![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdetleib | Structured version Visualization version GIF version |
Description: Full substitution of our determinant definition (also known as Leibniz' Formula, expanding by columns). Proposition 4.6 in [Lang] p. 514. (Contributed by Stefan O'Rear, 3-Oct-2015.) (Revised by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
mdetfval.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdetfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mdetfval.b | ⊢ 𝐵 = (Base‘𝐴) |
mdetfval.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
mdetfval.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
mdetfval.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
mdetfval.t | ⊢ · = (.r‘𝑅) |
mdetfval.u | ⊢ 𝑈 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
mdetleib | ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq 7363 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑝‘𝑥)𝑚𝑥) = ((𝑝‘𝑥)𝑀𝑥)) | |
2 | 1 | mpteq2dv 5207 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)) = (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))) |
3 | 2 | oveq2d 7373 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))) = (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))) |
4 | 3 | oveq2d 7373 | . . . 4 ⊢ (𝑚 = 𝑀 → (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))) = (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))) |
5 | 4 | mpteq2dv 5207 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))) = (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) |
6 | 5 | oveq2d 7373 | . 2 ⊢ (𝑚 = 𝑀 → (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
7 | mdetfval.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
8 | mdetfval.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
9 | mdetfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
10 | mdetfval.p | . . 3 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
11 | mdetfval.y | . . 3 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
12 | mdetfval.s | . . 3 ⊢ 𝑆 = (pmSgn‘𝑁) | |
13 | mdetfval.t | . . 3 ⊢ · = (.r‘𝑅) | |
14 | mdetfval.u | . . 3 ⊢ 𝑈 = (mulGrp‘𝑅) | |
15 | 7, 8, 9, 10, 11, 12, 13, 14 | mdetfval 21935 | . 2 ⊢ 𝐷 = (𝑚 ∈ 𝐵 ↦ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) |
16 | ovex 7390 | . 2 ⊢ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) ∈ V | |
17 | 6, 15, 16 | fvmpt 6948 | 1 ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ↦ cmpt 5188 ∘ ccom 5637 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 .rcmulr 17134 Σg cgsu 17322 SymGrpcsymg 19148 pmSgncpsgn 19271 mulGrpcmgp 19896 ℤRHomczrh 20900 Mat cmat 21754 maDet cmdat 21933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-1cn 11109 ax-addcl 11111 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-nn 12154 df-slot 17054 df-ndx 17066 df-base 17084 df-mat 21755 df-mdet 21934 |
This theorem is referenced by: mdetleib2 21937 m1detdiag 21946 mdetdiag 21948 mdetralt 21957 mdettpos 21960 chpmatval2 22182 mdetpmtr1 32404 |
Copyright terms: Public domain | W3C validator |