MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetleib Structured version   Visualization version   GIF version

Theorem mdetleib 22481
Description: Full substitution of our determinant definition (also known as Leibniz' Formula, expanding by columns). Proposition 4.6 in [Lang] p. 514. (Contributed by Stefan O'Rear, 3-Oct-2015.) (Revised by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mdetfval.d 𝐷 = (𝑁 maDet 𝑅)
mdetfval.a 𝐴 = (𝑁 Mat 𝑅)
mdetfval.b 𝐵 = (Base‘𝐴)
mdetfval.p 𝑃 = (Base‘(SymGrp‘𝑁))
mdetfval.y 𝑌 = (ℤRHom‘𝑅)
mdetfval.s 𝑆 = (pmSgn‘𝑁)
mdetfval.t · = (.r𝑅)
mdetfval.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
mdetleib (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
Distinct variable groups:   𝑥,𝑝,𝑀   𝑁,𝑝,𝑥   𝑅,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑝)   𝐵(𝑥,𝑝)   𝐷(𝑥,𝑝)   𝑃(𝑥,𝑝)   𝑆(𝑥,𝑝)   · (𝑥,𝑝)   𝑈(𝑥,𝑝)   𝑌(𝑥,𝑝)

Proof of Theorem mdetleib
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 oveq 7396 . . . . . . 7 (𝑚 = 𝑀 → ((𝑝𝑥)𝑚𝑥) = ((𝑝𝑥)𝑀𝑥))
21mpteq2dv 5204 . . . . . 6 (𝑚 = 𝑀 → (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)) = (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))
32oveq2d 7406 . . . . 5 (𝑚 = 𝑀 → (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))) = (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))
43oveq2d 7406 . . . 4 (𝑚 = 𝑀 → (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))) = (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))
54mpteq2dv 5204 . . 3 (𝑚 = 𝑀 → (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))))
65oveq2d 7406 . 2 (𝑚 = 𝑀 → (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
7 mdetfval.d . . 3 𝐷 = (𝑁 maDet 𝑅)
8 mdetfval.a . . 3 𝐴 = (𝑁 Mat 𝑅)
9 mdetfval.b . . 3 𝐵 = (Base‘𝐴)
10 mdetfval.p . . 3 𝑃 = (Base‘(SymGrp‘𝑁))
11 mdetfval.y . . 3 𝑌 = (ℤRHom‘𝑅)
12 mdetfval.s . . 3 𝑆 = (pmSgn‘𝑁)
13 mdetfval.t . . 3 · = (.r𝑅)
14 mdetfval.u . . 3 𝑈 = (mulGrp‘𝑅)
157, 8, 9, 10, 11, 12, 13, 14mdetfval 22480 . 2 𝐷 = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
16 ovex 7423 . 2 (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))) ∈ V
176, 15, 16fvmpt 6971 1 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5191  ccom 5645  cfv 6514  (class class class)co 7390  Basecbs 17186  .rcmulr 17228   Σg cgsu 17410  SymGrpcsymg 19306  pmSgncpsgn 19426  mulGrpcmgp 20056  ℤRHomczrh 21416   Mat cmat 22301   maDet cmdat 22478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-slot 17159  df-ndx 17171  df-base 17187  df-mat 22302  df-mdet 22479
This theorem is referenced by:  mdetleib2  22482  m1detdiag  22491  mdetdiag  22493  mdetralt  22502  mdettpos  22505  chpmatval2  22727  mdetpmtr1  33820
  Copyright terms: Public domain W3C validator