Step | Hyp | Ref
| Expression |
1 | | fvex 6787 |
. . . . . 6
⊢
(Base‘(SymGrp‘𝑁)) ∈ V |
2 | | ovex 7308 |
. . . . . . 7
⊢
((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟))))) ∈ V |
3 | | eqid 2738 |
. . . . . . 7
⊢ (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))))) |
4 | 2, 3 | fnmpti 6576 |
. . . . . 6
⊢ (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))))) Fn (Base‘(SymGrp‘𝑁)) |
5 | | ovex 7308 |
. . . . . . 7
⊢
((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))) ∈ V |
6 | | eqid 2738 |
. . . . . . 7
⊢ (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))))) |
7 | 5, 6 | fnmpti 6576 |
. . . . . 6
⊢ (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))))) Fn (Base‘(SymGrp‘𝑁)) |
8 | | ofmpteq 7555 |
. . . . . 6
⊢
(((Base‘(SymGrp‘𝑁)) ∈ V ∧ (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))))) Fn (Base‘(SymGrp‘𝑁)) ∧ (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))))) Fn (Base‘(SymGrp‘𝑁))) → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
(((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟))))) +
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))))))) |
9 | 1, 4, 7, 8 | mp3an 1460 |
. . . . 5
⊢ ((𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
(((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟))))) +
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))))) |
10 | | mdetrlin.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ CRing) |
11 | | crngring 19795 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
12 | 10, 11 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) |
13 | 12 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring) |
14 | | mdetrlin.y |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
15 | | mdetrlin.a |
. . . . . . . . . . . . . 14
⊢ 𝐴 = (𝑁 Mat 𝑅) |
16 | | mdetrlin.b |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (Base‘𝐴) |
17 | 15, 16 | matrcl 21559 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
18 | 14, 17 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
19 | 18 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ Fin) |
20 | | zrhpsgnmhm 20789 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) →
((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))
∈ ((SymGrp‘𝑁)
MndHom (mulGrp‘𝑅))) |
21 | 12, 19, 20 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅))) |
22 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁)) |
23 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
24 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑅) |
25 | 23, 24 | mgpbas 19726 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅)) |
26 | 22, 25 | mhmf 18435 |
. . . . . . . . . 10
⊢
(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅)) |
27 | 21, 26 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅)) |
28 | 27 | ffvelrnda 6961 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) →
(((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅)) |
29 | 23 | crngmgp 19791 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing →
(mulGrp‘𝑅) ∈
CMnd) |
30 | 10, 29 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) |
31 | 30 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ CMnd) |
32 | 19 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 ∈ Fin) |
33 | 15, 24, 16 | matbas2i 21571 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
34 | | elmapi 8637 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
35 | 14, 33, 34 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
36 | 35 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ 𝑁) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
37 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ 𝑁) → 𝑟 ∈ 𝑁) |
38 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(SymGrp‘𝑁) =
(SymGrp‘𝑁) |
39 | 38, 22 | symgbasf 18983 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈
(Base‘(SymGrp‘𝑁)) → 𝑝:𝑁⟶𝑁) |
40 | 39 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁⟶𝑁) |
41 | 40 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ 𝑁) → (𝑝‘𝑟) ∈ 𝑁) |
42 | 36, 37, 41 | fovrnd 7444 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ 𝑁) → (𝑟𝑌(𝑝‘𝑟)) ∈ (Base‘𝑅)) |
43 | 42 | ralrimiva 3103 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟 ∈ 𝑁 (𝑟𝑌(𝑝‘𝑟)) ∈ (Base‘𝑅)) |
44 | 25, 31, 32, 43 | gsummptcl 19568 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))) ∈ (Base‘𝑅)) |
45 | | mdetrlin.z |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
46 | 15, 24, 16 | matbas2i 21571 |
. . . . . . . . . . . . 13
⊢ (𝑍 ∈ 𝐵 → 𝑍 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
47 | | elmapi 8637 |
. . . . . . . . . . . . 13
⊢ (𝑍 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
48 | 45, 46, 47 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
49 | 48 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ 𝑁) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
50 | 49, 37, 41 | fovrnd 7444 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ 𝑁) → (𝑟𝑍(𝑝‘𝑟)) ∈ (Base‘𝑅)) |
51 | 50 | ralrimiva 3103 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟 ∈ 𝑁 (𝑟𝑍(𝑝‘𝑟)) ∈ (Base‘𝑅)) |
52 | 25, 31, 32, 51 | gsummptcl 19568 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))) ∈ (Base‘𝑅)) |
53 | | mdetrlin.p |
. . . . . . . . 9
⊢ + =
(+g‘𝑅) |
54 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
55 | 24, 53, 54 | ringdi 19805 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))) ∈ (Base‘𝑅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))) + ((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))))) = (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟))))) +
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))))) |
56 | 13, 28, 44, 52, 55 | syl13anc 1371 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) →
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))) + ((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))))) = (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟))))) +
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))))) |
57 | | cmnmnd 19402 |
. . . . . . . . . . . . 13
⊢
((mulGrp‘𝑅)
∈ CMnd → (mulGrp‘𝑅) ∈ Mnd) |
58 | 31, 57 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ Mnd) |
59 | | mdetrlin.i |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ 𝑁) |
60 | 59 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼 ∈ 𝑁) |
61 | 35 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
62 | 40, 60 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑝‘𝐼) ∈ 𝑁) |
63 | 61, 60, 62 | fovrnd 7444 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑌(𝑝‘𝐼)) ∈ (Base‘𝑅)) |
64 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝐼 → 𝑟 = 𝐼) |
65 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝐼 → (𝑝‘𝑟) = (𝑝‘𝐼)) |
66 | 64, 65 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝐼 → (𝑟𝑌(𝑝‘𝑟)) = (𝐼𝑌(𝑝‘𝐼))) |
67 | 25, 66 | gsumsn 19555 |
. . . . . . . . . . . 12
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝐼 ∈
𝑁 ∧ (𝐼𝑌(𝑝‘𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟)))) = (𝐼𝑌(𝑝‘𝐼))) |
68 | 58, 60, 63, 67 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟)))) = (𝐼𝑌(𝑝‘𝐼))) |
69 | 68, 63 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟)))) ∈ (Base‘𝑅)) |
70 | 48 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
71 | 70, 60, 62 | fovrnd 7444 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑍(𝑝‘𝐼)) ∈ (Base‘𝑅)) |
72 | 64, 65 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝐼 → (𝑟𝑍(𝑝‘𝑟)) = (𝐼𝑍(𝑝‘𝐼))) |
73 | 25, 72 | gsumsn 19555 |
. . . . . . . . . . . 12
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝐼 ∈
𝑁 ∧ (𝐼𝑍(𝑝‘𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟)))) = (𝐼𝑍(𝑝‘𝐼))) |
74 | 58, 60, 71, 73 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟)))) = (𝐼𝑍(𝑝‘𝐼))) |
75 | 74, 71 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟)))) ∈ (Base‘𝑅)) |
76 | | difssd 4067 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ⊆ 𝑁) |
77 | 32, 76 | ssfid 9042 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ∈ Fin) |
78 | | eldifi 4061 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ (𝑁 ∖ {𝐼}) → 𝑟 ∈ 𝑁) |
79 | | mdetrlin.x |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
80 | 15, 24, 16 | matbas2i 21571 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
81 | | elmapi 8637 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
82 | 79, 80, 81 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
83 | 82 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ 𝑁) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
84 | 83, 37, 41 | fovrnd 7444 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ 𝑁) → (𝑟𝑋(𝑝‘𝑟)) ∈ (Base‘𝑅)) |
85 | 78, 84 | sylan2 593 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑋(𝑝‘𝑟)) ∈ (Base‘𝑅)) |
86 | 85 | ralrimiva 3103 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟 ∈ (𝑁 ∖ {𝐼})(𝑟𝑋(𝑝‘𝑟)) ∈ (Base‘𝑅)) |
87 | 25, 31, 77, 86 | gsummptcl 19568 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟)))) ∈ (Base‘𝑅)) |
88 | 24, 53, 54 | ringdir 19806 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧
(((mulGrp‘𝑅)
Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟)))) ∈ (Base‘𝑅))) → ((((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟)))) + ((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟))))) + (((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟))))))) |
