MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetrsca Structured version   Visualization version   GIF version

Theorem mdetrsca 22624
Description: The determinant function is homogeneous for each row: If the matrices 𝑋 and 𝑍 are identical except for the 𝐼-th row, and the 𝐼-th row of the matrix 𝑋 is the componentwise product of the 𝐼-th row of the matrix 𝑍 and the scalar 𝑌, then the determinant of 𝑋 is the determinant of 𝑍 multiplied by 𝑌. (Contributed by SO, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mdetrsca.d 𝐷 = (𝑁 maDet 𝑅)
mdetrsca.a 𝐴 = (𝑁 Mat 𝑅)
mdetrsca.b 𝐵 = (Base‘𝐴)
mdetrsca.k 𝐾 = (Base‘𝑅)
mdetrsca.t · = (.r𝑅)
mdetrsca.r (𝜑𝑅 ∈ CRing)
mdetrsca.x (𝜑𝑋𝐵)
mdetrsca.y (𝜑𝑌𝐾)
mdetrsca.z (𝜑𝑍𝐵)
mdetrsca.i (𝜑𝐼𝑁)
mdetrsca.eq (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁))))
mdetrsca.ne (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
Assertion
Ref Expression
mdetrsca (𝜑 → (𝐷𝑋) = (𝑌 · (𝐷𝑍)))

Proof of Theorem mdetrsca
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetrsca.eq . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁))))
21oveqd 7447 . . . . . . . . . . . . 13 (𝜑 → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)))
32adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)))
4 mdetrsca.i . . . . . . . . . . . . . . 15 (𝜑𝐼𝑁)
54adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼𝑁)
6 snidg 4664 . . . . . . . . . . . . . 14 (𝐼𝑁𝐼 ∈ {𝐼})
75, 6syl 17 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼 ∈ {𝐼})
8 eqid 2734 . . . . . . . . . . . . . . . . 17 (SymGrp‘𝑁) = (SymGrp‘𝑁)
9 eqid 2734 . . . . . . . . . . . . . . . . 17 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
108, 9symgbasf1o 19406 . . . . . . . . . . . . . . . 16 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) → 𝑝:𝑁1-1-onto𝑁)
1110adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁1-1-onto𝑁)
12 f1of 6848 . . . . . . . . . . . . . . 15 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
1311, 12syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁𝑁)
1413, 5ffvelcdmd 7104 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑝𝐼) ∈ 𝑁)
15 ovres 7598 . . . . . . . . . . . . 13 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
167, 14, 15syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
177, 14opelxpd 5727 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁))
18 snfi 9081 . . . . . . . . . . . . . . . 16 {𝐼} ∈ Fin
19 mdetrsca.x . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋𝐵)
20 mdetrsca.a . . . . . . . . . . . . . . . . . . . 20 𝐴 = (𝑁 Mat 𝑅)
21 mdetrsca.b . . . . . . . . . . . . . . . . . . . 20 𝐵 = (Base‘𝐴)
2220, 21matrcl 22431 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2319, 22syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2423simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ Fin)
2524adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 ∈ Fin)
26 xpfi 9355 . . . . . . . . . . . . . . . 16 (({𝐼} ∈ Fin ∧ 𝑁 ∈ Fin) → ({𝐼} × 𝑁) ∈ Fin)
2718, 25, 26sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ∈ Fin)
28 mdetrsca.y . . . . . . . . . . . . . . . 16 (𝜑𝑌𝐾)
2928adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑌𝐾)
30 mdetrsca.z . . . . . . . . . . . . . . . . . . 19 (𝜑𝑍𝐵)
31 mdetrsca.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (Base‘𝑅)
3220, 31, 21matbas2i 22443 . . . . . . . . . . . . . . . . . . 19 (𝑍𝐵𝑍 ∈ (𝐾m (𝑁 × 𝑁)))
33 elmapi 8887 . . . . . . . . . . . . . . . . . . 19 (𝑍 ∈ (𝐾m (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐾)
3430, 32, 333syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍:(𝑁 × 𝑁)⟶𝐾)
3534adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑍:(𝑁 × 𝑁)⟶𝐾)
3635ffnd 6737 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑍 Fn (𝑁 × 𝑁))
375snssd 4813 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → {𝐼} ⊆ 𝑁)
38 xpss1 5707 . . . . . . . . . . . . . . . . 17 ({𝐼} ⊆ 𝑁 → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
3937, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
4036, 39fnssresd 6692 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁))
41 eqidd 2735 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁)) → ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) = ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩))
4227, 29, 40, 41ofc1 7724 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁)) → (((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (𝑌 · ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
4317, 42mpdan 687 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (𝑌 · ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
44 df-ov 7433 . . . . . . . . . . . . 13 (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = (((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩)
45 df-ov 7433 . . . . . . . . . . . . . 14 (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)
4645oveq2i 7441 . . . . . . . . . . . . 13 (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = (𝑌 · ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩))
4743, 44, 463eqtr4g 2799 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
483, 16, 473eqtr3d 2782 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) = (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
49 ovres 7598 . . . . . . . . . . . . 13 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
507, 14, 49syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
5150oveq2d 7446 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = (𝑌 · (𝐼𝑍(𝑝𝐼))))
