| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdetuni | Structured version Visualization version GIF version | ||
| Description: According to the definition in [Weierstrass] p. 272, the determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring. So for any multilinear (mdetuni.li and mdetuni.sc), alternating (mdetuni.al) and normalized (mdetuni.no) function D (mdetuni.ff) from the algebra of square matrices (mdetuni.a) to their underlying commutative ring (mdetuni.cr), the function value of this function D for a matrix F (mdetuni.f) is the determinant of this matrix. (Contributed by Stefan O'Rear, 15-Jul-2018.) (Revised by Alexander van der Vekens, 8-Feb-2019.) |
| Ref | Expression |
|---|---|
| mdetuni.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mdetuni.b | ⊢ 𝐵 = (Base‘𝐴) |
| mdetuni.k | ⊢ 𝐾 = (Base‘𝑅) |
| mdetuni.0g | ⊢ 0 = (0g‘𝑅) |
| mdetuni.1r | ⊢ 1 = (1r‘𝑅) |
| mdetuni.pg | ⊢ + = (+g‘𝑅) |
| mdetuni.tg | ⊢ · = (.r‘𝑅) |
| mdetuni.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mdetuni.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mdetuni.ff | ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) |
| mdetuni.al | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
| mdetuni.li | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
| mdetuni.sc | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) |
| mdetuni.e | ⊢ 𝐸 = (𝑁 maDet 𝑅) |
| mdetuni.cr | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| mdetuni.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| mdetuni.no | ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 1 ) |
| Ref | Expression |
|---|---|
| mdetuni | ⊢ (𝜑 → (𝐷‘𝐹) = (𝐸‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | mdetuni.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | mdetuni.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | mdetuni.0g | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 5 | mdetuni.1r | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 6 | mdetuni.pg | . . 3 ⊢ + = (+g‘𝑅) | |
| 7 | mdetuni.tg | . . 3 ⊢ · = (.r‘𝑅) | |
| 8 | mdetuni.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 9 | mdetuni.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 10 | mdetuni.ff | . . 3 ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) | |
| 11 | mdetuni.al | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) | |
| 12 | mdetuni.li | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) | |
| 13 | mdetuni.sc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) | |
| 14 | mdetuni.e | . . 3 ⊢ 𝐸 = (𝑁 maDet 𝑅) | |
| 15 | mdetuni.cr | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 16 | mdetuni.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | mdetuni0 22524 | . 2 ⊢ (𝜑 → (𝐷‘𝐹) = ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹))) |
| 18 | mdetuni.no | . . 3 ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 1 ) | |
| 19 | 18 | oveq1d 7368 | . 2 ⊢ (𝜑 → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹)) = ( 1 · (𝐸‘𝐹))) |
| 20 | 14, 1, 2, 3 | mdetcl 22499 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵) → (𝐸‘𝐹) ∈ 𝐾) |
| 21 | 15, 16, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐸‘𝐹) ∈ 𝐾) |
| 22 | 3, 7, 5 | ringlidm 20172 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐸‘𝐹) ∈ 𝐾) → ( 1 · (𝐸‘𝐹)) = (𝐸‘𝐹)) |
| 23 | 9, 21, 22 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 1 · (𝐸‘𝐹)) = (𝐸‘𝐹)) |
| 24 | 17, 19, 23 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝐷‘𝐹) = (𝐸‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∖ cdif 3902 {csn 4579 × cxp 5621 ↾ cres 5625 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 Fincfn 8879 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 0gc0g 17361 1rcur 20084 Ringcrg 20136 CRingccrg 20137 Mat cmat 22310 maDet cmdat 22487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-word 14439 df-lsw 14488 df-concat 14496 df-s1 14521 df-substr 14566 df-pfx 14596 df-splice 14674 df-reverse 14683 df-s2 14773 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-efmnd 18761 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-gim 19156 df-cntz 19214 df-oppg 19243 df-symg 19267 df-pmtr 19339 df-psgn 19388 df-evpm 19389 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-srg 20090 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-drng 20634 df-lmod 20783 df-lss 20853 df-sra 21095 df-rgmod 21096 df-cnfld 21280 df-zring 21372 df-zrh 21428 df-dsmm 21657 df-frlm 21672 df-mamu 22294 df-mat 22311 df-mdet 22488 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |