MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetrsca Structured version   Visualization version   GIF version

Theorem mdetrsca 22630
Description: The determinant function is homogeneous for each row: If the matrices 𝑋 and 𝑍 are identical except for the 𝐼-th row, and the 𝐼-th row of the matrix 𝑋 is the componentwise product of the 𝐼-th row of the matrix 𝑍 and the scalar 𝑌, then the determinant of 𝑋 is the determinant of 𝑍 multiplied by 𝑌. (Contributed by SO, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mdetrsca.d 𝐷 = (𝑁 maDet 𝑅)
mdetrsca.a 𝐴 = (𝑁 Mat 𝑅)
mdetrsca.b 𝐵 = (Base‘𝐴)
mdetrsca.k 𝐾 = (Base‘𝑅)
mdetrsca.t · = (.r𝑅)
mdetrsca.r (𝜑𝑅 ∈ CRing)
mdetrsca.x (𝜑𝑋𝐵)
mdetrsca.y (𝜑𝑌𝐾)
mdetrsca.z (𝜑𝑍𝐵)
mdetrsca.i (𝜑𝐼𝑁)
mdetrsca.eq (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁))))
mdetrsca.ne (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
Assertion
Ref Expression
mdetrsca (𝜑 → (𝐷𝑋) = (𝑌 · (𝐷𝑍)))

Proof of Theorem mdetrsca
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetrsca.eq . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁))))
21oveqd 7465 . . . . . . . . . . . . 13 (𝜑 → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)))
32adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)))
4 mdetrsca.i . . . . . . . . . . . . . . 15 (𝜑𝐼𝑁)
54adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼𝑁)
6 snidg 4682 . . . . . . . . . . . . . 14 (𝐼𝑁𝐼 ∈ {𝐼})
75, 6syl 17 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼 ∈ {𝐼})
8 eqid 2740 . . . . . . . . . . . . . . . . 17 (SymGrp‘𝑁) = (SymGrp‘𝑁)
9 eqid 2740 . . . . . . . . . . . . . . . . 17 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
108, 9symgbasf1o 19416 . . . . . . . . . . . . . . . 16 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) → 𝑝:𝑁1-1-onto𝑁)
1110adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁1-1-onto𝑁)
12 f1of 6862 . . . . . . . . . . . . . . 15 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
1311, 12syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁𝑁)
1413, 5ffvelcdmd 7119 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑝𝐼) ∈ 𝑁)
15 ovres 7616 . . . . . . . . . . . . 13 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
167, 14, 15syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
177, 14opelxpd 5739 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁))
18 snfi 9109 . . . . . . . . . . . . . . . 16 {𝐼} ∈ Fin
19 mdetrsca.x . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋𝐵)
20 mdetrsca.a . . . . . . . . . . . . . . . . . . . 20 𝐴 = (𝑁 Mat 𝑅)
21 mdetrsca.b . . . . . . . . . . . . . . . . . . . 20 𝐵 = (Base‘𝐴)
2220, 21matrcl 22437 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2319, 22syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2423simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ Fin)
2524adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 ∈ Fin)
26 xpfi 9386 . . . . . . . . . . . . . . . 16 (({𝐼} ∈ Fin ∧ 𝑁 ∈ Fin) → ({𝐼} × 𝑁) ∈ Fin)
2718, 25, 26sylancr 586 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ∈ Fin)
28 mdetrsca.y . . . . . . . . . . . . . . . 16 (𝜑𝑌𝐾)
2928adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑌𝐾)
30 mdetrsca.z . . . . . . . . . . . . . . . . . . 19 (𝜑𝑍𝐵)
31 mdetrsca.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (Base‘𝑅)
3220, 31, 21matbas2i 22449 . . . . . . . . . . . . . . . . . . 19 (𝑍𝐵𝑍 ∈ (𝐾m (𝑁 × 𝑁)))
33 elmapi 8907 . . . . . . . . . . . . . . . . . . 19 (𝑍 ∈ (𝐾m (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐾)
3430, 32, 333syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍:(𝑁 × 𝑁)⟶𝐾)
3534adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑍:(𝑁 × 𝑁)⟶𝐾)
3635ffnd 6748 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑍 Fn (𝑁 × 𝑁))
375snssd 4834 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → {𝐼} ⊆ 𝑁)
38 xpss1 5719 . . . . . . . . . . . . . . . . 17 ({𝐼} ⊆ 𝑁 → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
3937, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
4036, 39fnssresd 6704 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁))
41 eqidd 2741 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁)) → ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) = ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩))
4227, 29, 40, 41ofc1 7741 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁)) → (((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (𝑌 · ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
4317, 42mpdan 686 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (𝑌 · ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
44 df-ov 7451 . . . . . . . . . . . . 13 (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = (((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩)
45 df-ov 7451 . . . . . . . . . . . . . 14 (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)
4645oveq2i 7459 . . . . . . . . . . . . 13 (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = (𝑌 · ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩))
4743, 44, 463eqtr4g 2805 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
483, 16, 473eqtr3d 2788 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) = (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
49 ovres 7616 . . . . . . . . . . . . 13 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
507, 14, 49syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
5150oveq2d 7464 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = (𝑌 · (𝐼𝑍(𝑝𝐼))))
5248, 51eqtrd 2780 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) = (𝑌 · (𝐼𝑍(𝑝𝐼))))
5352oveq1d 7463 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝑌 · (𝐼𝑍(𝑝𝐼))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
54 mdetrsca.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
5554crngringd 20273 . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
5655adantr 480 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
5735, 5, 14fovcdmd 7622 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑍(𝑝𝐼)) ∈ 𝐾)
58 eqid 2740 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
5958, 31mgpbas 20167 . . . . . . . . . . 11 𝐾 = (Base‘(mulGrp‘𝑅))
6058crngmgp 20268 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
6154, 60syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
6261adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ CMnd)
63 difssd 4160 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ⊆ 𝑁)
6425, 63ssfid 9329 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ∈ Fin)
65 eldifi 4154 . . . . . . . . . . . . 13 (𝑟 ∈ (𝑁 ∖ {𝐼}) → 𝑟𝑁)
6634ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐾)
67 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑟𝑁)
6813ffvelcdmda 7118 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑝𝑟) ∈ 𝑁)
6966, 67, 68fovcdmd 7622 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
7065, 69sylan2 592 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
7170ralrimiva 3152 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟 ∈ (𝑁 ∖ {𝐼})(𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
7259, 62, 64, 71gsummptcl 20009 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)
73 mdetrsca.t . . . . . . . . . . 11 · = (.r𝑅)
7431, 73ringass 20280 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑌𝐾 ∧ (𝐼𝑍(𝑝𝐼)) ∈ 𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)) → ((𝑌 · (𝐼𝑍(𝑝𝐼))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
7556, 29, 57, 72, 74syl13anc 1372 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝑌 · (𝐼𝑍(𝑝𝐼))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
7653, 75eqtrd 2780 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
7758, 73mgpplusg 20165 . . . . . . . . . 10 · = (+g‘(mulGrp‘𝑅))
7820, 31, 21matbas2i 22449 . . . . . . . . . . . . 13 (𝑋𝐵𝑋 ∈ (𝐾m (𝑁 × 𝑁)))
79 elmapi 8907 . . . . . . . . . . . . 13 (𝑋 ∈ (𝐾m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐾)
8019, 78, 793syl 18 . . . . . . . . . . . 12 (𝜑𝑋:(𝑁 × 𝑁)⟶𝐾)
8180ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐾)
8281, 67, 68fovcdmd 7622 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑋(𝑝𝑟)) ∈ 𝐾)
83 disjdif 4495 . . . . . . . . . . 11 ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅
8483a1i 11 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅)
85 undif 4505 . . . . . . . . . . . 12 ({𝐼} ⊆ 𝑁 ↔ ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
8637, 85sylib 218 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
8786eqcomd 2746 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 = ({𝐼} ∪ (𝑁 ∖ {𝐼})))
8859, 77, 62, 25, 82, 84, 87gsummptfidmsplit 19972 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
8962cmnmndd 19846 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ Mnd)
9080adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑋:(𝑁 × 𝑁)⟶𝐾)
9190, 5, 14fovcdmd 7622 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) ∈ 𝐾)
92 id 22 . . . . . . . . . . . . 13 (𝑟 = 𝐼𝑟 = 𝐼)
93 fveq2 6920 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑝𝑟) = (𝑝𝐼))
9492, 93oveq12d 7466 . . . . . . . . . . . 12 (𝑟 = 𝐼 → (𝑟𝑋(𝑝𝑟)) = (𝐼𝑋(𝑝𝐼)))
9559, 94gsumsn 19996 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑋(𝑝𝐼)) ∈ 𝐾) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
9689, 5, 91, 95syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
97 mdetrsca.ne . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
9897oveqd 7465 . . . . . . . . . . . . . 14 (𝜑 → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
9998ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
100 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → 𝑟 ∈ (𝑁 ∖ {𝐼}))
10165, 68sylan2 592 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑝𝑟) ∈ 𝑁)
102 ovres 7616 . . . . . . . . . . . . . 14 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
103100, 101, 102syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
104 ovres 7616 . . . . . . . . . . . . . 14 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
105100, 101, 104syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
10699, 103, 1053eqtr3d 2788 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑋(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
107106mpteq2dva 5266 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))) = (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))
108107oveq2d 7464 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))
10996, 108oveq12d 7466 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
11088, 109eqtrd 2780 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