5248, 51eqtrd 2774 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) = (𝑌 · (𝐼𝑍(𝑝𝐼))))
5352oveq1d 7445 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝑌 · (𝐼𝑍(𝑝𝐼))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
54 mdetrsca.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
5554crngringd 20263 . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
5655adantr 480 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
5735, 5, 14fovcdmd 7604 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑍(𝑝𝐼)) ∈ 𝐾)
58 eqid 2734 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
5958, 31mgpbas 20157 . . . . . . . . . . 11 𝐾 = (Base‘(mulGrp‘𝑅))
6058crngmgp 20258 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
6154, 60syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
6261adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ CMnd)
63 difssd 4146 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ⊆ 𝑁)
6425, 63ssfid 9298 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ∈ Fin)
65 eldifi 4140 . . . . . . . . . . . . 13 (𝑟 ∈ (𝑁 ∖ {𝐼}) → 𝑟𝑁)
6634ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐾)
67 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑟𝑁)
6813ffvelcdmda 7103 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑝𝑟) ∈ 𝑁)
6966, 67, 68fovcdmd 7604 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
7065, 69sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
7170ralrimiva 3143 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟 ∈ (𝑁 ∖ {𝐼})(𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
7259, 62, 64, 71gsummptcl 19999 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)
73 mdetrsca.t . . . . . . . . . . 11 · = (.r𝑅)
7431, 73ringass 20270 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑌𝐾 ∧ (𝐼𝑍(𝑝𝐼)) ∈ 𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)) → ((𝑌 · (𝐼𝑍(𝑝𝐼))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
7556, 29, 57, 72, 74syl13anc 1371 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝑌 · (𝐼𝑍(𝑝𝐼))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
7653, 75eqtrd 2774 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
7758, 73mgpplusg 20155 . . . . . . . . . 10 · = (+g‘(mulGrp‘𝑅))
7820, 31, 21matbas2i 22443 . . . . . . . . . . . . 13 (𝑋𝐵𝑋 ∈ (𝐾m (𝑁 × 𝑁)))
79 elmapi 8887 . . . . . . . . . . . . 13 (𝑋 ∈ (𝐾m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐾)
8019, 78, 793syl 18 . . . . . . . . . . . 12 (𝜑𝑋:(𝑁 × 𝑁)⟶𝐾)
8180ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐾)
8281, 67, 68fovcdmd 7604 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑋(𝑝𝑟)) ∈ 𝐾)
83 disjdif 4477 . . . . . . . . . . 11 ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅
8483a1i 11 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅)
85 undif 4487 . . . . . . . . . . . 12 ({𝐼} ⊆ 𝑁 ↔ ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
8637, 85sylib 218 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
8786eqcomd 2740 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 = ({𝐼} ∪ (𝑁 ∖ {𝐼})))
8859, 77, 62, 25, 82, 84, 87gsummptfidmsplit 19962 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
8962cmnmndd 19836 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ Mnd)
9080adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑋:(𝑁 × 𝑁)⟶𝐾)
9190, 5, 14fovcdmd 7604 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) ∈ 𝐾)
92 id 22 . . . . . . . . . . . . 13 (𝑟 = 𝐼𝑟 = 𝐼)
93 fveq2 6906 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑝𝑟) = (𝑝𝐼))
9492, 93oveq12d 7448 . . . . . . . . . . . 12 (𝑟 = 𝐼 → (𝑟𝑋(𝑝𝑟)) = (𝐼𝑋(𝑝𝐼)))
9559, 94gsumsn 19986 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑋(𝑝𝐼)) ∈ 𝐾) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
9689, 5, 91, 95syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
97 mdetrsca.ne . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
9897oveqd 7447 . . . . . . . . . . . . . 14 (𝜑 → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
9998ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
100 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → 𝑟 ∈ (𝑁 ∖ {𝐼}))
10165, 68sylan2 593 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑝𝑟) ∈ 𝑁)
102 ovres 7598 . . . . . . . . . . . . . 14 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
103100, 101, 102syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
104 ovres 7598 . . . . . . . . . . . . . 14 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
105100, 101, 104syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
10699, 103, 1053eqtr3d 2782 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑋(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
107106mpteq2dva 5247 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))) = (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))
108107oveq2d 7446 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))
10996, 108oveq12d 7448 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
11088, 109eqtrd 2774 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
11159, 77, 62, 25, 69, 84, 87gsummptfidmsplit 19962 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
11292, 93oveq12d 7448 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑟𝑍(𝑝𝑟)) = (𝐼𝑍(𝑝𝐼)))
11359, 112gsumsn 19986 . . . . . . . . . . . 12 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑍(𝑝𝐼)) ∈ 𝐾) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
11489, 5, 57, 113syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
115114oveq1d 7445 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
116111, 115eqtrd 2774 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
117116oveq2d 7446 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
11876, 110, 1173eqtr4d 2784 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
119118oveq2d 7446 . . . . . 6 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
12054adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ CRing)
121 zrhpsgnmhm 21619 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
12255, 24, 121syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
1239, 59mhmf 18814 . . . . . . . . . . 11 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
124122, 123syl 17 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
125124ffvelcdmda 7103 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾)
12631, 73crngcom 20268 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾𝑌𝐾) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) = (𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)))
127120, 125, 29, 126syl3anc 1370 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) = (𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)))
128127oveq1d 7445 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
12969ralrimiva 3143 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟𝑁 (𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
13059, 62, 25, 129gsummptcl 19999 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)
13131, 73ringass 20270 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾𝑌𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
13256, 125, 29, 130, 131syl13anc 1371 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
13331, 73ringass 20270 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑌𝐾 ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)) → ((𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
13456, 29, 125, 130, 133syl13anc 1371 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
135128, 132, 1343eqtr3d 2782 . . . . . 6 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
136119, 135eqtrd 2774 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
137136mpteq2dva 5247 . . . 4 (𝜑 → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
138137oveq2d 7446 . . 3 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
139 eqid 2734 . . . 4 (0g𝑅) = (0g𝑅)
1408, 9symgbasfi 19410 . . . . 5 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
14124, 140syl 17 . . . 4 (𝜑 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
14231, 73, 56, 125, 130ringcld 20276 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ 𝐾)
143 eqid 2734 . . . . 5 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
144 ovexd 7465 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ V)
145 fvexd 6921 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
146143, 141, 144, 145fsuppmptdm 9413 . . . 4 (𝜑 → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) finSupp (0g𝑅))
14731, 139, 73, 55, 141, 28, 142, 146gsummulc2 20330 . . 3 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))) = (𝑌 · (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
148138, 147eqtrd 2774 . 2 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))) = (𝑌 · (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
149 mdetrsca.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
150 eqid 2734 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
151 eqid 2734 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
152149, 20, 21, 9, 150, 151, 73, 58mdetleib2 22609 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
15354, 19, 152syl2anc 584 . 2 (𝜑 → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
154149, 20, 21, 9, 150, 151, 73, 58mdetleib2 22609 . . . 4 ((𝑅 ∈ CRing ∧ 𝑍𝐵) → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
15554, 30, 154syl2anc 584 . . 3 (𝜑 → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
156155oveq2d 7446 . 2 (𝜑 → (𝑌 · (𝐷𝑍)) = (𝑌 · (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
157148, 153, 1563eqtr4d 2784 1 (𝜑 → (𝐷𝑋) = (𝑌 · (𝐷𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  Vcvv 3477  cdif 3959  cun 3960  cin 3961  wss 3962  c0 4338  {csn 4630  cop 4636  cmpt 5230   × cxp 5686  cres 5690  ccom 5692  wf 6558  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  f cof 7694  m cmap 8864  Fincfn 8983  Basecbs 17244  .rcmulr 17298  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18759   MndHom cmhm 18806  SymGrpcsymg 19400  pmSgncpsgn 19521  CMndccmn 19812  mulGrpcmgp 20151  Ringcrg 20250  CRingccrg 20251  ℤRHomczrh 21527   Mat cmat 22426   maDet cmdat 22605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1508  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-word 14549  df-lsw 14597  df-concat 14605  df-s1 14630  df-substr 14675  df-pfx 14705  df-splice 14784  df-reverse 14793  df-s2 14883  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-efmnd 18894  df-grp 18966  df-minusg 18967  df-mulg 19098  df-subg 19153  df-ghm 19243  df-gim 19289  df-cntz 19347  df-oppg 19376  df-symg 19401  df-pmtr 19474  df-psgn 19523  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-dvr 20417  df-rhm 20488  df-subrng 20562  df-subrg 20586  df-drng 20747  df-sra 21189  df-rgmod 21190  df-cnfld 21382  df-zring 21475  df-zrh 21531  df-dsmm 21769  df-frlm 21784  df-mat 22427  df-mdet 22606
This theorem is referenced by:  mdetrsca2  22625  mdetuni0  22642  mdetmul  22644  smadiadetg  22694
  Copyright terms: Public domain W3C validator