| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdet1 | Structured version Visualization version GIF version | ||
| Description: The determinant of the identity matrix is 1, i.e. the determinant function is normalized, see also definition in [Lang] p. 513. (Contributed by SO, 10-Jul-2018.) (Proof shortened by AV, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| mdet1.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| mdet1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mdet1.n | ⊢ 𝐼 = (1r‘𝐴) |
| mdet1.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| mdet1 | ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘𝐼) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin)) | |
| 2 | crngring 20205 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 3 | 2 | anim1ci 616 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 4 | mdet1.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 5 | 4 | matring 22381 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 6 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 7 | mdet1.n | . . . . . 6 ⊢ 𝐼 = (1r‘𝐴) | |
| 8 | 6, 7 | ringidcl 20225 | . . . . 5 ⊢ (𝐴 ∈ Ring → 𝐼 ∈ (Base‘𝐴)) |
| 9 | 3, 5, 8 | 3syl 18 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐼 ∈ (Base‘𝐴)) |
| 10 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 11 | mdet1.o | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 12 | 10, 11 | ringidcl 20225 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 13 | 2, 12 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ CRing → 1 ∈ (Base‘𝑅)) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 1 ∈ (Base‘𝑅)) |
| 15 | 1, 9, 14 | jca32 515 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ (Base‘𝐴) ∧ 1 ∈ (Base‘𝑅)))) |
| 16 | eqid 2735 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 17 | simplr 768 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑁 ∈ Fin) | |
| 18 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Ring) |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ Ring) |
| 20 | simprl 770 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) | |
| 21 | simprr 772 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) | |
| 22 | 4, 11, 16, 17, 19, 20, 21, 7 | mat1ov 22386 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 , (0g‘𝑅))) |
| 23 | 22 | ralrimivva 3187 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 , (0g‘𝑅))) |
| 24 | mdet1.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 25 | eqid 2735 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 26 | eqid 2735 | . . . 4 ⊢ (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅)) | |
| 27 | 24, 4, 6, 25, 16, 10, 26 | mdetdiagid 22538 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ (Base‘𝐴) ∧ 1 ∈ (Base‘𝑅))) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 , (0g‘𝑅)) → (𝐷‘𝐼) = ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 ))) |
| 28 | 15, 23, 27 | sylc 65 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘𝐼) = ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 )) |
| 29 | ringsrg 20257 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 30 | 2, 29 | syl 17 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ SRing) |
| 31 | hashcl 14374 | . . 3 ⊢ (𝑁 ∈ Fin → (♯‘𝑁) ∈ ℕ0) | |
| 32 | 25, 26, 11 | srg1expzeq1 20185 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ (♯‘𝑁) ∈ ℕ0) → ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 ) = 1 ) |
| 33 | 30, 31, 32 | syl2an 596 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 ) = 1 ) |
| 34 | 28, 33 | eqtrd 2770 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘𝐼) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ifcif 4500 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 ℕ0cn0 12501 ♯chash 14348 Basecbs 17228 0gc0g 17453 .gcmg 19050 mulGrpcmgp 20100 1rcur 20141 SRingcsrg 20146 Ringcrg 20193 CRingccrg 20194 Mat cmat 22345 maDet cmdat 22522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-xnn0 12575 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-word 14532 df-lsw 14581 df-concat 14589 df-s1 14614 df-substr 14659 df-pfx 14689 df-splice 14768 df-reverse 14777 df-s2 14867 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-efmnd 18847 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-gim 19242 df-cntz 19300 df-oppg 19329 df-symg 19351 df-pmtr 19423 df-psgn 19472 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-srg 20147 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-rhm 20432 df-subrng 20506 df-subrg 20530 df-drng 20691 df-lmod 20819 df-lss 20889 df-sra 21131 df-rgmod 21132 df-cnfld 21316 df-zring 21408 df-zrh 21464 df-dsmm 21692 df-frlm 21707 df-mamu 22329 df-mat 22346 df-mdet 22523 |
| This theorem is referenced by: mdetuni0 22559 matunit 22616 cramerimplem1 22621 matunitlindflem2 37641 |
| Copyright terms: Public domain | W3C validator |