MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetrlin Structured version   Visualization version   GIF version

Theorem mdetrlin 21751
Description: The determinant function is additive for each row: The matrices X, Y, Z are identical except for the I's row, and the I's row of the matrix X is the componentwise sum of the I's row of the matrices Y and Z. In this case the determinant of X is the sum of the determinants of Y and Z. (Contributed by SO, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mdetrlin.d 𝐷 = (𝑁 maDet 𝑅)
mdetrlin.a 𝐴 = (𝑁 Mat 𝑅)
mdetrlin.b 𝐵 = (Base‘𝐴)
mdetrlin.p + = (+g𝑅)
mdetrlin.r (𝜑𝑅 ∈ CRing)
mdetrlin.x (𝜑𝑋𝐵)
mdetrlin.y (𝜑𝑌𝐵)
mdetrlin.z (𝜑𝑍𝐵)
mdetrlin.i (𝜑𝐼𝑁)
mdetrlin.eq (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁))))
mdetrlin.ne1 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
mdetrlin.ne2 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
Assertion
Ref Expression
mdetrlin (𝜑 → (𝐷𝑋) = ((𝐷𝑌) + (𝐷𝑍)))

Proof of Theorem mdetrlin
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6787 . . . . . 6 (Base‘(SymGrp‘𝑁)) ∈ V
2 ovex 7308 . . . . . . 7 ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) ∈ V
3 eqid 2738 . . . . . . 7 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))
42, 3fnmpti 6576 . . . . . 6 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁))
5 ovex 7308 . . . . . . 7 ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ V
6 eqid 2738 . . . . . . 7 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
75, 6fnmpti 6576 . . . . . 6 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁))
8 ofmpteq 7555 . . . . . 6 (((Base‘(SymGrp‘𝑁)) ∈ V ∧ (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁)) ∧ (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) Fn (Base‘(SymGrp‘𝑁))) → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
91, 4, 7, 8mp3an 1460 . . . . 5 ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
10 mdetrlin.r . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
11 crngring 19795 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
1312adantr 481 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
14 mdetrlin.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
15 mdetrlin.a . . . . . . . . . . . . . 14 𝐴 = (𝑁 Mat 𝑅)
16 mdetrlin.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐴)
1715, 16matrcl 21559 . . . . . . . . . . . . 13 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1814, 17syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1918simpld 495 . . . . . . . . . . 11 (𝜑𝑁 ∈ Fin)
20 zrhpsgnmhm 20789 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2112, 19, 20syl2anc 584 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
22 eqid 2738 . . . . . . . . . . 11 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
23 eqid 2738 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
24 eqid 2738 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
2523, 24mgpbas 19726 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2622, 25mhmf 18435 . . . . . . . . . 10 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅))
2721, 26syl 17 . . . . . . . . 9 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅))
2827ffvelrnda 6961 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅))
2923crngmgp 19791 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
3010, 29syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
3130adantr 481 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ CMnd)
3219adantr 481 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 ∈ Fin)
3315, 24, 16matbas2i 21571 . . . . . . . . . . . . 13 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
34 elmapi 8637 . . . . . . . . . . . . 13 (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
3514, 33, 343syl 18 . . . . . . . . . . . 12 (𝜑𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
3635ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
37 simpr 485 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑟𝑁)
38 eqid 2738 . . . . . . . . . . . . . 14 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3938, 22symgbasf 18983 . . . . . . . . . . . . 13 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) → 𝑝:𝑁𝑁)
4039adantl 482 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁𝑁)
4140ffvelrnda 6961 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑝𝑟) ∈ 𝑁)
4236, 37, 41fovrnd 7444 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑌(𝑝𝑟)) ∈ (Base‘𝑅))
4342ralrimiva 3103 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟𝑁 (𝑟𝑌(𝑝𝑟)) ∈ (Base‘𝑅))
4425, 31, 32, 43gsummptcl 19568 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅))
45 mdetrlin.z . . . . . . . . . . . . 13 (𝜑𝑍𝐵)
4615, 24, 16matbas2i 21571 . . . . . . . . . . . . 13 (𝑍𝐵𝑍 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
47 elmapi 8637 . . . . . . . . . . . . 13 (𝑍 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
4845, 46, 473syl 18 . . . . . . . . . . . 12 (𝜑𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
4948ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
5049, 37, 41fovrnd 7444 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑍(𝑝𝑟)) ∈ (Base‘𝑅))
5150ralrimiva 3103 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟𝑁 (𝑟𝑍(𝑝𝑟)) ∈ (Base‘𝑅))
5225, 31, 32, 51gsummptcl 19568 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅))
53 mdetrlin.p . . . . . . . . 9 + = (+g𝑅)
54 eqid 2738 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
5524, 53, 54ringdi 19805 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
5613, 28, 44, 52, 55syl13anc 1371 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
57 cmnmnd 19402 . . . . . . . . . . . . 13 ((mulGrp‘𝑅) ∈ CMnd → (mulGrp‘𝑅) ∈ Mnd)
5831, 57syl 17 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ Mnd)
59 mdetrlin.i . . . . . . . . . . . . 13 (𝜑𝐼𝑁)
6059adantr 481 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼𝑁)
6135adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑌:(𝑁 × 𝑁)⟶(Base‘𝑅))
6240, 60ffvelrnd 6962 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑝𝐼) ∈ 𝑁)
6361, 60, 62fovrnd 7444 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑌(𝑝𝐼)) ∈ (Base‘𝑅))
64 id 22 . . . . . . . . . . . . . 14 (𝑟 = 𝐼𝑟 = 𝐼)
65 fveq2 6774 . . . . . . . . . . . . . 14 (𝑟 = 𝐼 → (𝑝𝑟) = (𝑝𝐼))
6664, 65oveq12d 7293 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑟𝑌(𝑝𝑟)) = (𝐼𝑌(𝑝𝐼)))
6725, 66gsumsn 19555 . . . . . . . . . . . 12 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑌(𝑝𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) = (𝐼𝑌(𝑝𝐼)))
6858, 60, 63, 67syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) = (𝐼𝑌(𝑝𝐼)))
6968, 63eqeltrd 2839 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅))
7048adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑍:(𝑁 × 𝑁)⟶(Base‘𝑅))
7170, 60, 62fovrnd 7444 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑍(𝑝𝐼)) ∈ (Base‘𝑅))
7264, 65oveq12d 7293 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑟𝑍(𝑝𝑟)) = (𝐼𝑍(𝑝𝐼)))
7325, 72gsumsn 19555 . . . . . . . . . . . 12 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑍(𝑝𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
7458, 60, 71, 73syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
7574, 71eqeltrd 2839 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅))
76 difssd 4067 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ⊆ 𝑁)
7732, 76ssfid 9042 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ∈ Fin)
78 eldifi 4061 . . . . . . . . . . . . 13 (𝑟 ∈ (𝑁 ∖ {𝐼}) → 𝑟𝑁)
79 mdetrlin.x . . . . . . . . . . . . . . . 16 (𝜑𝑋𝐵)
8015, 24, 16matbas2i 21571 . . . . . . . . . . . . . . . 16 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
81 elmapi 8637 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
8279, 80, 813syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
8382ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
8483, 37, 41fovrnd 7444 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑋(𝑝𝑟)) ∈ (Base‘𝑅))
8578, 84sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑋(𝑝𝑟)) ∈ (Base‘𝑅))
8685ralrimiva 3103 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟 ∈ (𝑁 ∖ {𝐼})(𝑟𝑋(𝑝𝑟)) ∈ (Base‘𝑅))
8725, 31, 77, 86gsummptcl 19568 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))) ∈ (Base‘𝑅))
8824, 53, 54ringdir 19806 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))) ∈ (Base‘𝑅))) → ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) + (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))))
8913, 69, 75, 87, 88syl13anc 1371 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) + (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))))
9023, 54mgpplusg 19724 . . . . . . . . . . 11 (.r𝑅) = (+g‘(mulGrp‘𝑅))
91 disjdif 4405 . . . . . . . . . . . 12 ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅
9291a1i 11 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅)
9359snssd 4742 . . . . . . . . . . . . . 14 (𝜑 → {𝐼} ⊆ 𝑁)
9493adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → {𝐼} ⊆ 𝑁)
95 undif 4415 . . . . . . . . . . . . 13 ({𝐼} ⊆ 𝑁 ↔ ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
9694, 95sylib 217 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
9796eqcomd 2744 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 = ({𝐼} ∪ (𝑁 ∖ {𝐼})))
9825, 90, 31, 32, 84, 92, 97gsummptfidmsplit 19531 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
99 mdetrlin.eq . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁))))
10099adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁))))
101100oveqd 7292 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)))
102 xpss1 5608 . . . . . . . . . . . . . . . . . . 19 ({𝐼} ⊆ 𝑁 → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
10394, 102syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
10461, 103fssresd 6641 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 ↾ ({𝐼} × 𝑁)):({𝐼} × 𝑁)⟶(Base‘𝑅))
105104ffnd 6601 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁))
10670, 103fssresd 6641 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑍 ↾ ({𝐼} × 𝑁)):({𝐼} × 𝑁)⟶(Base‘𝑅))
107106ffnd 6601 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁))
108 snex 5354 . . . . . . . . . . . . . . . . 17 {𝐼} ∈ V
109 xpexg 7600 . . . . . . . . . . . . . . . . 17 (({𝐼} ∈ V ∧ 𝑁 ∈ Fin) → ({𝐼} × 𝑁) ∈ V)
110108, 32, 109sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ∈ V)
111 snidg 4595 . . . . . . . . . . . . . . . . . 18 (𝐼𝑁𝐼 ∈ {𝐼})
11260, 111syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼 ∈ {𝐼})
113112, 62opelxpd 5627 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁))
114 fnfvof 7550 . . . . . . . . . . . . . . . 16 ((((𝑌 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁) ∧ (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁)) ∧ (({𝐼} × 𝑁) ∈ V ∧ ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁))) → (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) + ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
115105, 107, 110, 113, 114syl22anc 836 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) + ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
116 df-ov 7278 . . . . . . . . . . . . . . 15 (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = (((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩)
117 df-ov 7278 . . . . . . . . . . . . . . . 16 (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)
118 df-ov 7278 . . . . . . . . . . . . . . . 16 (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)
119117, 118oveq12i 7287 . . . . . . . . . . . . . . 15 ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = (((𝑌 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) + ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩))
120115, 116, 1193eqtr4g 2803 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
121101, 120eqtrd 2778 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
122 ovres 7438 . . . . . . . . . . . . . 14 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
123112, 62, 122syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
124 ovres 7438 . . . . . . . . . . . . . . 15 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑌(𝑝𝐼)))
125112, 62, 124syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑌(𝑝𝐼)))
126 ovres 7438 . . . . . . . . . . . . . . 15 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
127112, 62, 126syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
128125, 127oveq12d 7293 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝐼(𝑌 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) + (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = ((𝐼𝑌(𝑝𝐼)) + (𝐼𝑍(𝑝𝐼))))
129121, 123, 1283eqtr3d 2786 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) = ((𝐼𝑌(𝑝𝐼)) + (𝐼𝑍(𝑝𝐼))))
13082adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
131130, 60, 62fovrnd 7444 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) ∈ (Base‘𝑅))
13264, 65oveq12d 7293 . . . . . . . . . . . . . 14 (𝑟 = 𝐼 → (𝑟𝑋(𝑝𝑟)) = (𝐼𝑋(𝑝𝐼)))
13325, 132gsumsn 19555 . . . . . . . . . . . . 13 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑋(𝑝𝐼)) ∈ (Base‘𝑅)) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
13458, 60, 131, 133syl3anc 1370 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
13568, 74oveq12d 7293 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝐼𝑌(𝑝𝐼)) + (𝐼𝑍(𝑝𝐼))))
136129, 134, 1353eqtr4d 2788 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))))
137136oveq1d 7290 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
13898, 137eqtrd 2778 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
13925, 90, 31, 32, 42, 92, 97gsummptfidmsplit 19531 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟))))))
140 mdetrlin.ne1 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
141140ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
142141oveqd 7292 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
143 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → 𝑟 ∈ (𝑁 ∖ {𝐼}))
14478, 41sylan2 593 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑝𝑟) ∈ 𝑁)
145 ovres 7438 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
146143, 144, 145syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
147 ovres 7438 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑌(𝑝𝑟)))
148143, 144, 147syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑌(𝑝𝑟)))
149142, 146, 1483eqtr3rd 2787 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑌(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
150149mpteq2dva 5174 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟))) = (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))
151150oveq2d 7291 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟)))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))
152151oveq2d 7291 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑌(𝑝𝑟))))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
153139, 152eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
15425, 90, 31, 32, 50, 92, 97gsummptfidmsplit 19531 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
155 mdetrlin.ne2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
156155ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
157156oveqd 7292 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
158 ovres 7438 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
159143, 144, 158syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
160157, 146, 1593eqtr3rd 2787 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑍(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
161160mpteq2dva 5174 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))) = (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))
162161oveq2d 7291 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))
163162oveq2d 7291 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
164154, 163eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
165153, 164oveq12d 7293 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑌(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) + (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))))))
16689, 138, 1653eqtr4rd 2789 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))
167166oveq2d 7291 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) + ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))
16856, 167eqtr3d 2780 . . . . . 6 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))
169168mpteq2dva 5174 . . . . 5 (𝜑 → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) + ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))))
1709, 169eqtrid 2790 . . . 4 (𝜑 → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))))
171170oveq2d 7291 . . 3 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
172 ringcmn 19820 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
17310, 11, 1723syl 18 . . . 4 (𝜑𝑅 ∈ CMnd)
17438, 22symgbasfi 18986 . . . . 5 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
17519, 174syl 17 . . . 4 (𝜑 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
17624, 54ringcl 19800 . . . . 5 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) ∈ (Base‘𝑅))
17713, 28, 44, 176syl3anc 1370 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))) ∈ (Base‘𝑅))
17824, 54ringcl 19800 . . . . 5 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ (Base‘𝑅))
17913, 28, 52, 178syl3anc 1370 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ (Base‘𝑅))
18024, 53, 173, 175, 177, 179, 3, 6gsummptfidmadd2 19527 . . 3 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟)))))) ∘f + (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))) + (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
181171, 180eqtr3d 2780 . 2 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))) + (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
182 mdetrlin.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
183 eqid 2738 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
184 eqid 2738 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
185182, 15, 16, 22, 183, 184, 54, 23mdetleib2 21737 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
18610, 79, 185syl2anc 584 . 2 (𝜑 → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
187182, 15, 16, 22, 183, 184, 54, 23mdetleib2 21737 . . . 4 ((𝑅 ∈ CRing ∧ 𝑌𝐵) → (𝐷𝑌) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))))
18810, 14, 187syl2anc 584 . . 3 (𝜑 → (𝐷𝑌) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))))
189182, 15, 16, 22, 183, 184, 54, 23mdetleib2 21737 . . . 4 ((𝑅 ∈ CRing ∧ 𝑍𝐵) → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
19010, 45, 189syl2anc 584 . . 3 (𝜑 → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
191188, 190oveq12d 7293 . 2 (𝜑 → ((𝐷𝑌) + (𝐷𝑍)) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑌(𝑝𝑟))))))) + (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
192181, 186, 1913eqtr4d 2788 1 (𝜑 → (𝐷𝑋) = ((𝐷𝑌) + (𝐷𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  cop 4567  cmpt 5157   × cxp 5587  cres 5591  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  m cmap 8615  Fincfn 8733  Basecbs 16912  +gcplusg 16962  .rcmulr 16963   Σg cgsu 17151  Mndcmnd 18385   MndHom cmhm 18428  SymGrpcsymg 18974  pmSgncpsgn 19097  CMndccmn 19386  mulGrpcmgp 19720  Ringcrg 19783  CRingccrg 19784  ℤRHomczrh 20701   Mat cmat 21554   maDet cmdat 21733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1507  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-reverse 14472  df-s2 14561  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-efmnd 18508  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-ghm 18832  df-gim 18875  df-cntz 18923  df-oppg 18950  df-symg 18975  df-pmtr 19050  df-psgn 19099  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-sra 20434  df-rgmod 20435  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-dsmm 20939  df-frlm 20954  df-mat 21555  df-mdet 21734
This theorem is referenced by:  mdetrlin2  21756  mdetuni0  21770  mdetmul  21772
  Copyright terms: Public domain W3C validator