89 | 13, 69, 75, 87, 88 | syl13anc 1371 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) →
((((mulGrp‘𝑅)
Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟)))) + ((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟))))) + (((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟))))))) |
90 | 23, 54 | mgpplusg 19724 |
. . . . . . . . . . 11
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
91 | | disjdif 4405 |
. . . . . . . . . . . 12
⊢ ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅ |
92 | 91 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅) |
93 | 59 | snssd 4742 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → {𝐼} ⊆ 𝑁) |
94 | 93 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → {𝐼} ⊆ 𝑁) |
95 | | undif 4415 |
. . . . . . . . . . . . 13
⊢ ({𝐼} ⊆ 𝑁 ↔ ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁) |
96 | 94, 95 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁) |
97 | 96 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 = ({𝐼} ∪ (𝑁 ∖ {𝐼}))) |
98 | 25, 90, 31, 32, 84, 92, 97 | gsummptfidmsplit 19531 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑋(𝑝‘𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟)))))) |
99 | | mdetrlin.eq |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))) |
100 | 99 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))) |
101 | 100 | oveqd 7292 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)) = (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝‘𝐼))) |
102 | | xpss1 5608 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝐼} ⊆ 𝑁 → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁)) |
103 | 94, 102 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁)) |
104 | 61, 103 | fssresd 6641 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 ↾ ({𝐼} × 𝑁)):({𝐼} × 𝑁)⟶(Base‘𝑅)) |
105 | 104 | ffnd 6601 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁)) |
106 | 70, 103 | fssresd 6641 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑍 ↾ ({𝐼} × 𝑁)):({𝐼} × 𝑁)⟶(Base‘𝑅)) |
107 | 106 | ffnd 6601 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁)) |
108 | | snex 5354 |
. . . . . . . . . . . . . . . . 17
⊢ {𝐼} ∈ V |
109 | | xpexg 7600 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝐼} ∈ V ∧ 𝑁 ∈ Fin) → ({𝐼} × 𝑁) ∈ V) |
110 | 108, 32, 109 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ∈ V) |
111 | | snidg 4595 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐼 ∈ 𝑁 → 𝐼 ∈ {𝐼}) |
112 | 60, 111 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼 ∈ {𝐼}) |
113 | 112, 62 | opelxpd 5627 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 〈𝐼, (𝑝‘𝐼)〉 ∈ ({𝐼} × 𝑁)) |
114 | | fnfvof 7550 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑌 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁) ∧ (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁)) ∧ (({𝐼} × 𝑁) ∈ V ∧ 〈𝐼, (𝑝‘𝐼)〉 ∈ ({𝐼} × 𝑁))) → (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘〈𝐼, (𝑝‘𝐼)〉) = (((𝑌 ↾ ({𝐼} × 𝑁))‘〈𝐼, (𝑝‘𝐼)〉) + ((𝑍 ↾ ({𝐼} × 𝑁))‘〈𝐼, (𝑝‘𝐼)〉))) |
115 | 105, 107,
110, 113, 114 | syl22anc 836 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘〈𝐼, (𝑝‘𝐼)〉) = (((𝑌 ↾ ({𝐼} × 𝑁))‘〈𝐼, (𝑝‘𝐼)〉) + ((𝑍 ↾ ({𝐼} × 𝑁))‘〈𝐼, (𝑝‘𝐼)〉))) |
116 | | df-ov 7278 |
. . . . . . . . . . . . . . 15
⊢ (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝‘𝐼)) = (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘〈𝐼, (𝑝‘𝐼)〉) |
117 | | df-ov 7278 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)) = ((𝑌 ↾ ({𝐼} × 𝑁))‘〈𝐼, (𝑝‘𝐼)〉) |
118 | | df-ov 7278 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)) = ((𝑍 ↾ ({𝐼} × 𝑁))‘〈𝐼, (𝑝‘𝐼)〉) |
119 | 117, 118 | oveq12i 7287 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼))) = (((𝑌 ↾ ({𝐼} × 𝑁))‘〈𝐼, (𝑝‘𝐼)〉) + ((𝑍 ↾ ({𝐼} × 𝑁))‘〈𝐼, (𝑝‘𝐼)〉)) |
120 | 115, 116,
119 | 3eqtr4g 2803 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝‘𝐼)) = ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)))) |
121 | 101, 120 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)) = ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)))) |
122 | | ovres 7438 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ {𝐼} ∧ (𝑝‘𝐼) ∈ 𝑁) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)) = (𝐼𝑋(𝑝‘𝐼))) |
123 | 112, 62, 122 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)) = (𝐼𝑋(𝑝‘𝐼))) |
124 | | ovres 7438 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ {𝐼} ∧ (𝑝‘𝐼) ∈ 𝑁) → (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)) = (𝐼𝑌(𝑝‘𝐼))) |
