MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetrsca Structured version   Visualization version   GIF version

Theorem mdetrsca 22096
Description: The determinant function is homogeneous for each row: If the matrices 𝑋 and 𝑍 are identical except for the 𝐼-th row, and the 𝐼-th row of the matrix 𝑋 is the componentwise product of the 𝐼-th row of the matrix 𝑍 and the scalar 𝑌, then the determinant of 𝑋 is the determinant of 𝑍 multiplied by 𝑌. (Contributed by SO, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mdetrsca.d 𝐷 = (𝑁 maDet 𝑅)
mdetrsca.a 𝐴 = (𝑁 Mat 𝑅)
mdetrsca.b 𝐵 = (Base‘𝐴)
mdetrsca.k 𝐾 = (Base‘𝑅)
mdetrsca.t · = (.r𝑅)
mdetrsca.r (𝜑𝑅 ∈ CRing)
mdetrsca.x (𝜑𝑋𝐵)
mdetrsca.y (𝜑𝑌𝐾)
mdetrsca.z (𝜑𝑍𝐵)
mdetrsca.i (𝜑𝐼𝑁)
mdetrsca.eq (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁))))
mdetrsca.ne (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
Assertion
Ref Expression
mdetrsca (𝜑 → (𝐷𝑋) = (𝑌 · (𝐷𝑍)))

Proof of Theorem mdetrsca
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetrsca.eq . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁))))
21oveqd 7422 . . . . . . . . . . . . 13 (𝜑 → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)))
32adantr 481 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)))
4 mdetrsca.i . . . . . . . . . . . . . . 15 (𝜑𝐼𝑁)
54adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼𝑁)
6 snidg 4661 . . . . . . . . . . . . . 14 (𝐼𝑁𝐼 ∈ {𝐼})
75, 6syl 17 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼 ∈ {𝐼})
8 eqid 2732 . . . . . . . . . . . . . . . . 17 (SymGrp‘𝑁) = (SymGrp‘𝑁)
9 eqid 2732 . . . . . . . . . . . . . . . . 17 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
108, 9symgbasf1o 19236 . . . . . . . . . . . . . . . 16 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) → 𝑝:𝑁1-1-onto𝑁)
1110adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁1-1-onto𝑁)
12 f1of 6830 . . . . . . . . . . . . . . 15 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
1311, 12syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁𝑁)
1413, 5ffvelcdmd 7084 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑝𝐼) ∈ 𝑁)
15 ovres 7569 . . . . . . . . . . . . 13 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
167, 14, 15syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
177, 14opelxpd 5713 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁))
18 snfi 9040 . . . . . . . . . . . . . . . 16 {𝐼} ∈ Fin
19 mdetrsca.x . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋𝐵)
20 mdetrsca.a . . . . . . . . . . . . . . . . . . . 20 𝐴 = (𝑁 Mat 𝑅)
21 mdetrsca.b . . . . . . . . . . . . . . . . . . . 20 𝐵 = (Base‘𝐴)
2220, 21matrcl 21903 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2319, 22syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2423simpld 495 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ Fin)
2524adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 ∈ Fin)
26 xpfi 9313 . . . . . . . . . . . . . . . 16 (({𝐼} ∈ Fin ∧ 𝑁 ∈ Fin) → ({𝐼} × 𝑁) ∈ Fin)
2718, 25, 26sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ∈ Fin)
28 mdetrsca.y . . . . . . . . . . . . . . . 16 (𝜑𝑌𝐾)
2928adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑌𝐾)
30 mdetrsca.z . . . . . . . . . . . . . . . . . . 19 (𝜑𝑍𝐵)
31 mdetrsca.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (Base‘𝑅)
3220, 31, 21matbas2i 21915 . . . . . . . . . . . . . . . . . . 19 (𝑍𝐵𝑍 ∈ (𝐾m (𝑁 × 𝑁)))
33 elmapi 8839 . . . . . . . . . . . . . . . . . . 19 (𝑍 ∈ (𝐾m (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐾)
3430, 32, 333syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍:(𝑁 × 𝑁)⟶𝐾)
3534adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑍:(𝑁 × 𝑁)⟶𝐾)
3635ffnd 6715 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑍 Fn (𝑁 × 𝑁))
375snssd 4811 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → {𝐼} ⊆ 𝑁)
38 xpss1 5694 . . . . . . . . . . . . . . . . 17 ({𝐼} ⊆ 𝑁 → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
3937, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
4036, 39fnssresd 6671 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁))
41 eqidd 2733 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁)) → ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) = ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩))
4227, 29, 40, 41ofc1 7692 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁)) → (((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (𝑌 · ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
4317, 42mpdan 685 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (𝑌 · ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
44 df-ov 7408 . . . . . . . . . . . . 13 (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = (((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩)
45 df-ov 7408 . . . . . . . . . . . . . 14 (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)
4645oveq2i 7416 . . . . . . . . . . . . 13 (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = (𝑌 · ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩))
4743, 44, 463eqtr4g 2797 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
483, 16, 473eqtr3d 2780 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) = (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
49 ovres 7569 . . . . . . . . . . . . 13 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
507, 14, 49syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
