![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdetleib | Structured version Visualization version GIF version |
Description: Full substitution of our determinant definition (also known as Leibniz' Formula, expanding by columns). Proposition 4.6 in [Lang] p. 514. (Contributed by Stefan O'Rear, 3-Oct-2015.) (Revised by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
mdetfval.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdetfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mdetfval.b | ⊢ 𝐵 = (Base‘𝐴) |
mdetfval.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
mdetfval.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
mdetfval.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
mdetfval.t | ⊢ · = (.r‘𝑅) |
mdetfval.u | ⊢ 𝑈 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
mdetleib | ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq 7454 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑝‘𝑥)𝑚𝑥) = ((𝑝‘𝑥)𝑀𝑥)) | |
2 | 1 | mpteq2dv 5268 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)) = (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))) |
3 | 2 | oveq2d 7464 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))) = (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))) |
4 | 3 | oveq2d 7464 | . . . 4 ⊢ (𝑚 = 𝑀 → (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))) = (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))) |
5 | 4 | mpteq2dv 5268 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))) = (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) |
6 | 5 | oveq2d 7464 | . 2 ⊢ (𝑚 = 𝑀 → (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
7 | mdetfval.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
8 | mdetfval.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
9 | mdetfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
10 | mdetfval.p | . . 3 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
11 | mdetfval.y | . . 3 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
12 | mdetfval.s | . . 3 ⊢ 𝑆 = (pmSgn‘𝑁) | |
13 | mdetfval.t | . . 3 ⊢ · = (.r‘𝑅) | |
14 | mdetfval.u | . . 3 ⊢ 𝑈 = (mulGrp‘𝑅) | |
15 | 7, 8, 9, 10, 11, 12, 13, 14 | mdetfval 22613 | . 2 ⊢ 𝐷 = (𝑚 ∈ 𝐵 ↦ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) |
16 | ovex 7481 | . 2 ⊢ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) ∈ V | |
17 | 6, 15, 16 | fvmpt 7029 | 1 ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 Σg cgsu 17500 SymGrpcsymg 19410 pmSgncpsgn 19531 mulGrpcmgp 20161 ℤRHomczrh 21533 Mat cmat 22432 maDet cmdat 22611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-slot 17229 df-ndx 17241 df-base 17259 df-mat 22433 df-mdet 22612 |
This theorem is referenced by: mdetleib2 22615 m1detdiag 22624 mdetdiag 22626 mdetralt 22635 mdettpos 22638 chpmatval2 22860 mdetpmtr1 33769 |
Copyright terms: Public domain | W3C validator |