| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdetleib | Structured version Visualization version GIF version | ||
| Description: Full substitution of our determinant definition (also known as Leibniz' Formula, expanding by columns). Proposition 4.6 in [Lang] p. 514. (Contributed by Stefan O'Rear, 3-Oct-2015.) (Revised by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| mdetfval.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| mdetfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mdetfval.b | ⊢ 𝐵 = (Base‘𝐴) |
| mdetfval.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| mdetfval.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| mdetfval.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| mdetfval.t | ⊢ · = (.r‘𝑅) |
| mdetfval.u | ⊢ 𝑈 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| mdetleib | ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq 7416 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑝‘𝑥)𝑚𝑥) = ((𝑝‘𝑥)𝑀𝑥)) | |
| 2 | 1 | mpteq2dv 5220 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)) = (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))) |
| 3 | 2 | oveq2d 7426 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))) = (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))) |
| 4 | 3 | oveq2d 7426 | . . . 4 ⊢ (𝑚 = 𝑀 → (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))) = (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))) |
| 5 | 4 | mpteq2dv 5220 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))) = (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) |
| 6 | 5 | oveq2d 7426 | . 2 ⊢ (𝑚 = 𝑀 → (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
| 7 | mdetfval.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 8 | mdetfval.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 9 | mdetfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 10 | mdetfval.p | . . 3 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 11 | mdetfval.y | . . 3 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 12 | mdetfval.s | . . 3 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 13 | mdetfval.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 14 | mdetfval.u | . . 3 ⊢ 𝑈 = (mulGrp‘𝑅) | |
| 15 | 7, 8, 9, 10, 11, 12, 13, 14 | mdetfval 22529 | . 2 ⊢ 𝐷 = (𝑚 ∈ 𝐵 ↦ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) |
| 16 | ovex 7443 | . 2 ⊢ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) ∈ V | |
| 17 | 6, 15, 16 | fvmpt 6991 | 1 ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5206 ∘ ccom 5663 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 .rcmulr 17277 Σg cgsu 17459 SymGrpcsymg 19355 pmSgncpsgn 19475 mulGrpcmgp 20105 ℤRHomczrh 21465 Mat cmat 22350 maDet cmdat 22527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-slot 17206 df-ndx 17218 df-base 17234 df-mat 22351 df-mdet 22528 |
| This theorem is referenced by: mdetleib2 22531 m1detdiag 22540 mdetdiag 22542 mdetralt 22551 mdettpos 22554 chpmatval2 22776 mdetpmtr1 33859 |
| Copyright terms: Public domain | W3C validator |