5150oveq2d 7421 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = (𝑌 · (𝐼𝑍(𝑝𝐼))))
5248, 51eqtrd 2772 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) = (𝑌 · (𝐼𝑍(𝑝𝐼))))
5352oveq1d 7420 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝑌 · (𝐼𝑍(𝑝𝐼))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
54 mdetrsca.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
5554crngringd 20062 . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
5655adantr 481 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
5735, 5, 14fovcdmd 7575 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑍(𝑝𝐼)) ∈ 𝐾)
58 eqid 2732 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
5958, 31mgpbas 19987 . . . . . . . . . . 11 𝐾 = (Base‘(mulGrp‘𝑅))
6058crngmgp 20057 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
6154, 60syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
6261adantr 481 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ CMnd)
63 difssd 4131 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ⊆ 𝑁)
6425, 63ssfid 9263 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ∈ Fin)
65 eldifi 4125 . . . . . . . . . . . . 13 (𝑟 ∈ (𝑁 ∖ {𝐼}) → 𝑟𝑁)
6634ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐾)
67 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑟𝑁)
6813ffvelcdmda 7083 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑝𝑟) ∈ 𝑁)
6966, 67, 68fovcdmd 7575 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
7065, 69sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
7170ralrimiva 3146 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟 ∈ (𝑁 ∖ {𝐼})(𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
7259, 62, 64, 71gsummptcl 19829 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)
73 mdetrsca.t . . . . . . . . . . 11 · = (.r𝑅)
7431, 73ringass 20069 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑌𝐾 ∧ (𝐼𝑍(𝑝𝐼)) ∈ 𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)) → ((𝑌 · (𝐼𝑍(𝑝𝐼))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
7556, 29, 57, 72, 74syl13anc 1372 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝑌 · (𝐼𝑍(𝑝𝐼))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
7653, 75eqtrd 2772 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
7758, 73mgpplusg 19985 . . . . . . . . . 10 · = (+g‘(mulGrp‘𝑅))
7820, 31, 21matbas2i 21915 . . . . . . . . . . . . 13 (𝑋𝐵𝑋 ∈ (𝐾m (𝑁 × 𝑁)))
79 elmapi 8839 . . . . . . . . . . . . 13 (𝑋 ∈ (𝐾m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐾)
8019, 78, 793syl 18 . . . . . . . . . . . 12 (𝜑𝑋:(𝑁 × 𝑁)⟶𝐾)
8180ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐾)
8281, 67, 68fovcdmd 7575 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑋(𝑝𝑟)) ∈ 𝐾)
83 disjdif 4470 . . . . . . . . . . 11 ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅
8483a1i 11 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅)
85 undif 4480 . . . . . . . . . . . 12 ({𝐼} ⊆ 𝑁 ↔ ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
8637, 85sylib 217 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
8786eqcomd 2738 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 = ({𝐼} ∪ (𝑁 ∖ {𝐼})))
8859, 77, 62, 25, 82, 84, 87gsummptfidmsplit 19792 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
8962cmnmndd 19666 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ Mnd)
9080adantr 481 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑋:(𝑁 × 𝑁)⟶𝐾)
9190, 5, 14fovcdmd 7575 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) ∈ 𝐾)
92 id 22 . . . . . . . . . . . . 13 (𝑟 = 𝐼𝑟 = 𝐼)
93 fveq2 6888 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑝𝑟) = (𝑝𝐼))
9492, 93oveq12d 7423 . . . . . . . . . . . 12 (𝑟 = 𝐼 → (𝑟𝑋(𝑝𝑟)) = (𝐼𝑋(𝑝𝐼)))
9559, 94gsumsn 19816 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑋(𝑝𝐼)) ∈ 𝐾) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
9689, 5, 91, 95syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
97 mdetrsca.ne . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
9897oveqd 7422 . . . . . . . . . . . . . 14 (𝜑 → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
9998ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
100 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → 𝑟 ∈ (𝑁 ∖ {𝐼}))
10165, 68sylan2 593 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑝𝑟) ∈ 𝑁)
102 ovres 7569 . . . . . . . . . . . . . 14 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
103100, 101, 102syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
104 ovres 7569 . . . . . . . . . . . . . 14 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
105100, 101, 104syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
10699, 103, 1053eqtr3d 2780 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑋(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
107106mpteq2dva 5247 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))) = (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))
108107oveq2d 7421 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))
10996, 108oveq12d 7423 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
11088, 109eqtrd 2772 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
11159, 77, 62, 25, 69, 84, 87gsummptfidmsplit 19792 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
11292, 93oveq12d 7423 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑟𝑍(𝑝𝑟)) = (𝐼𝑍(𝑝𝐼)))
11359, 112gsumsn 19816 . . . . . . . . . . . 12 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑍(𝑝𝐼)) ∈ 𝐾) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
11489, 5, 57, 113syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
115114oveq1d 7420 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
116111, 115eqtrd 2772 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
117116oveq2d 7421 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
11876, 110, 1173eqtr4d 2782 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
119118oveq2d 7421 . . . . . 6 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
12054adantr 481 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ CRing)
121 zrhpsgnmhm 21128 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
12255, 24, 121syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
1239, 59mhmf 18673 . . . . . . . . . . 11 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
124122, 123syl 17 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
125124ffvelcdmda 7083 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾)
12631, 73crngcom 20067 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾𝑌𝐾) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) = (𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)))
127120, 125, 29, 126syl3anc 1371 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) = (𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)))
128127oveq1d 7420 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
12969ralrimiva 3146 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟𝑁 (𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
13059, 62, 25, 129gsummptcl 19829 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)
13131, 73ringass 20069 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾𝑌𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
13256, 125, 29, 130, 131syl13anc 1372 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
13331, 73ringass 20069 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑌𝐾 ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)) → ((𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
13456, 29, 125, 130, 133syl13anc 1372 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
135128, 132, 1343eqtr3d 2780 . . . . . 6 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
136119, 135eqtrd 2772 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
137136mpteq2dva 5247 . . . 4 (𝜑 → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
138137oveq2d 7421 . . 3 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
139 eqid 2732 . . . 4 (0g𝑅) = (0g𝑅)
1408, 9symgbasfi 19240 . . . . 5 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
14124, 140syl 17 . . . 4 (𝜑 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
14231, 73, 56, 125, 130ringcld 20073 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ 𝐾)
143 eqid 2732 . . . . 5 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
144 ovexd 7440 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ V)
145 fvexd 6903 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
146143, 141, 144, 145fsuppmptdm 9370 . . . 4 (𝜑 → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) finSupp (0g𝑅))
14731, 139, 73, 55, 141, 28, 142, 146gsummulc2 20122 . . 3 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))) = (𝑌 · (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
148138, 147eqtrd 2772 . 2 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))) = (𝑌 · (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
149 mdetrsca.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
150 eqid 2732 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
151 eqid 2732 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
152149, 20, 21, 9, 150, 151, 73, 58mdetleib2 22081 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
15354, 19, 152syl2anc 584 . 2 (𝜑 → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
154149, 20, 21, 9, 150, 151, 73, 58mdetleib2 22081 . . . 4 ((𝑅 ∈ CRing ∧ 𝑍𝐵) → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
15554, 30, 154syl2anc 584 . . 3 (𝜑 → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
156155oveq2d 7421 . 2 (𝜑 → (𝑌 · (𝐷𝑍)) = (𝑌 · (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
157148, 153, 1563eqtr4d 2782 1 (𝜑 → (𝐷𝑋) = (𝑌 · (𝐷𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4321  {csn 4627  cop 4633  cmpt 5230   × cxp 5673  cres 5677  ccom 5679  wf 6536  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405  f cof 7664  m cmap 8816  Fincfn 8935  Basecbs 17140  .rcmulr 17194  0gc0g 17381   Σg cgsu 17382  Mndcmnd 18621   MndHom cmhm 18665  SymGrpcsymg 19228  pmSgncpsgn 19351  CMndccmn 19642  mulGrpcmgp 19981  Ringcrg 20049  CRingccrg 20050  ℤRHomczrh 21040   Mat cmat 21898   maDet cmdat 22077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-splice 14696  df-reverse 14705  df-s2 14795  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-efmnd 18746  df-grp 18818  df-minusg 18819  df-mulg 18945  df-subg 18997  df-ghm 19084  df-gim 19127  df-cntz 19175  df-oppg 19204  df-symg 19229  df-pmtr 19304  df-psgn 19353  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-dvr 20207  df-rnghom 20243  df-drng 20309  df-subrg 20353  df-sra 20777  df-rgmod 20778  df-cnfld 20937  df-zring 21010  df-zrh 21044  df-dsmm 21278  df-frlm 21293  df-mat 21899  df-mdet 22078
This theorem is referenced by:  mdetrsca2  22097  mdetuni0  22114  mdetmul  22116  smadiadetg  22166
  Copyright terms: Public domain W3C validator