![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdetuni | Structured version Visualization version GIF version |
Description: According to the definition in [Weierstrass] p. 272, the determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring. So for any multilinear (mdetuni.li and mdetuni.sc), alternating (mdetuni.al) and normalized (mdetuni.no) function D (mdetuni.ff) from the algebra of square matrices (mdetuni.a) to their underlying commutative ring (mdetuni.cr), the function value of this function D for a matrix F (mdetuni.f) is the determinant of this matrix. (Contributed by Stefan O'Rear, 15-Jul-2018.) (Revised by Alexander van der Vekens, 8-Feb-2019.) |
Ref | Expression |
---|---|
mdetuni.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mdetuni.b | ⊢ 𝐵 = (Base‘𝐴) |
mdetuni.k | ⊢ 𝐾 = (Base‘𝑅) |
mdetuni.0g | ⊢ 0 = (0g‘𝑅) |
mdetuni.1r | ⊢ 1 = (1r‘𝑅) |
mdetuni.pg | ⊢ + = (+g‘𝑅) |
mdetuni.tg | ⊢ · = (.r‘𝑅) |
mdetuni.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mdetuni.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mdetuni.ff | ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) |
mdetuni.al | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
mdetuni.li | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
mdetuni.sc | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) |
mdetuni.e | ⊢ 𝐸 = (𝑁 maDet 𝑅) |
mdetuni.cr | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mdetuni.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
mdetuni.no | ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 1 ) |
Ref | Expression |
---|---|
mdetuni | ⊢ (𝜑 → (𝐷‘𝐹) = (𝐸‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetuni.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | mdetuni.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | mdetuni.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
4 | mdetuni.0g | . . 3 ⊢ 0 = (0g‘𝑅) | |
5 | mdetuni.1r | . . 3 ⊢ 1 = (1r‘𝑅) | |
6 | mdetuni.pg | . . 3 ⊢ + = (+g‘𝑅) | |
7 | mdetuni.tg | . . 3 ⊢ · = (.r‘𝑅) | |
8 | mdetuni.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
9 | mdetuni.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
10 | mdetuni.ff | . . 3 ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) | |
11 | mdetuni.al | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) | |
12 | mdetuni.li | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) | |
13 | mdetuni.sc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) | |
14 | mdetuni.e | . . 3 ⊢ 𝐸 = (𝑁 maDet 𝑅) | |
15 | mdetuni.cr | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
16 | mdetuni.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | mdetuni0 21970 | . 2 ⊢ (𝜑 → (𝐷‘𝐹) = ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹))) |
18 | mdetuni.no | . . 3 ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 1 ) | |
19 | 18 | oveq1d 7372 | . 2 ⊢ (𝜑 → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹)) = ( 1 · (𝐸‘𝐹))) |
20 | 14, 1, 2, 3 | mdetcl 21945 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵) → (𝐸‘𝐹) ∈ 𝐾) |
21 | 15, 16, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐸‘𝐹) ∈ 𝐾) |
22 | 3, 7, 5 | ringlidm 19992 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐸‘𝐹) ∈ 𝐾) → ( 1 · (𝐸‘𝐹)) = (𝐸‘𝐹)) |
23 | 9, 21, 22 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 1 · (𝐸‘𝐹)) = (𝐸‘𝐹)) |
24 | 17, 19, 23 | 3eqtrd 2780 | 1 ⊢ (𝜑 → (𝐷‘𝐹) = (𝐸‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∖ cdif 3907 {csn 4586 × cxp 5631 ↾ cres 5635 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ∘f cof 7615 Fincfn 8883 Basecbs 17083 +gcplusg 17133 .rcmulr 17134 0gc0g 17321 1rcur 19913 Ringcrg 19964 CRingccrg 19965 Mat cmat 21754 maDet cmdat 21933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-ot 4595 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-tpos 8157 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-xnn0 12486 df-z 12500 df-dec 12619 df-uz 12764 df-rp 12916 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-hash 14231 df-word 14403 df-lsw 14451 df-concat 14459 df-s1 14484 df-substr 14529 df-pfx 14559 df-splice 14638 df-reverse 14647 df-s2 14737 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-0g 17323 df-gsum 17324 df-prds 17329 df-pws 17331 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-efmnd 18679 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-ghm 19006 df-gim 19049 df-cntz 19097 df-oppg 19124 df-symg 19149 df-pmtr 19224 df-psgn 19273 df-evpm 19274 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-srg 19918 df-ring 19966 df-cring 19967 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-dvr 20112 df-rnghom 20146 df-drng 20187 df-subrg 20220 df-lmod 20324 df-lss 20393 df-sra 20633 df-rgmod 20634 df-cnfld 20797 df-zring 20870 df-zrh 20904 df-dsmm 21138 df-frlm 21153 df-mamu 21733 df-mat 21755 df-mdet 21934 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |