MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetrsca Structured version   Visualization version   GIF version

Theorem mdetrsca 21660
Description: The determinant function is homogeneous for each row: If the matrices 𝑋 and 𝑍 are identical except for the 𝐼-th row, and the 𝐼-th row of the matrix 𝑋 is the componentwise product of the 𝐼-th row of the matrix 𝑍 and the scalar 𝑌, then the determinant of 𝑋 is the determinant of 𝑍 multiplied by 𝑌. (Contributed by SO, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mdetrsca.d 𝐷 = (𝑁 maDet 𝑅)
mdetrsca.a 𝐴 = (𝑁 Mat 𝑅)
mdetrsca.b 𝐵 = (Base‘𝐴)
mdetrsca.k 𝐾 = (Base‘𝑅)
mdetrsca.t · = (.r𝑅)
mdetrsca.r (𝜑𝑅 ∈ CRing)
mdetrsca.x (𝜑𝑋𝐵)
mdetrsca.y (𝜑𝑌𝐾)
mdetrsca.z (𝜑𝑍𝐵)
mdetrsca.i (𝜑𝐼𝑁)
mdetrsca.eq (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁))))
mdetrsca.ne (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
Assertion
Ref Expression
mdetrsca (𝜑 → (𝐷𝑋) = (𝑌 · (𝐷𝑍)))

Proof of Theorem mdetrsca
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetrsca.eq . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁))))
21oveqd 7272 . . . . . . . . . . . . 13 (𝜑 → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)))
32adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)))
4 mdetrsca.i . . . . . . . . . . . . . . 15 (𝜑𝐼𝑁)
54adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼𝑁)
6 snidg 4592 . . . . . . . . . . . . . 14 (𝐼𝑁𝐼 ∈ {𝐼})
75, 6syl 17 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝐼 ∈ {𝐼})
8 eqid 2738 . . . . . . . . . . . . . . . . 17 (SymGrp‘𝑁) = (SymGrp‘𝑁)
9 eqid 2738 . . . . . . . . . . . . . . . . 17 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
108, 9symgbasf1o 18897 . . . . . . . . . . . . . . . 16 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) → 𝑝:𝑁1-1-onto𝑁)
1110adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁1-1-onto𝑁)
12 f1of 6700 . . . . . . . . . . . . . . 15 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
1311, 12syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁𝑁)
1413, 5ffvelrnd 6944 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑝𝐼) ∈ 𝑁)
15 ovres 7416 . . . . . . . . . . . . 13 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
167, 14, 15syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑋 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑋(𝑝𝐼)))
177, 14opelxpd 5618 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁))
18 snfi 8788 . . . . . . . . . . . . . . . 16 {𝐼} ∈ Fin
19 mdetrsca.x . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋𝐵)
20 mdetrsca.a . . . . . . . . . . . . . . . . . . . 20 𝐴 = (𝑁 Mat 𝑅)
21 mdetrsca.b . . . . . . . . . . . . . . . . . . . 20 𝐵 = (Base‘𝐴)
2220, 21matrcl 21469 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2319, 22syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2423simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ Fin)
2524adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 ∈ Fin)
26 xpfi 9015 . . . . . . . . . . . . . . . 16 (({𝐼} ∈ Fin ∧ 𝑁 ∈ Fin) → ({𝐼} × 𝑁) ∈ Fin)
2718, 25, 26sylancr 586 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ∈ Fin)
28 mdetrsca.y . . . . . . . . . . . . . . . 16 (𝜑𝑌𝐾)
2928adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑌𝐾)
30 mdetrsca.z . . . . . . . . . . . . . . . . . . 19 (𝜑𝑍𝐵)
31 mdetrsca.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (Base‘𝑅)
3220, 31, 21matbas2i 21479 . . . . . . . . . . . . . . . . . . 19 (𝑍𝐵𝑍 ∈ (𝐾m (𝑁 × 𝑁)))
33 elmapi 8595 . . . . . . . . . . . . . . . . . . 19 (𝑍 ∈ (𝐾m (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐾)
3430, 32, 333syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍:(𝑁 × 𝑁)⟶𝐾)
3534adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑍:(𝑁 × 𝑁)⟶𝐾)
3635ffnd 6585 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑍 Fn (𝑁 × 𝑁))
375snssd 4739 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → {𝐼} ⊆ 𝑁)
38 xpss1 5599 . . . . . . . . . . . . . . . . 17 ({𝐼} ⊆ 𝑁 → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
3937, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁))
40 fnssres 6539 . . . . . . . . . . . . . . . 16 ((𝑍 Fn (𝑁 × 𝑁) ∧ ({𝐼} × 𝑁) ⊆ (𝑁 × 𝑁)) → (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁))
4136, 39, 40syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑍 ↾ ({𝐼} × 𝑁)) Fn ({𝐼} × 𝑁))
42 eqidd 2739 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁)) → ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩) = ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩))
4327, 29, 41, 42ofc1 7537 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ⟨𝐼, (𝑝𝐼)⟩ ∈ ({𝐼} × 𝑁)) → (((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (𝑌 · ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
4417, 43mpdan 683 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩) = (𝑌 · ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)))
45 df-ov 7258 . . . . . . . . . . . . 13 (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = (((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))‘⟨𝐼, (𝑝𝐼)⟩)
46 df-ov 7258 . . . . . . . . . . . . . 14 (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩)
4746oveq2i 7266 . . . . . . . . . . . . 13 (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = (𝑌 · ((𝑍 ↾ ({𝐼} × 𝑁))‘⟨𝐼, (𝑝𝐼)⟩))
4844, 45, 473eqtr4g 2804 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))(𝑝𝐼)) = (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
493, 16, 483eqtr3d 2786 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) = (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))))
50 ovres 7416 . . . . . . . . . . . . 13 ((𝐼 ∈ {𝐼} ∧ (𝑝𝐼) ∈ 𝑁) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
517, 14, 50syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼)) = (𝐼𝑍(𝑝𝐼)))
5251oveq2d 7271 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 · (𝐼(𝑍 ↾ ({𝐼} × 𝑁))(𝑝𝐼))) = (𝑌 · (𝐼𝑍(𝑝𝐼))))
5349, 52eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) = (𝑌 · (𝐼𝑍(𝑝𝐼))))
5453oveq1d 7270 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝑌 · (𝐼𝑍(𝑝𝐼))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
55 mdetrsca.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
56 crngring 19710 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5755, 56syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
5857adantr 480 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
5935, 5, 14fovrnd 7422 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑍(𝑝𝐼)) ∈ 𝐾)
60 eqid 2738 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
6160, 31mgpbas 19641 . . . . . . . . . . 11 𝐾 = (Base‘(mulGrp‘𝑅))
6260crngmgp 19706 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
6355, 62syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
6463adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ CMnd)
65 difssd 4063 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ⊆ 𝑁)
6625, 65ssfid 8971 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑁 ∖ {𝐼}) ∈ Fin)
67 eldifi 4057 . . . . . . . . . . . . 13 (𝑟 ∈ (𝑁 ∖ {𝐼}) → 𝑟𝑁)
6834ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐾)
69 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑟𝑁)
7013ffvelrnda 6943 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑝𝑟) ∈ 𝑁)
7168, 69, 70fovrnd 7422 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
7267, 71sylan2 592 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
7372ralrimiva 3107 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟 ∈ (𝑁 ∖ {𝐼})(𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
7461, 64, 66, 73gsummptcl 19483 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)
75 mdetrsca.t . . . . . . . . . . 11 · = (.r𝑅)
7631, 75ringass 19718 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑌𝐾 ∧ (𝐼𝑍(𝑝𝐼)) ∈ 𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)) → ((𝑌 · (𝐼𝑍(𝑝𝐼))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
7758, 29, 59, 74, 76syl13anc 1370 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝑌 · (𝐼𝑍(𝑝𝐼))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
7854, 77eqtrd 2778 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
7960, 75mgpplusg 19639 . . . . . . . . . 10 · = (+g‘(mulGrp‘𝑅))
8020, 31, 21matbas2i 21479 . . . . . . . . . . . . 13 (𝑋𝐵𝑋 ∈ (𝐾m (𝑁 × 𝑁)))
81 elmapi 8595 . . . . . . . . . . . . 13 (𝑋 ∈ (𝐾m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐾)
8219, 80, 813syl 18 . . . . . . . . . . . 12 (𝜑𝑋:(𝑁 × 𝑁)⟶𝐾)
8382ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐾)
8483, 69, 70fovrnd 7422 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟𝑁) → (𝑟𝑋(𝑝𝑟)) ∈ 𝐾)
85 disjdif 4402 . . . . . . . . . . 11 ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅
8685a1i 11 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∩ (𝑁 ∖ {𝐼})) = ∅)
87 undif 4412 . . . . . . . . . . . 12 ({𝐼} ⊆ 𝑁 ↔ ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
8837, 87sylib 217 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ({𝐼} ∪ (𝑁 ∖ {𝐼})) = 𝑁)
8988eqcomd 2744 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 = ({𝐼} ∪ (𝑁 ∖ {𝐼})))
9061, 79, 64, 25, 84, 86, 89gsummptfidmsplit 19446 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))))
91 cmnmnd 19317 . . . . . . . . . . . 12 ((mulGrp‘𝑅) ∈ CMnd → (mulGrp‘𝑅) ∈ Mnd)
9264, 91syl 17 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ Mnd)
9382adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑋:(𝑁 × 𝑁)⟶𝐾)
9493, 5, 14fovrnd 7422 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝐼𝑋(𝑝𝐼)) ∈ 𝐾)
95 id 22 . . . . . . . . . . . . 13 (𝑟 = 𝐼𝑟 = 𝐼)
96 fveq2 6756 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑝𝑟) = (𝑝𝐼))
9795, 96oveq12d 7273 . . . . . . . . . . . 12 (𝑟 = 𝐼 → (𝑟𝑋(𝑝𝑟)) = (𝐼𝑋(𝑝𝐼)))
9861, 97gsumsn 19470 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑋(𝑝𝐼)) ∈ 𝐾) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
9992, 5, 94, 98syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) = (𝐼𝑋(𝑝𝐼)))
100 mdetrsca.ne . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
101100oveqd 7272 . . . . . . . . . . . . . 14 (𝜑 → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
102101ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)))
103 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → 𝑟 ∈ (𝑁 ∖ {𝐼}))
10467, 70sylan2 592 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑝𝑟) ∈ 𝑁)
105 ovres 7416 . . . . . . . . . . . . . 14 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
106103, 104, 105syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑋(𝑝𝑟)))
107 ovres 7416 . . . . . . . . . . . . . 14 ((𝑟 ∈ (𝑁 ∖ {𝐼}) ∧ (𝑝𝑟) ∈ 𝑁) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
108103, 104, 107syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟(𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
109102, 106, 1083eqtr3d 2786 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑟 ∈ (𝑁 ∖ {𝐼})) → (𝑟𝑋(𝑝𝑟)) = (𝑟𝑍(𝑝𝑟)))
110109mpteq2dva 5170 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))) = (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))
111110oveq2d 7271 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟)))) = ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))
11299, 111oveq12d 7273 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑋(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑋(𝑝𝑟))))) = ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
11390, 112eqtrd 2778 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = ((𝐼𝑋(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
11461, 79, 64, 25, 71, 86, 89gsummptfidmsplit 19446 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
11595, 96oveq12d 7273 . . . . . . . . . . . . 13 (𝑟 = 𝐼 → (𝑟𝑍(𝑝𝑟)) = (𝐼𝑍(𝑝𝐼)))
11661, 115gsumsn 19470 . . . . . . . . . . . 12 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑁 ∧ (𝐼𝑍(𝑝𝐼)) ∈ 𝐾) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
11792, 5, 59, 116syl3anc 1369 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) = (𝐼𝑍(𝑝𝐼)))
118117oveq1d 7270 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((mulGrp‘𝑅) Σg (𝑟 ∈ {𝐼} ↦ (𝑟𝑍(𝑝𝑟)))) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
119114, 118eqtrd 2778 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) = ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟))))))
120119oveq2d 7271 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((𝐼𝑍(𝑝𝐼)) · ((mulGrp‘𝑅) Σg (𝑟 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑟𝑍(𝑝𝑟)))))))
12178, 113, 1203eqtr4d 2788 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))) = (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
122121oveq2d 7271 . . . . . 6 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
12355adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ CRing)
124 zrhpsgnmhm 20701 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
12557, 24, 124syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
1269, 61mhmf 18350 . . . . . . . . . . 11 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
127125, 126syl 17 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
128127ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾)
12931, 75crngcom 19716 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾𝑌𝐾) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) = (𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)))
130123, 128, 29, 129syl3anc 1369 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) = (𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)))
131130oveq1d 7270 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
13271ralrimiva 3107 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑟𝑁 (𝑟𝑍(𝑝𝑟)) ∈ 𝐾)
13361, 64, 25, 132gsummptcl 19483 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)
13431, 75ringass 19718 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾𝑌𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
13558, 128, 29, 133, 134syl13anc 1370 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · 𝑌) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
13631, 75ringass 19718 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑌𝐾 ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾)) → ((𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
13758, 29, 128, 133, 136syl13anc 1370 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((𝑌 · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
138131, 135, 1373eqtr3d 2786 . . . . . 6 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · (𝑌 · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
139122, 138eqtrd 2778 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))) = (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))
140139mpteq2dva 5170 . . . 4 (𝜑 → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
141140oveq2d 7271 . . 3 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
142 eqid 2738 . . . 4 (0g𝑅) = (0g𝑅)
143 eqid 2738 . . . 4 (+g𝑅) = (+g𝑅)
1448, 9symgbasfi 18901 . . . . 5 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
14524, 144syl 17 . . . 4 (𝜑 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
14631, 75ringcl 19715 . . . . 5 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ 𝐾 ∧ ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))) ∈ 𝐾) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ 𝐾)
14758, 128, 133, 146syl3anc 1369 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ 𝐾)
148 eqid 2738 . . . . 5 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))
149 ovexd 7290 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))) ∈ V)
150 fvexd 6771 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
151148, 145, 149, 150fsuppmptdm 9069 . . . 4 (𝜑 → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))) finSupp (0g𝑅))
15231, 142, 143, 75, 57, 145, 28, 147, 151gsummulc2 19761 . . 3 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ (𝑌 · ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))) = (𝑌 · (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
153141, 152eqtrd 2778 . 2 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))) = (𝑌 · (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
154 mdetrsca.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
155 eqid 2738 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
156 eqid 2738 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
157154, 20, 21, 9, 155, 156, 75, 60mdetleib2 21645 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
15855, 19, 157syl2anc 583 . 2 (𝜑 → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑋(𝑝𝑟))))))))
159154, 20, 21, 9, 155, 156, 75, 60mdetleib2 21645 . . . 4 ((𝑅 ∈ CRing ∧ 𝑍𝐵) → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
16055, 30, 159syl2anc 583 . . 3 (𝜑 → (𝐷𝑍) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟))))))))
161160oveq2d 7271 . 2 (𝜑 → (𝑌 · (𝐷𝑍)) = (𝑌 · (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) · ((mulGrp‘𝑅) Σg (𝑟𝑁 ↦ (𝑟𝑍(𝑝𝑟)))))))))
162153, 158, 1613eqtr4d 2788 1 (𝜑 → (𝐷𝑋) = (𝑌 · (𝐷𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558  cop 4564  cmpt 5153   × cxp 5578  cres 5582  ccom 5584   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573  Fincfn 8691  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300   MndHom cmhm 18343  SymGrpcsymg 18889  pmSgncpsgn 19012  CMndccmn 19301  mulGrpcmgp 19635  Ringcrg 19698  CRingccrg 19699  ℤRHomczrh 20613   Mat cmat 21464   maDet cmdat 21641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-xor 1504  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-reverse 14400  df-s2 14489  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-efmnd 18423  df-grp 18495  df-minusg 18496  df-mulg 18616  df-subg 18667  df-ghm 18747  df-gim 18790  df-cntz 18838  df-oppg 18865  df-symg 18890  df-pmtr 18965  df-psgn 19014  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-sra 20349  df-rgmod 20350  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-dsmm 20849  df-frlm 20864  df-mat 21465  df-mdet 21642
This theorem is referenced by:  mdetrsca2  21661  mdetuni0  21678  mdetmul  21680  smadiadetg  21730
  Copyright terms: Public domain W3C validator