| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdetuni | Structured version Visualization version GIF version | ||
| Description: According to the definition in [Weierstrass] p. 272, the determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring. So for any multilinear (mdetuni.li and mdetuni.sc), alternating (mdetuni.al) and normalized (mdetuni.no) function D (mdetuni.ff) from the algebra of square matrices (mdetuni.a) to their underlying commutative ring (mdetuni.cr), the function value of this function D for a matrix F (mdetuni.f) is the determinant of this matrix. (Contributed by Stefan O'Rear, 15-Jul-2018.) (Revised by Alexander van der Vekens, 8-Feb-2019.) |
| Ref | Expression |
|---|---|
| mdetuni.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mdetuni.b | ⊢ 𝐵 = (Base‘𝐴) |
| mdetuni.k | ⊢ 𝐾 = (Base‘𝑅) |
| mdetuni.0g | ⊢ 0 = (0g‘𝑅) |
| mdetuni.1r | ⊢ 1 = (1r‘𝑅) |
| mdetuni.pg | ⊢ + = (+g‘𝑅) |
| mdetuni.tg | ⊢ · = (.r‘𝑅) |
| mdetuni.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mdetuni.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mdetuni.ff | ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) |
| mdetuni.al | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
| mdetuni.li | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
| mdetuni.sc | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) |
| mdetuni.e | ⊢ 𝐸 = (𝑁 maDet 𝑅) |
| mdetuni.cr | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| mdetuni.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| mdetuni.no | ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 1 ) |
| Ref | Expression |
|---|---|
| mdetuni | ⊢ (𝜑 → (𝐷‘𝐹) = (𝐸‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | mdetuni.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | mdetuni.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | mdetuni.0g | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 5 | mdetuni.1r | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 6 | mdetuni.pg | . . 3 ⊢ + = (+g‘𝑅) | |
| 7 | mdetuni.tg | . . 3 ⊢ · = (.r‘𝑅) | |
| 8 | mdetuni.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 9 | mdetuni.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 10 | mdetuni.ff | . . 3 ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) | |
| 11 | mdetuni.al | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) | |
| 12 | mdetuni.li | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) | |
| 13 | mdetuni.sc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) | |
| 14 | mdetuni.e | . . 3 ⊢ 𝐸 = (𝑁 maDet 𝑅) | |
| 15 | mdetuni.cr | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 16 | mdetuni.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | mdetuni0 22544 | . 2 ⊢ (𝜑 → (𝐷‘𝐹) = ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹))) |
| 18 | mdetuni.no | . . 3 ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 1 ) | |
| 19 | 18 | oveq1d 7414 | . 2 ⊢ (𝜑 → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹)) = ( 1 · (𝐸‘𝐹))) |
| 20 | 14, 1, 2, 3 | mdetcl 22519 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵) → (𝐸‘𝐹) ∈ 𝐾) |
| 21 | 15, 16, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐸‘𝐹) ∈ 𝐾) |
| 22 | 3, 7, 5 | ringlidm 20214 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐸‘𝐹) ∈ 𝐾) → ( 1 · (𝐸‘𝐹)) = (𝐸‘𝐹)) |
| 23 | 9, 21, 22 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 1 · (𝐸‘𝐹)) = (𝐸‘𝐹)) |
| 24 | 17, 19, 23 | 3eqtrd 2773 | 1 ⊢ (𝜑 → (𝐷‘𝐹) = (𝐸‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∖ cdif 3921 {csn 4599 × cxp 5649 ↾ cres 5653 ⟶wf 6523 ‘cfv 6527 (class class class)co 7399 ∘f cof 7663 Fincfn 8953 Basecbs 17213 +gcplusg 17256 .rcmulr 17257 0gc0g 17438 1rcur 20126 Ringcrg 20178 CRingccrg 20179 Mat cmat 22330 maDet cmdat 22507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-addf 11200 ax-mulf 11201 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1511 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-ot 4608 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-om 7856 df-1st 7982 df-2nd 7983 df-supp 8154 df-tpos 8219 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9368 df-sup 9448 df-oi 9516 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-xnn0 12567 df-z 12581 df-dec 12701 df-uz 12845 df-rp 13001 df-fz 13514 df-fzo 13661 df-seq 14009 df-exp 14069 df-hash 14337 df-word 14520 df-lsw 14568 df-concat 14576 df-s1 14601 df-substr 14646 df-pfx 14676 df-splice 14755 df-reverse 14764 df-s2 14854 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-starv 17271 df-sca 17272 df-vsca 17273 df-ip 17274 df-tset 17275 df-ple 17276 df-ds 17278 df-unif 17279 df-hom 17280 df-cco 17281 df-0g 17440 df-gsum 17441 df-prds 17446 df-pws 17448 df-mre 17583 df-mrc 17584 df-acs 17586 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18746 df-submnd 18747 df-efmnd 18832 df-grp 18904 df-minusg 18905 df-sbg 18906 df-mulg 19036 df-subg 19091 df-ghm 19181 df-gim 19227 df-cntz 19285 df-oppg 19314 df-symg 19336 df-pmtr 19408 df-psgn 19457 df-evpm 19458 df-cmn 19748 df-abl 19749 df-mgp 20086 df-rng 20098 df-ur 20127 df-srg 20132 df-ring 20180 df-cring 20181 df-oppr 20282 df-dvdsr 20302 df-unit 20303 df-invr 20333 df-dvr 20346 df-rhm 20417 df-subrng 20491 df-subrg 20515 df-drng 20676 df-lmod 20804 df-lss 20874 df-sra 21116 df-rgmod 21117 df-cnfld 21301 df-zring 21393 df-zrh 21449 df-dsmm 21677 df-frlm 21692 df-mamu 22314 df-mat 22331 df-mdet 22508 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |