| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdetuni | Structured version Visualization version GIF version | ||
| Description: According to the definition in [Weierstrass] p. 272, the determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring. So for any multilinear (mdetuni.li and mdetuni.sc), alternating (mdetuni.al) and normalized (mdetuni.no) function D (mdetuni.ff) from the algebra of square matrices (mdetuni.a) to their underlying commutative ring (mdetuni.cr), the function value of this function D for a matrix F (mdetuni.f) is the determinant of this matrix. (Contributed by Stefan O'Rear, 15-Jul-2018.) (Revised by Alexander van der Vekens, 8-Feb-2019.) |
| Ref | Expression |
|---|---|
| mdetuni.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mdetuni.b | ⊢ 𝐵 = (Base‘𝐴) |
| mdetuni.k | ⊢ 𝐾 = (Base‘𝑅) |
| mdetuni.0g | ⊢ 0 = (0g‘𝑅) |
| mdetuni.1r | ⊢ 1 = (1r‘𝑅) |
| mdetuni.pg | ⊢ + = (+g‘𝑅) |
| mdetuni.tg | ⊢ · = (.r‘𝑅) |
| mdetuni.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mdetuni.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mdetuni.ff | ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) |
| mdetuni.al | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
| mdetuni.li | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
| mdetuni.sc | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) |
| mdetuni.e | ⊢ 𝐸 = (𝑁 maDet 𝑅) |
| mdetuni.cr | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| mdetuni.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| mdetuni.no | ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 1 ) |
| Ref | Expression |
|---|---|
| mdetuni | ⊢ (𝜑 → (𝐷‘𝐹) = (𝐸‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | mdetuni.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | mdetuni.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | mdetuni.0g | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 5 | mdetuni.1r | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 6 | mdetuni.pg | . . 3 ⊢ + = (+g‘𝑅) | |
| 7 | mdetuni.tg | . . 3 ⊢ · = (.r‘𝑅) | |
| 8 | mdetuni.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 9 | mdetuni.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 10 | mdetuni.ff | . . 3 ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) | |
| 11 | mdetuni.al | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) | |
| 12 | mdetuni.li | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) | |
| 13 | mdetuni.sc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) | |
| 14 | mdetuni.e | . . 3 ⊢ 𝐸 = (𝑁 maDet 𝑅) | |
| 15 | mdetuni.cr | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 16 | mdetuni.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | mdetuni0 22537 | . 2 ⊢ (𝜑 → (𝐷‘𝐹) = ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹))) |
| 18 | mdetuni.no | . . 3 ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 1 ) | |
| 19 | 18 | oveq1d 7367 | . 2 ⊢ (𝜑 → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹)) = ( 1 · (𝐸‘𝐹))) |
| 20 | 14, 1, 2, 3 | mdetcl 22512 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵) → (𝐸‘𝐹) ∈ 𝐾) |
| 21 | 15, 16, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐸‘𝐹) ∈ 𝐾) |
| 22 | 3, 7, 5 | ringlidm 20189 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐸‘𝐹) ∈ 𝐾) → ( 1 · (𝐸‘𝐹)) = (𝐸‘𝐹)) |
| 23 | 9, 21, 22 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 1 · (𝐸‘𝐹)) = (𝐸‘𝐹)) |
| 24 | 17, 19, 23 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (𝐷‘𝐹) = (𝐸‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∖ cdif 3895 {csn 4575 × cxp 5617 ↾ cres 5621 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ∘f cof 7614 Fincfn 8875 Basecbs 17122 +gcplusg 17163 .rcmulr 17164 0gc0g 17345 1rcur 20101 Ringcrg 20153 CRingccrg 20154 Mat cmat 22323 maDet cmdat 22500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-addf 11092 ax-mulf 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-dec 12595 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-word 14423 df-lsw 14472 df-concat 14480 df-s1 14506 df-substr 14551 df-pfx 14581 df-splice 14659 df-reverse 14668 df-s2 14757 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-0g 17347 df-gsum 17348 df-prds 17353 df-pws 17355 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-efmnd 18779 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19127 df-gim 19173 df-cntz 19231 df-oppg 19260 df-symg 19284 df-pmtr 19356 df-psgn 19405 df-evpm 19406 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-srg 20107 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-rhm 20392 df-subrng 20463 df-subrg 20487 df-drng 20648 df-lmod 20797 df-lss 20867 df-sra 21109 df-rgmod 21110 df-cnfld 21294 df-zring 21386 df-zrh 21442 df-dsmm 21671 df-frlm 21686 df-mamu 22307 df-mat 22324 df-mdet 22501 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |