| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdetleib | Structured version Visualization version GIF version | ||
| Description: Full substitution of our determinant definition (also known as Leibniz' Formula, expanding by columns). Proposition 4.6 in [Lang] p. 514. (Contributed by Stefan O'Rear, 3-Oct-2015.) (Revised by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| mdetfval.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| mdetfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mdetfval.b | ⊢ 𝐵 = (Base‘𝐴) |
| mdetfval.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| mdetfval.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| mdetfval.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| mdetfval.t | ⊢ · = (.r‘𝑅) |
| mdetfval.u | ⊢ 𝑈 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| mdetleib | ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq 7359 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑝‘𝑥)𝑚𝑥) = ((𝑝‘𝑥)𝑀𝑥)) | |
| 2 | 1 | mpteq2dv 5189 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)) = (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))) |
| 3 | 2 | oveq2d 7369 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))) = (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))) |
| 4 | 3 | oveq2d 7369 | . . . 4 ⊢ (𝑚 = 𝑀 → (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))) = (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))) |
| 5 | 4 | mpteq2dv 5189 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))) = (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) |
| 6 | 5 | oveq2d 7369 | . 2 ⊢ (𝑚 = 𝑀 → (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
| 7 | mdetfval.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 8 | mdetfval.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 9 | mdetfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 10 | mdetfval.p | . . 3 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 11 | mdetfval.y | . . 3 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 12 | mdetfval.s | . . 3 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 13 | mdetfval.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 14 | mdetfval.u | . . 3 ⊢ 𝑈 = (mulGrp‘𝑅) | |
| 15 | 7, 8, 9, 10, 11, 12, 13, 14 | mdetfval 22489 | . 2 ⊢ 𝐷 = (𝑚 ∈ 𝐵 ↦ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) |
| 16 | ovex 7386 | . 2 ⊢ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) ∈ V | |
| 17 | 6, 15, 16 | fvmpt 6934 | 1 ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5176 ∘ ccom 5627 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 .rcmulr 17180 Σg cgsu 17362 SymGrpcsymg 19266 pmSgncpsgn 19386 mulGrpcmgp 20043 ℤRHomczrh 21424 Mat cmat 22310 maDet cmdat 22487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-slot 17111 df-ndx 17123 df-base 17139 df-mat 22311 df-mdet 22488 |
| This theorem is referenced by: mdetleib2 22491 m1detdiag 22500 mdetdiag 22502 mdetralt 22511 mdettpos 22514 chpmatval2 22736 mdetpmtr1 33789 |
| Copyright terms: Public domain | W3C validator |