MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetleib Structured version   Visualization version   GIF version

Theorem mdetleib 22490
Description: Full substitution of our determinant definition (also known as Leibniz' Formula, expanding by columns). Proposition 4.6 in [Lang] p. 514. (Contributed by Stefan O'Rear, 3-Oct-2015.) (Revised by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mdetfval.d 𝐷 = (𝑁 maDet 𝑅)
mdetfval.a 𝐴 = (𝑁 Mat 𝑅)
mdetfval.b 𝐵 = (Base‘𝐴)
mdetfval.p 𝑃 = (Base‘(SymGrp‘𝑁))
mdetfval.y 𝑌 = (ℤRHom‘𝑅)
mdetfval.s 𝑆 = (pmSgn‘𝑁)
mdetfval.t · = (.r𝑅)
mdetfval.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
mdetleib (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
Distinct variable groups:   𝑥,𝑝,𝑀   𝑁,𝑝,𝑥   𝑅,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑝)   𝐵(𝑥,𝑝)   𝐷(𝑥,𝑝)   𝑃(𝑥,𝑝)   𝑆(𝑥,𝑝)   · (𝑥,𝑝)   𝑈(𝑥,𝑝)   𝑌(𝑥,𝑝)

Proof of Theorem mdetleib
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 oveq 7359 . . . . . . 7 (𝑚 = 𝑀 → ((𝑝𝑥)𝑚𝑥) = ((𝑝𝑥)𝑀𝑥))
21mpteq2dv 5189 . . . . . 6 (𝑚 = 𝑀 → (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)) = (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))
32oveq2d 7369 . . . . 5 (𝑚 = 𝑀 → (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))) = (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))
43oveq2d 7369 . . . 4 (𝑚 = 𝑀 → (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))) = (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))
54mpteq2dv 5189 . . 3 (𝑚 = 𝑀 → (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))))
65oveq2d 7369 . 2 (𝑚 = 𝑀 → (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
7 mdetfval.d . . 3 𝐷 = (𝑁 maDet 𝑅)
8 mdetfval.a . . 3 𝐴 = (𝑁 Mat 𝑅)
9 mdetfval.b . . 3 𝐵 = (Base‘𝐴)
10 mdetfval.p . . 3 𝑃 = (Base‘(SymGrp‘𝑁))
11 mdetfval.y . . 3 𝑌 = (ℤRHom‘𝑅)
12 mdetfval.s . . 3 𝑆 = (pmSgn‘𝑁)
13 mdetfval.t . . 3 · = (.r𝑅)
14 mdetfval.u . . 3 𝑈 = (mulGrp‘𝑅)
157, 8, 9, 10, 11, 12, 13, 14mdetfval 22489 . 2 𝐷 = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
16 ovex 7386 . 2 (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))) ∈ V
176, 15, 16fvmpt 6934 1 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5176  ccom 5627  cfv 6486  (class class class)co 7353  Basecbs 17138  .rcmulr 17180   Σg cgsu 17362  SymGrpcsymg 19266  pmSgncpsgn 19386  mulGrpcmgp 20043  ℤRHomczrh 21424   Mat cmat 22310   maDet cmdat 22487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-nn 12147  df-slot 17111  df-ndx 17123  df-base 17139  df-mat 22311  df-mdet 22488
This theorem is referenced by:  mdetleib2  22491  m1detdiag  22500  mdetdiag  22502  mdetralt  22511  mdettpos  22514  chpmatval2  22736  mdetpmtr1  33789
  Copyright terms: Public domain W3C validator