Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mdetuni | Structured version Visualization version GIF version |
Description: According to the definition in [Weierstrass] p. 272, the determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring. So for any multilinear (mdetuni.li and mdetuni.sc), alternating (mdetuni.al) and normalized (mdetuni.no) function D (mdetuni.ff) from the algebra of square matrices (mdetuni.a) to their underlying commutative ring (mdetuni.cr), the function value of this function D for a matrix F (mdetuni.f) is the determinant of this matrix. (Contributed by Stefan O'Rear, 15-Jul-2018.) (Revised by Alexander van der Vekens, 8-Feb-2019.) |
Ref | Expression |
---|---|
mdetuni.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mdetuni.b | ⊢ 𝐵 = (Base‘𝐴) |
mdetuni.k | ⊢ 𝐾 = (Base‘𝑅) |
mdetuni.0g | ⊢ 0 = (0g‘𝑅) |
mdetuni.1r | ⊢ 1 = (1r‘𝑅) |
mdetuni.pg | ⊢ + = (+g‘𝑅) |
mdetuni.tg | ⊢ · = (.r‘𝑅) |
mdetuni.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mdetuni.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mdetuni.ff | ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) |
mdetuni.al | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
mdetuni.li | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
mdetuni.sc | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) |
mdetuni.e | ⊢ 𝐸 = (𝑁 maDet 𝑅) |
mdetuni.cr | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mdetuni.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
mdetuni.no | ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 1 ) |
Ref | Expression |
---|---|
mdetuni | ⊢ (𝜑 → (𝐷‘𝐹) = (𝐸‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetuni.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | mdetuni.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | mdetuni.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
4 | mdetuni.0g | . . 3 ⊢ 0 = (0g‘𝑅) | |
5 | mdetuni.1r | . . 3 ⊢ 1 = (1r‘𝑅) | |
6 | mdetuni.pg | . . 3 ⊢ + = (+g‘𝑅) | |
7 | mdetuni.tg | . . 3 ⊢ · = (.r‘𝑅) | |
8 | mdetuni.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
9 | mdetuni.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
10 | mdetuni.ff | . . 3 ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) | |
11 | mdetuni.al | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) | |
12 | mdetuni.li | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) | |
13 | mdetuni.sc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) | |
14 | mdetuni.e | . . 3 ⊢ 𝐸 = (𝑁 maDet 𝑅) | |
15 | mdetuni.cr | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
16 | mdetuni.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | mdetuni0 21678 | . 2 ⊢ (𝜑 → (𝐷‘𝐹) = ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹))) |
18 | mdetuni.no | . . 3 ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 1 ) | |
19 | 18 | oveq1d 7270 | . 2 ⊢ (𝜑 → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹)) = ( 1 · (𝐸‘𝐹))) |
20 | 14, 1, 2, 3 | mdetcl 21653 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵) → (𝐸‘𝐹) ∈ 𝐾) |
21 | 15, 16, 20 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐸‘𝐹) ∈ 𝐾) |
22 | 3, 7, 5 | ringlidm 19725 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐸‘𝐹) ∈ 𝐾) → ( 1 · (𝐸‘𝐹)) = (𝐸‘𝐹)) |
23 | 9, 21, 22 | syl2anc 583 | . 2 ⊢ (𝜑 → ( 1 · (𝐸‘𝐹)) = (𝐸‘𝐹)) |
24 | 17, 19, 23 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝐷‘𝐹) = (𝐸‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∖ cdif 3880 {csn 4558 × cxp 5578 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 Fincfn 8691 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 0gc0g 17067 1rcur 19652 Ringcrg 19698 CRingccrg 19699 Mat cmat 21464 maDet cmdat 21641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-xor 1504 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-word 14146 df-lsw 14194 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-splice 14391 df-reverse 14400 df-s2 14489 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-efmnd 18423 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-gim 18790 df-cntz 18838 df-oppg 18865 df-symg 18890 df-pmtr 18965 df-psgn 19014 df-evpm 19015 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-srg 19657 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-subrg 19937 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-cnfld 20511 df-zring 20583 df-zrh 20617 df-dsmm 20849 df-frlm 20864 df-mamu 21443 df-mat 21465 df-mdet 21642 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |