y and Z. In this case the determinant of X is the sum of the determinants of Y and Z. (Contributed by SO, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mdetrlin.d 𝐷 = (𝑁 maDet 𝑅)
mdetrlin.a 𝐴 = (𝑁 Mat 𝑅)
mdetrlin.b 𝐵 = (Base‘𝐴)
mdetrlin.p + = (+g𝑅)
mdetrlin.r (𝜑𝑅 ∈ CRing)
mdetrlin.x (𝜑𝑋𝐵)
mdetrlin.y (𝜑𝑌𝐵)
mdetrlin.z (𝜑𝑍𝐵)
mdetrlin.i (𝜑𝐼𝑁)
mdetrlin.eq (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁))))
mdetrlin.ne1 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
mdetrlin.ne2 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
Assertion
Ref Expression
mdetrlin (𝜑 → (𝐷𝑋) = ((𝐷𝑌) + (𝐷𝑍)))

Proof of Theorem mdetrlin
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6933 . . . . . 6 (Base‘(SymGrp‘𝑁)) ∈ V
2 ovex 7481 . . . . . . 7 ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) ∈ V
3 eqid 2740 . . . . . . 7 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))
42, 3fnmpti 6723 . . . . . 6 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁))
5 ovex 7481 . . . . . . 7 ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ V
6 eqid 2740 . . . . . . 7 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
75, 6fnmpti 6723 . . . . . 6 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁))
8 ofmpteq 7736 . . . . . 6 (((Base‘(SymGrp‘𝑁)) ∈ V ∧ (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁)) ∧ (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁))) → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
91, 4, 7, 8mp3an 1461 . . . . 5 ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
10 mdetrlin.r . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
11 crngring 20272 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
1312adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
14 mdetrlin.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
15 mdetrlin.a . . . . . . . . . . . . . 14 𝐴 = (𝑁 Mat 𝑅)
16 mdetrlin.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐴)
1715, 16matrcl 22437 . . . . . . . . . . . . 13 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1814, 17syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1918simpld 494 . . . . . . . . . . 11 (𝜑𝑁 ∈ Fin)
20 zrhpsgnmhm 21625 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2112, 19, 20syl2anc 583 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
22 eqid 2740 . . . . . . . . . . 11 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
23 eqid 2740 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
24 eqid 2740 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
2523, 24mgpbas 20167 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2622, 25mhmf 18824 . . . . . . . . . 10 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅))
2721, 26syl 17 . . . . . . . . 9 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅))
2827ffvelcdmda 7118 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅))
2923crngmgp 20268 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
3010, 29syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
3130adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ CMnd)
3219adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 ∈ Fin)
3315, 24, 16matbas2i 22449 . . . . . . . . . . . . 13 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
34 elmapi 8907 . . . . . . . . . . . . 13 (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
3514, 33, 343syl 18 . . . . . . . . . . . 12 (𝜑𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
3635ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
37 simpr 484 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑟𝑁)
38 eqid 2740 . . . . . . . . . . . . . 14 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3938, 22symgbasf 19417 . . . . . . . . . . . . 13 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) → 𝑝:𝑁𝑁)
4039adantl 481 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁𝑁)
4140ffvelcdmda 7118 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑝𝑟) ∈ 𝑁)
4236, 37, 41fovcdmd 7622 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑌(𝑝𝑟)) ∈ (Base‘𝑅))
4342ralrimiva 3152 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟𝑁 (𝑟𝑌(𝑝𝑟)) ∈ (Base‘𝑅))
4425, 31, 32, 43gsummptcl 20009 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅))
45 mdetrlin.z . . . . . . . . . . . . 13 (𝜑𝑍𝐵)
4615, 24, 16matbas2i 22449 . . . . . . . . . . . . 13 (𝑍𝐵𝑍 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
47 elmapi 8907 . . . . . . . . . . . . 13 (𝑍 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
4845, 46, 473syl 18 . . . . . . . . . . . 12 (𝜑𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
4948ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
5049, 37, 41fovcdmd 7622 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑍(𝑝𝑟)) ∈ (Base‘𝑅))
5150ralrimiva 3152 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟𝑁 (𝑟𝑍(𝑝𝑟)) ∈ (Base‘𝑅))
5225, 31, 32, 51gsummptcl 20009 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅))
53 mdetrlin.p . . . . . . . . 9 + = (+g𝑅)
54 eqid 2740 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
5524, 53, 54ringdi 20287 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
5613, 28, 44, 52, 55syl13anc 1372 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
57 cmnmnd 19839 . . . . . . . . . . . . 13 ((mulGrp‘𝑅) ∈ CMnd → (mulGrp‘𝑅) ∈ Mnd)
5831, 57syl 17 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ Mnd)
59 mdetrlin.i . . . . . . . . . . . . 13 (𝜑𝐼𝑁)
6059adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼𝑁)
6135adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
6240, 60ffvelcdmd 7119 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑝𝐼) ∈ 𝑁)
6361, 60, 62fovcdmd 7622 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑌(𝑝𝐼)) ∈ (Base‘𝑅))
64 id 22 . . . . . . . . . . . . . 14 (𝑟 = 𝐼𝑟 = 𝐼)
65 fveq2 6920 . . . . . . . . . . . . . 14 (𝑟 = 𝐼 → (𝑝𝑟) = (𝑝𝐼))
6664, 65oveq12d 7466 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑟𝑌(𝑝𝑟)) = (𝐼𝑌(𝑝𝐼)))
6725, 66gsumsn 19996 . . . . . . . . . . . 12 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑌(𝑝𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) = (𝐼𝑌(𝑝𝐼)))
6858, 60, 63, 67syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) = (𝐼𝑌(𝑝𝐼)))
6968, 63eqeltrd 2844 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅))
7048adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
7170, 60, 62fovcdmd 7622 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑍(𝑝𝐼)) ∈ (Base‘𝑅))
7264, 65oveq12d 7466 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑟𝑍(𝑝𝑟)) = (𝐼𝑍(𝑝𝐼)))
7325, 72gsumsn 19996 . . . . . . . . . . . 12 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑍(𝑝𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
7458, 60, 71, 73syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
7574, 71eqeltrd 2844 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅))
76 difssd 4160 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ⊆ 𝑁)
7732, 76ssfid 9329 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ∈ Fin)
78 eldifi 4154 . . . . . . . . . . . . 13 (𝑟 ∈ (𝑁 ∖ {𝐼}) → 𝑟𝑁)
79 mdetrlin.x . . . . . . . . . . . . . . . 16 (𝜑𝑋𝐵)
8015, 24, 16matbas2i 22449 . . . . . . . . . . . . . . . 16 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
81 elmapi 8907 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
8279, 80, 813syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
8382ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
8483, 37, 41fovcdmd 7622 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑋(𝑝𝑟)) ∈ (Base‘𝑅))
8578, 84sylan2 592 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑋(𝑝𝑟)) ∈ (Base‘𝑅))
8685ralrimiva 3152 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟 ∈ (𝑁 ∖ {𝐼})(𝑟𝑋(𝑝𝑟)) ∈ (Base‘𝑅))
8725, 31, 77, 86gsummptcl 20009 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))) ∈ (Base‘𝑅))
8824, 53, 54ringdir 20288 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))) ∈ (Base‘𝑅))) → ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) + (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))))
8913, 69, 75, 87, 88syl13anc 1372 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) + (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))))
9023, 54mgpplusg 20165 . . . . . . . . . . 11 (.r𝑅) = (+g‘(mulGrp‘𝑅))
91 disjdif 4495 . . . . . . . . . . . 12 ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅
9291a1i 11 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅)
9359snssd 4834 . . . . . . . . . . . . . 14 (𝜑 → {𝐼} ⊆ 𝑁)
9493adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → {𝐼} ⊆ 𝑁)
95 undif 4505 . . . . . . . . . . . . 13 ({𝐼} ⊆ 𝑁 ↔ ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
9694, 95sylib 218 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
9796eqcomd 2746 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 = ({𝐼} ∪ (𝑁 ∖ {𝐼})))
9825, 90, 31, 32, 84, 92, 97gsummptfidmsplit 19972 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
99 mdetrlin.eq . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁))))
10099adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁))))
101100oveqd 7465 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)))
102 xpss1 5719 . . . . . . . . . . . . . . . . . . 19 ({𝐼} ⊆ 𝑁 → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
10394, 102syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
10461, 103fssresd 6788 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 ↾ ({𝐼} × 𝑁)):({𝐼} × 𝑁)⟶(Base‘𝑅))