11159, 77, 62, 25, 69, 84, 87gsummptfidmsplit 19972 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
11292, 93oveq12d 7466 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑟𝑍(𝑝𝑟)) = (𝐼𝑍(𝑝𝐼)))
11359, 112gsumsn 19996 . . . . . . . . . . . 12 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑍(𝑝𝐼)) ∈ 𝐾) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
11489, 5, 57, 113syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
115114oveq1d 7463 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
116111, 115eqtrd 2780 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
117116oveq2d 7464 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
11876, 110, 1173eqtr4d 2790 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
119118oveq2d 7464 . . . . . 6 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
12054adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ CRing)
121 zrhpsgnmhm 21625 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
12255, 24, 121syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
1239, 59mhmf 18824 . . . . . . . . . . 11 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
124122, 123syl 17 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
125124ffvelcdmda 7118 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾)
12631, 73crngcom 20278 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾𝑌𝐾) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) = (𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)))
127120, 125, 29, 126syl3anc 1371 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) = (𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)))
128127oveq1d 7463 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
12969ralrimiva 3152 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟𝑁 (𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
13059, 62, 25, 129gsummptcl 20009 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)
13131, 73ringass 20280 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾𝑌𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
13256, 125, 29, 130, 131syl13anc 1372 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
13331, 73ringass 20280 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑌𝐾 ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)) → ((𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
13456, 29, 125, 130, 133syl13anc 1372 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
135128, 132, 1343eqtr3d 2788 . . . . . 6 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
136119, 135eqtrd 2780 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
137136mpteq2dva 5266 . . . 4 (𝜑 → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
138137oveq2d 7464 . . 3 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
139 eqid 2740 . . . 4 (0g𝑅) = (0g𝑅)
1408, 9symgbasfi 19420 . . . . 5 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
14124, 140syl 17 . . . 4 (𝜑 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
14231, 73, 56, 125, 130ringcld 20286 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ 𝐾)
143 eqid 2740 . . . . 5 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
144 ovexd 7483 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ V)
145 fvexd 6935 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
146143, 141, 144, 145fsuppmptdm 9445 . . . 4 (𝜑 → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) finSupp (0g𝑅))
14731, 139, 73, 55, 141, 28, 142, 146gsummulc2 20340 . . 3 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))) = (𝑌 · (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
148138, 147eqtrd 2780 . 2 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))) = (𝑌 · (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
149 mdetrsca.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
150 eqid 2740 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
151 eqid 2740 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
152149, 20, 21, 9, 150, 151, 73, 58mdetleib2 22615 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
15354, 19, 152syl2anc 583 . 2 (𝜑 → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
154149, 20, 21, 9, 150, 151, 73, 58mdetleib2 22615 . . . 4 ((𝑅 ∈ CRing ∧ 𝑍𝐵) → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
15554, 30, 154syl2anc 583 . . 3 (𝜑 → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
156155oveq2d 7464 . 2 (𝜑 → (𝑌 · (𝐷𝑍)) = (𝑌 · (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
157148, 153, 1563eqtr4d 2790 1 (𝜑 → (𝐷𝑋) = (𝑌 · (𝐷𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  cop 4654  cmpt 5249   × cxp 5698  cres 5702  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  Fincfn 9003  Basecbs 17258  .rcmulr 17312  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772   MndHom cmhm 18816  SymGrpcsymg 19410  pmSgncpsgn 19531  CMndccmn 19822  mulGrpcmgp 20161  Ringcrg 20260  CRingccrg 20261  ℤRHomczrh 21533   Mat cmat 22432   maDet cmdat 22611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-cntz 19357  df-oppg 19386  df-symg 19411  df-pmtr 19484  df-psgn 19533  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-dsmm 21775  df-frlm 21790  df-mat 22433  df-mdet 22612
This theorem is referenced by:  mdetrsca2  22631  mdetuni0  22648  mdetmul  22650  smadiadetg  22700
  Copyright terms: Public domain W3C validator