![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdetleib | Structured version Visualization version GIF version |
Description: Full substitution of our determinant definition (also known as Leibniz' Formula, expanding by columns). Proposition 4.6 in [Lang] p. 514. (Contributed by Stefan O'Rear, 3-Oct-2015.) (Revised by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
mdetfval.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdetfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mdetfval.b | ⊢ 𝐵 = (Base‘𝐴) |
mdetfval.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
mdetfval.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
mdetfval.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
mdetfval.t | ⊢ · = (.r‘𝑅) |
mdetfval.u | ⊢ 𝑈 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
mdetleib | ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq 7432 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑝‘𝑥)𝑚𝑥) = ((𝑝‘𝑥)𝑀𝑥)) | |
2 | 1 | mpteq2dv 5257 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)) = (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))) |
3 | 2 | oveq2d 7442 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))) = (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))) |
4 | 3 | oveq2d 7442 | . . . 4 ⊢ (𝑚 = 𝑀 → (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))) = (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))) |
5 | 4 | mpteq2dv 5257 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))) = (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) |
6 | 5 | oveq2d 7442 | . 2 ⊢ (𝑚 = 𝑀 → (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
7 | mdetfval.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
8 | mdetfval.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
9 | mdetfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
10 | mdetfval.p | . . 3 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
11 | mdetfval.y | . . 3 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
12 | mdetfval.s | . . 3 ⊢ 𝑆 = (pmSgn‘𝑁) | |
13 | mdetfval.t | . . 3 ⊢ · = (.r‘𝑅) | |
14 | mdetfval.u | . . 3 ⊢ 𝑈 = (mulGrp‘𝑅) | |
15 | 7, 8, 9, 10, 11, 12, 13, 14 | mdetfval 22582 | . 2 ⊢ 𝐷 = (𝑚 ∈ 𝐵 ↦ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) |
16 | ovex 7459 | . 2 ⊢ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) ∈ V | |
17 | 6, 15, 16 | fvmpt 7011 | 1 ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5238 ∘ ccom 5688 ‘cfv 6556 (class class class)co 7426 Basecbs 17215 .rcmulr 17269 Σg cgsu 17457 SymGrpcsymg 19366 pmSgncpsgn 19489 mulGrpcmgp 20119 ℤRHomczrh 21491 Mat cmat 22401 maDet cmdat 22580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-1cn 11218 ax-addcl 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-nn 12267 df-slot 17186 df-ndx 17198 df-base 17216 df-mat 22402 df-mdet 22581 |
This theorem is referenced by: mdetleib2 22584 m1detdiag 22593 mdetdiag 22595 mdetralt 22604 mdettpos 22607 chpmatval2 22829 mdetpmtr1 33640 |
Copyright terms: Public domain | W3C validator |