| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdet1 | Structured version Visualization version GIF version | ||
| Description: The determinant of the identity matrix is 1, i.e. the determinant function is normalized, see also definition in [Lang] p. 513. (Contributed by SO, 10-Jul-2018.) (Proof shortened by AV, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| mdet1.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| mdet1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mdet1.n | ⊢ 𝐼 = (1r‘𝐴) |
| mdet1.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| mdet1 | ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘𝐼) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin)) | |
| 2 | crngring 20158 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 3 | 2 | anim1ci 616 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 4 | mdet1.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 5 | 4 | matring 22353 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 6 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 7 | mdet1.n | . . . . . 6 ⊢ 𝐼 = (1r‘𝐴) | |
| 8 | 6, 7 | ringidcl 20178 | . . . . 5 ⊢ (𝐴 ∈ Ring → 𝐼 ∈ (Base‘𝐴)) |
| 9 | 3, 5, 8 | 3syl 18 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐼 ∈ (Base‘𝐴)) |
| 10 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 11 | mdet1.o | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 12 | 10, 11 | ringidcl 20178 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 13 | 2, 12 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ CRing → 1 ∈ (Base‘𝑅)) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 1 ∈ (Base‘𝑅)) |
| 15 | 1, 9, 14 | jca32 515 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ (Base‘𝐴) ∧ 1 ∈ (Base‘𝑅)))) |
| 16 | eqid 2731 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 17 | simplr 768 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑁 ∈ Fin) | |
| 18 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Ring) |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ Ring) |
| 20 | simprl 770 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) | |
| 21 | simprr 772 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) | |
| 22 | 4, 11, 16, 17, 19, 20, 21, 7 | mat1ov 22358 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 , (0g‘𝑅))) |
| 23 | 22 | ralrimivva 3175 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 , (0g‘𝑅))) |
| 24 | mdet1.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 25 | eqid 2731 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 26 | eqid 2731 | . . . 4 ⊢ (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅)) | |
| 27 | 24, 4, 6, 25, 16, 10, 26 | mdetdiagid 22510 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ (Base‘𝐴) ∧ 1 ∈ (Base‘𝑅))) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 , (0g‘𝑅)) → (𝐷‘𝐼) = ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 ))) |
| 28 | 15, 23, 27 | sylc 65 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘𝐼) = ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 )) |
| 29 | ringsrg 20210 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 30 | 2, 29 | syl 17 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ SRing) |
| 31 | hashcl 14258 | . . 3 ⊢ (𝑁 ∈ Fin → (♯‘𝑁) ∈ ℕ0) | |
| 32 | 25, 26, 11 | srg1expzeq1 20138 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ (♯‘𝑁) ∈ ℕ0) → ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 ) = 1 ) |
| 33 | 30, 31, 32 | syl2an 596 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 ) = 1 ) |
| 34 | 28, 33 | eqtrd 2766 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘𝐼) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ifcif 4470 ‘cfv 6476 (class class class)co 7341 Fincfn 8864 ℕ0cn0 12376 ♯chash 14232 Basecbs 17115 0gc0g 17338 .gcmg 18975 mulGrpcmgp 20053 1rcur 20094 SRingcsrg 20099 Ringcrg 20146 CRingccrg 20147 Mat cmat 22317 maDet cmdat 22494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-addf 11080 ax-mulf 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-xnn0 12450 df-z 12464 df-dec 12584 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-word 14416 df-lsw 14465 df-concat 14473 df-s1 14499 df-substr 14544 df-pfx 14574 df-splice 14652 df-reverse 14661 df-s2 14750 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-efmnd 18772 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-gim 19166 df-cntz 19224 df-oppg 19253 df-symg 19277 df-pmtr 19349 df-psgn 19398 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-srg 20100 df-ring 20148 df-cring 20149 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-dvr 20314 df-rhm 20385 df-subrng 20456 df-subrg 20480 df-drng 20641 df-lmod 20790 df-lss 20860 df-sra 21102 df-rgmod 21103 df-cnfld 21287 df-zring 21379 df-zrh 21435 df-dsmm 21664 df-frlm 21679 df-mamu 22301 df-mat 22318 df-mdet 22495 |
| This theorem is referenced by: mdetuni0 22531 matunit 22588 cramerimplem1 22593 matunitlindflem2 37657 |
| Copyright terms: Public domain | W3C validator |