125 | 112, 62, 124 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)) = (𝐼𝑌(𝑝‘𝐼))) |
126 | | ovres 7438 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ {𝐼} ∧ (𝑝‘𝐼) ∈ 𝑁) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)) = (𝐼𝑍(𝑝‘𝐼))) |
127 | 112, 62, 126 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)) = (𝐼𝑍(𝑝‘𝐼))) |
128 | 125, 127 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝‘𝐼))) = ((𝐼𝑌(𝑝‘𝐼)) + (𝐼𝑍(𝑝‘𝐼)))) |
129 | 121, 123,
128 | 3eqtr3d 2786 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝‘𝐼)) = ((𝐼𝑌(𝑝‘𝐼)) + (𝐼𝑍(𝑝‘𝐼)))) |
130 | 82 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
131 | 130, 60, 62 | fovrnd 7444 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝‘𝐼)) ∈ (Base‘𝑅)) |
132 | 64, 65 | oveq12d 7293 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝐼 → (𝑟𝑋(𝑝‘𝑟)) = (𝐼𝑋(𝑝‘𝐼))) |
133 | 25, 132 | gsumsn 19555 |
. . . . . . . . . . . . 13
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝐼 ∈
𝑁 ∧ (𝐼𝑋(𝑝‘𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝‘𝑟)))) = (𝐼𝑋(𝑝‘𝐼))) |
134 | 58, 60, 131, 133 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝‘𝑟)))) = (𝐼𝑋(𝑝‘𝐼))) |
135 | 68, 74 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟)))) + ((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟))))) = ((𝐼𝑌(𝑝‘𝐼)) + (𝐼𝑍(𝑝‘𝐼)))) |
136 | 129, 134,
135 | 3eqtr4d 2788 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝‘𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟)))) + ((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟)))))) |
137 | 136 | oveq1d 7290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟)))) + ((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟)))))) |
138 | 98, 137 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑋(𝑝‘𝑟)))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟)))) + ((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟)))))) |
139 | 25, 90, 31, 32, 42, 92, 97 | gsummptfidmsplit 19531 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝‘𝑟)))))) |
140 | | mdetrlin.ne1 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))) |
141 | 140 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))) |
142 | 141 | oveqd 7292 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝‘𝑟)) = (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝‘𝑟))) |
143 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → 𝑟 ∈ (𝑁 ∖ {𝐼})) |
144 | 78, 41 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑝‘𝑟) ∈ 𝑁) |
145 | | ovres 7438 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝‘𝑟) ∈ 𝑁) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝‘𝑟)) = (𝑟𝑋(𝑝‘𝑟))) |
146 | 143, 144,
145 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝‘𝑟)) = (𝑟𝑋(𝑝‘𝑟))) |
147 | | ovres 7438 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝‘𝑟) ∈ 𝑁) → (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝‘𝑟)) = (𝑟𝑌(𝑝‘𝑟))) |
148 | 143, 144,
147 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝‘𝑟)) = (𝑟𝑌(𝑝‘𝑟))) |
149 | 142, 146,
148 | 3eqtr3rd 2787 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑌(𝑝‘𝑟)) = (𝑟𝑋(𝑝‘𝑟))) |
150 | 149 | mpteq2dva 5174 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝‘𝑟))) = (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟)))) |
151 | 150 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝‘𝑟)))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟))))) |
152 | 151 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝‘𝑟))))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟)))))) |
153 | 139, 152 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟)))))) |
154 | 25, 90, 31, 32, 50, 92, 97 | gsummptfidmsplit 19531 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝‘𝑟)))))) |
155 | | mdetrlin.ne2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))) |
156 | 155 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))) |
157 | 156 | oveqd 7292 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝‘𝑟)) = (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝‘𝑟))) |
158 | | ovres 7438 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝‘𝑟) ∈ 𝑁) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝‘𝑟)) = (𝑟𝑍(𝑝‘𝑟))) |
159 | 143, 144,
158 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝‘𝑟)) = (𝑟𝑍(𝑝‘𝑟))) |
160 | 157, 146,
159 | 3eqtr3rd 2787 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑍(𝑝‘𝑟)) = (𝑟𝑋(𝑝‘𝑟))) |
161 | 160 | mpteq2dva 5174 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝‘𝑟))) = (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟)))) |
162 | 161 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝‘𝑟)))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟))))) |
163 | 162 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝‘𝑟))))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟)))))) |
164 | 154, 163 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟)))))) |
165 | 153, 164 | oveq12d 7293 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))) + ((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟))))) + (((mulGrp‘𝑅) Σg
(𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝‘𝑟))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝‘𝑟))))))) |
166 | 89, 138, 165 | 3eqtr4rd 2789 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))) + ((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑋(𝑝‘𝑟))))) |
167 | 166 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) →
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))) + ((mulGrp‘𝑅) Σg
(𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑋(𝑝‘𝑟)))))) |
168 | 56, 167 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) →
(((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟))))) +
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑋(𝑝‘𝑟)))))) |
169 | 168 | mpteq2dva 5174 |
. . . . 5
⊢ (𝜑 → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
(((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟))))) +
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑋(𝑝‘𝑟))))))) |
170 | 9, 169 | eqtrid 2790 |
. . . 4
⊢ (𝜑 → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑋(𝑝‘𝑟))))))) |
171 | 170 | oveq2d 7291 |
. . 3
⊢ (𝜑 → (𝑅 Σg ((𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))))))) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑋(𝑝‘𝑟)))))))) |
172 | | ringcmn 19820 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
173 | 10, 11, 172 | 3syl 18 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ CMnd) |
174 | 38, 22 | symgbasfi 18986 |
. . . . 5
⊢ (𝑁 ∈ Fin →
(Base‘(SymGrp‘𝑁)) ∈ Fin) |
175 | 19, 174 | syl 17 |
. . . 4
⊢ (𝜑 →
(Base‘(SymGrp‘𝑁)) ∈ Fin) |
176 | 24, 54 | ringcl 19800 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧
(((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟))))) ∈ (Base‘𝑅)) |
177 | 13, 28, 44, 176 | syl3anc 1370 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) →
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟))))) ∈ (Base‘𝑅)) |
178 | 24, 54 | ringcl 19800 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧
(((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))) ∈ (Base‘𝑅)) |
179 | 13, 28, 52, 178 | syl3anc 1370 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) →
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))) ∈ (Base‘𝑅)) |
180 | 24, 53, 173, 175, 177, 179, 3, 6 | gsummptfidmadd2 19527 |
. . 3
⊢ (𝜑 → (𝑅 Σg ((𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))))))) = ((𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟))))))) + (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))))))) |
181 | 171, 180 | eqtr3d 2780 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑋(𝑝‘𝑟))))))) = ((𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟))))))) + (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))))))) |
182 | | mdetrlin.d |
. . . 4
⊢ 𝐷 = (𝑁 maDet 𝑅) |
183 | | eqid 2738 |
. . . 4
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
184 | | eqid 2738 |
. . . 4
⊢
(pmSgn‘𝑁) =
(pmSgn‘𝑁) |
185 | 182, 15, 16, 22, 183, 184, 54, 23 | mdetleib2 21737 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝐷‘𝑋) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑋(𝑝‘𝑟)))))))) |
186 | 10, 79, 185 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝐷‘𝑋) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑋(𝑝‘𝑟)))))))) |
187 | 182, 15, 16, 22, 183, 184, 54, 23 | mdetleib2 21737 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∈ 𝐵) → (𝐷‘𝑌) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))))))) |
188 | 10, 14, 187 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐷‘𝑌) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟)))))))) |
189 | 182, 15, 16, 22, 183, 184, 54, 23 | mdetleib2 21737 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑍 ∈ 𝐵) → (𝐷‘𝑍) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))))))) |
190 | 10, 45, 189 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐷‘𝑍) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟)))))))) |
191 | 188, 190 | oveq12d 7293 |
. 2
⊢ (𝜑 → ((𝐷‘𝑌) + (𝐷‘𝑍)) = ((𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑌(𝑝‘𝑟))))))) + (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑍(𝑝‘𝑟))))))))) |
192 | 181, 186,
191 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (𝐷‘𝑋) = ((𝐷‘𝑌) + (𝐷‘𝑍))) |