105104ffnd 6748 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁))
10670, 103fssresd 6788 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑍 ↾ ({𝐼} × 𝑁)):({𝐼} × 𝑁)⟶(Base‘𝑅))
107106ffnd 6748 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁))
108 snex 5451 . . . . . . . . . . . . . . . . 17 {𝐼} ∈ V
109 xpexg 7785 . . . . . . . . . . . . . . . . 17 (({𝐼} ∈ V ∧ 𝑁 ∈ Fin) → ({𝐼} × 𝑁) ∈ V)
110108, 32, 109sylancr 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ∈ V)
111 snidg 4682 . . . . . . . . . . . . . . . . . 18 (𝐼𝑁𝐼 ∈ {𝐼})
11260, 111syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼 ∈ {𝐼})
113112, 62opelxpd 5739 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁))
114 fnfvof 7731 . . . . . . . . . . . . . . . 16 ((((𝑌 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁) ∧ (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁)) ∧ (({𝐼} × 𝑁) ∈ V ∧ ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁))) → (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) + ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
115105, 107, 110, 113, 114syl22anc 838 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) + ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
116 df-ov 7451 . . . . . . . . . . . . . . 15 (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩)
117 df-ov 7451 . . . . . . . . . . . . . . . 16 (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)
118 df-ov 7451 . . . . . . . . . . . . . . . 16 (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)
119117, 118oveq12i 7460 . . . . . . . . . . . . . . 15 ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = (((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) + ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩))
120115, 116, 1193eqtr4g 2805 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
121101, 120eqtrd 2780 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
122 ovres 7616 . . . . . . . . . . . . . 14 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
123112, 62, 122syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
124 ovres 7616 . . . . . . . . . . . . . . 15 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑌(𝑝𝐼)))
125112, 62, 124syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑌(𝑝𝐼)))
126 ovres 7616 . . . . . . . . . . . . . . 15 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
127112, 62, 126syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
128125, 127oveq12d 7466 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = ((𝐼𝑌(𝑝𝐼)) + (𝐼𝑍(𝑝𝐼))))
129121, 123, 1283eqtr3d 2788 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) = ((𝐼𝑌(𝑝𝐼)) + (𝐼𝑍(𝑝𝐼))))
13082adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
131130, 60, 62fovcdmd 7622 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) ∈ (Base‘𝑅))
13264, 65oveq12d 7466 . . . . . . . . . . . . . 14 (𝑟 = 𝐼 → (𝑟𝑋(𝑝𝑟)) = (𝐼𝑋(𝑝𝐼)))
13325, 132gsumsn 19996 . . . . . . . . . . . . 13 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑋(𝑝𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
13458, 60, 131, 133syl3anc 1371 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
13568, 74oveq12d 7466 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝐼𝑌(𝑝𝐼)) + (𝐼𝑍(𝑝𝐼))))
136129, 134, 1353eqtr4d 2790 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))))
137136oveq1d 7463 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
13898, 137eqtrd 2780 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
13925, 90, 31, 32, 42, 92, 97gsummptfidmsplit 19972 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟))))))
140 mdetrlin.ne1 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
141140ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
142141oveqd 7465 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
143 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → 𝑟 ∈ (𝑁 ∖ {𝐼}))
14478, 41sylan2 592 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑝𝑟) ∈ 𝑁)
145 ovres 7616 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
146143, 144, 145syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
147 ovres 7616 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑌(𝑝𝑟)))
148143, 144, 147syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑌(𝑝𝑟)))
149142, 146, 1483eqtr3rd 2789 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑌(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
150149mpteq2dva 5266 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟))) = (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))
151150oveq2d 7464 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟)))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))
152151oveq2d 7464 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟))))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
153139, 152eqtrd 2780 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
15425, 90, 31, 32, 50, 92, 97gsummptfidmsplit 19972 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
155 mdetrlin.ne2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
156155ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
157156oveqd 7465 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
158 ovres 7616 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
159143, 144, 158syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
160157, 146, 1593eqtr3rd 2789 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑍(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
161160mpteq2dva 5266 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))) = (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))
162161oveq2d 7464 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))
163162oveq2d 7464 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
164154, 163eqtrd 2780 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
165153, 164oveq12d 7466 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) + (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))))
16689, 138, 1653eqtr4rd 2791 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))
167166oveq2d 7464 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))
16856, 167eqtr3d 2782 . . . . . 6 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))
169168mpteq2dva 5266 . . . . 5 (𝜑 → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))))
1709, 169eqtrid 2792 . . . 4 (𝜑 → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))))
171170oveq2d 7464 . . 3 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
172 ringcmn 20305 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
17310, 11, 1723syl 18 . . . 4 (𝜑𝑅 ∈ CMnd)
17438, 22symgbasfi 19420 . . . . 5 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
17519, 174syl 17 . . . 4 (𝜑 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
17624, 54ringcl 20277 . . . . 5 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) ∈ (Base‘𝑅))
17713, 28, 44, 176syl3anc 1371 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) ∈ (Base‘𝑅))
17824, 54ringcl 20277 . . . . 5 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ (Base‘𝑅))
17913, 28, 52, 178syl3anc 1371 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ (Base‘𝑅))
18024, 53, 173, 175, 177, 179, 3, 6gsummptfidmadd2 19968 . . 3 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))) + (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
181171, 180eqtr3d 2782 . 2 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))) + (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
182 mdetrlin.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
183 eqid 2740 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
184 eqid 2740 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
185182, 15, 16, 22, 183, 184, 54, 23mdetleib2 22615 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
18610, 79, 185syl2anc 583 . 2 (𝜑 → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
187182, 15, 16, 22, 183, 184, 54, 23mdetleib2 22615 . . . 4 ((𝑅 ∈ CRing ∧ 𝑌𝐵) → (𝐷𝑌) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))))
18810, 14, 187syl2anc 583 . . 3 (𝜑 → (𝐷𝑌) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))))
189182, 15, 16, 22, 183, 184, 54, 23mdetleib2 22615 . . . 4 ((𝑅 ∈ CRing ∧ 𝑍𝐵) → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
19010, 45, 189syl2anc 583 . . 3 (𝜑 → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
191188, 190oveq12d 7466 . 2 (𝜑 → ((𝐷𝑌) + (𝐷𝑍)) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))) + (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
192181, 186, 1913eqtr4d 2790 1 (𝜑 → (𝐷𝑋) = ((𝐷𝑌) + (𝐷𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  cop 4654  cmpt 5249   × cxp 5698  cres 5702  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  Fincfn 9003  Basecbs 17258  +gcplusg 17311  .rcmulr 17312   Σg cgsu 17500  Mndcmnd 18772   MndHom cmhm 18816  SymGrpcsymg 19410  pmSgncpsgn 19531  CMndccmn 19822  mulGrpcmgp 20161  Ringcrg 20260  CRingccrg 20261  ℤRHomczrh 21533   Mat cmat 22432   maDet cmdat 22611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-cntz 19357  df-oppg 19386  df-symg 19411  df-pmtr 19484  df-psgn 19533  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-dsmm 21775  df-frlm 21790  df-mat 22433  df-mdet 22612
This theorem is referenced by:  mdetrlin2  22634  mdetuni0  22648  mdetmul  22650
  Copyright terms: Public domain W3C validator