![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdet1 | Structured version Visualization version GIF version |
Description: The determinant of the identity matrix is 1, i.e. the determinant function is normalized, see also definition in [Lang] p. 513. (Contributed by SO, 10-Jul-2018.) (Proof shortened by AV, 25-Nov-2019.) |
Ref | Expression |
---|---|
mdet1.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdet1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mdet1.n | ⊢ 𝐼 = (1r‘𝐴) |
mdet1.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
mdet1 | ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘𝐼) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin)) | |
2 | crngring 18912 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
3 | 2 | anim1i 610 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin)) |
4 | 3 | ancomd 455 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
5 | mdet1.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
6 | 5 | matring 20616 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
7 | eqid 2825 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
8 | mdet1.n | . . . . . 6 ⊢ 𝐼 = (1r‘𝐴) | |
9 | 7, 8 | ringidcl 18922 | . . . . 5 ⊢ (𝐴 ∈ Ring → 𝐼 ∈ (Base‘𝐴)) |
10 | 4, 6, 9 | 3syl 18 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐼 ∈ (Base‘𝐴)) |
11 | eqid 2825 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
12 | mdet1.o | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
13 | 11, 12 | ringidcl 18922 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
14 | 2, 13 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ CRing → 1 ∈ (Base‘𝑅)) |
15 | 14 | adantr 474 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 1 ∈ (Base‘𝑅)) |
16 | 1, 10, 15 | jca32 513 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ (Base‘𝐴) ∧ 1 ∈ (Base‘𝑅)))) |
17 | eqid 2825 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
18 | simplr 787 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑁 ∈ Fin) | |
19 | 2 | adantr 474 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Ring) |
20 | 19 | adantr 474 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ Ring) |
21 | simprl 789 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) | |
22 | simprr 791 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) | |
23 | 5, 12, 17, 18, 20, 21, 22, 8 | mat1ov 20622 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 , (0g‘𝑅))) |
24 | 23 | ralrimivva 3180 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 , (0g‘𝑅))) |
25 | mdet1.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
26 | eqid 2825 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
27 | eqid 2825 | . . . 4 ⊢ (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅)) | |
28 | 25, 5, 7, 26, 17, 11, 27 | mdetdiagid 20774 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ (Base‘𝐴) ∧ 1 ∈ (Base‘𝑅))) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 , (0g‘𝑅)) → (𝐷‘𝐼) = ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 ))) |
29 | 16, 24, 28 | sylc 65 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘𝐼) = ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 )) |
30 | ringsrg 18943 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
31 | 2, 30 | syl 17 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ SRing) |
32 | hashcl 13437 | . . 3 ⊢ (𝑁 ∈ Fin → (♯‘𝑁) ∈ ℕ0) | |
33 | 26, 27, 12 | srg1expzeq1 18893 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ (♯‘𝑁) ∈ ℕ0) → ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 ) = 1 ) |
34 | 31, 32, 33 | syl2an 591 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 ) = 1 ) |
35 | 29, 34 | eqtrd 2861 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘𝐼) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∀wral 3117 ifcif 4306 ‘cfv 6123 (class class class)co 6905 Fincfn 8222 ℕ0cn0 11618 ♯chash 13410 Basecbs 16222 0gc0g 16453 .gcmg 17894 mulGrpcmgp 18843 1rcur 18855 SRingcsrg 18859 Ringcrg 18901 CRingccrg 18902 Mat cmat 20580 maDet cmdat 20758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-addf 10331 ax-mulf 10332 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-xor 1640 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-ot 4406 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-of 7157 df-om 7327 df-1st 7428 df-2nd 7429 df-supp 7560 df-tpos 7617 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-2o 7827 df-oadd 7830 df-er 8009 df-map 8124 df-ixp 8176 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-fsupp 8545 df-sup 8617 df-oi 8684 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-5 11417 df-6 11418 df-7 11419 df-8 11420 df-9 11421 df-n0 11619 df-xnn0 11691 df-z 11705 df-dec 11822 df-uz 11969 df-rp 12113 df-fz 12620 df-fzo 12761 df-seq 13096 df-exp 13155 df-hash 13411 df-word 13575 df-lsw 13623 df-concat 13631 df-s1 13656 df-substr 13701 df-pfx 13750 df-splice 13857 df-reverse 13875 df-s2 13969 df-struct 16224 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-ress 16230 df-plusg 16318 df-mulr 16319 df-starv 16320 df-sca 16321 df-vsca 16322 df-ip 16323 df-tset 16324 df-ple 16325 df-ds 16327 df-unif 16328 df-hom 16329 df-cco 16330 df-0g 16455 df-gsum 16456 df-prds 16461 df-pws 16463 df-mre 16599 df-mrc 16600 df-acs 16602 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-mhm 17688 df-submnd 17689 df-grp 17779 df-minusg 17780 df-sbg 17781 df-mulg 17895 df-subg 17942 df-ghm 18009 df-gim 18052 df-cntz 18100 df-oppg 18126 df-symg 18148 df-pmtr 18212 df-psgn 18261 df-cmn 18548 df-abl 18549 df-mgp 18844 df-ur 18856 df-srg 18860 df-ring 18903 df-cring 18904 df-oppr 18977 df-dvdsr 18995 df-unit 18996 df-invr 19026 df-dvr 19037 df-rnghom 19071 df-drng 19105 df-subrg 19134 df-lmod 19221 df-lss 19289 df-sra 19533 df-rgmod 19534 df-cnfld 20107 df-zring 20179 df-zrh 20212 df-dsmm 20439 df-frlm 20454 df-mamu 20557 df-mat 20581 df-mdet 20759 |
This theorem is referenced by: mdetuni0 20795 matunit 20853 cramerimplem1 20858 cramerimplem1OLD 20859 matunitlindflem2 33950 |
Copyright terms: Public domain | W3C validator |