MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetleib Structured version   Visualization version   GIF version

Theorem mdetleib 20761
Description: Full substitution of our determinant definition (also known as Leibniz' Formula, expanding by columns). Proposition 4.6 in [Lang] p. 514. (Contributed by Stefan O'Rear, 3-Oct-2015.) (Revised by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mdetfval.d 𝐷 = (𝑁 maDet 𝑅)
mdetfval.a 𝐴 = (𝑁 Mat 𝑅)
mdetfval.b 𝐵 = (Base‘𝐴)
mdetfval.p 𝑃 = (Base‘(SymGrp‘𝑁))
mdetfval.y 𝑌 = (ℤRHom‘𝑅)
mdetfval.s 𝑆 = (pmSgn‘𝑁)
mdetfval.t · = (.r𝑅)
mdetfval.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
mdetleib (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
Distinct variable groups:   𝑥,𝑝,𝑀   𝑁,𝑝,𝑥   𝑅,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑝)   𝐵(𝑥,𝑝)   𝐷(𝑥,𝑝)   𝑃(𝑥,𝑝)   𝑆(𝑥,𝑝)   · (𝑥,𝑝)   𝑈(𝑥,𝑝)   𝑌(𝑥,𝑝)

Proof of Theorem mdetleib
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 oveq 6911 . . . . . . 7 (𝑚 = 𝑀 → ((𝑝𝑥)𝑚𝑥) = ((𝑝𝑥)𝑀𝑥))
21mpteq2dv 4968 . . . . . 6 (𝑚 = 𝑀 → (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)) = (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))
32oveq2d 6921 . . . . 5 (𝑚 = 𝑀 → (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))) = (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))
43oveq2d 6921 . . . 4 (𝑚 = 𝑀 → (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))) = (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))
54mpteq2dv 4968 . . 3 (𝑚 = 𝑀 → (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))))
65oveq2d 6921 . 2 (𝑚 = 𝑀 → (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
7 mdetfval.d . . 3 𝐷 = (𝑁 maDet 𝑅)
8 mdetfval.a . . 3 𝐴 = (𝑁 Mat 𝑅)
9 mdetfval.b . . 3 𝐵 = (Base‘𝐴)
10 mdetfval.p . . 3 𝑃 = (Base‘(SymGrp‘𝑁))
11 mdetfval.y . . 3 𝑌 = (ℤRHom‘𝑅)
12 mdetfval.s . . 3 𝑆 = (pmSgn‘𝑁)
13 mdetfval.t . . 3 · = (.r𝑅)
14 mdetfval.u . . 3 𝑈 = (mulGrp‘𝑅)
157, 8, 9, 10, 11, 12, 13, 14mdetfval 20760 . 2 𝐷 = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
16 ovex 6937 . 2 (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))) ∈ V
176, 15, 16fvmpt 6529 1 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  cmpt 4952  ccom 5346  cfv 6123  (class class class)co 6905  Basecbs 16222  .rcmulr 16306   Σg cgsu 16454  SymGrpcsymg 18147  pmSgncpsgn 18259  mulGrpcmgp 18843  ℤRHomczrh 20208   Mat cmat 20580   maDet cmdat 20758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-slot 16226  df-base 16228  df-mat 20581  df-mdet 20759
This theorem is referenced by:  mdetleib2  20762  m1detdiag  20771  mdetdiag  20773  mdetralt  20782  mdettpos  20785  chpmatval2  21008  mdetpmtr1  30434
  Copyright terms: Public domain W3C validator